Skip to main content

Advertisement

Log in

Transplantation of Nasal Olfactory Mucosa Mesenchymal Stem Cells Benefits Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a common neurodegenerative disease that contributes to 60–70% of dementia in elderly people and is currently incurable. Current treatments only relieve the symptoms of AD and slow its progression. Achieving effective neural regeneration to ameliorate cognitive impairment is a major challenge in the treatment of AD. For the first time, we alleviated symptoms of AD in APPswe/PS1dE9 mice (hereafter referred to as AD mice) by transplantation of olfactory mucosa mesenchymal stem cells (OM-MSCs). Our study demonstrated that OM-MSC transplantation promotes amyloid-β (Aβ) clearance, downregulates the inflammatory response, and increases the M2/M1 ratio; OM-MSCs promote the conversion of BV2 (microglia) from M1 to M2 and also Aβ clearance in SH-SY5YAPPswe (AD cell model). OM-MSC-transplanted AD mice show improved cognitive learning and locomotive behavior. Our study suggests that OM-MSC transplantation could alleviate the symptoms of AD and promote Aβ clearance through immunomodulation, thus demonstrating the great potential and social value of OM-MSC treatment for AD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data are available from the corresponding author upon reasonable request.

References

  1. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A et al (2020) Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet (London, England) 396(10248):413–446. https://doi.org/10.1016/S0140-6736(20)30367-6

    Article  Google Scholar 

  2. Ljubic B, Roychoudhury S, Cao XH, Pavlovski M, Obradovic S, Nair R, Glass L, Obradovic Z (2020) Influence of medical domain knowledge on deep learning for Alzheimer’s disease prediction. Comput Methods Programs Biomed 197:105765. https://doi.org/10.1016/j.cmpb.2020.105765

    Article  PubMed  PubMed Central  Google Scholar 

  3. De-Paula VJ, Radanovic M, Diniz BS, Forlenza OV (2012) Alzheimer’s disease. Subcell Biochem 65:329–352. https://doi.org/10.1007/978-94-007-5416-4_14

    Article  CAS  PubMed  Google Scholar 

  4. Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 25(24). https://doi.org/10.3390/molecules25245789

  5. Hampel H, Vassar R, De Strooper B, Hardy J, Willem M, Singh N, Zhou J, Yan R et al (2021) The beta-secretase BACE1 in Alzheimer’s disease. Biol Psychiatry 89(8):745–756. https://doi.org/10.1016/j.biopsych.2020.02.001

    Article  CAS  PubMed  Google Scholar 

  6. Alexander GC, Knopman DS, Emerson SS, Ovbiagele B, Kryscio RJ, Perlmutter JS, Kesselheim AS (2021) Revisiting FDA approval of aducanumab. N Engl J Med 385(9):769–771. https://doi.org/10.1056/NEJMp2110468

    Article  CAS  PubMed  Google Scholar 

  7. Rabinovici GD (2021) Controversy and progress in Alzheimer’s disease - FDA approval of aducanumab. N Engl J Med 385(9):771–774. https://doi.org/10.1056/NEJMp2111320

    Article  CAS  PubMed  Google Scholar 

  8. Yiannopoulou KG, Papageorgiou SG (2020) Current and future treatments in Alzheimer disease: an update. J Cent Nerv Syst Dis 12:1179573520907397. https://doi.org/10.1177/1179573520907397

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hassanzadeh A, Rahman HS, Markov A, Endjun JJ, Zekiy AO, Chartrand MS, Beheshtkhoo N, Kouhbanani MAJ et al (2021) Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities. Stem Cell Res Ther 12(1):297. https://doi.org/10.1186/s13287-021-02378-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moghadasi S, Elveny M, Rahman HS, Suksatan W, Jalil AT, Abdelbasset WK, Yumashev AV, Shariatzadeh S et al (2021) A paradigm shift in cell-free approach: the emerging role of MSCs-derived exosomes in regenerative medicine. J Transl Med 19(1):302. https://doi.org/10.1186/s12967-021-02980-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xie Q, Liu R, Jiang J, Peng J, Yang C, Zhang W, Wang S, Song J (2020) What is the impact of human umbilical cord mesenchymal stem cell transplantation on clinical treatment? Stem Cell Res Ther 11(1):519. https://doi.org/10.1186/s13287-020-02011-z

    Article  PubMed  PubMed Central  Google Scholar 

  12. Park BW, Jung SH, Das S, Lee SM, Park JH, Kim H, Hwang JW, Lee S et al (2020) In vivo priming of human mesenchymal stem cells with hepatocyte growth factor-engineered mesenchymal stem cells promotes therapeutic potential for cardiac repair. Sci Adv 6(13):eaay6994. https://doi.org/10.1126/sciadv.aay6994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Staff NP, Jones DT, Singer W (2019) Mesenchymal stromal cell therapies for neurodegenerative diseases. Mayo Clin Proc 94(5):892–905. https://doi.org/10.1016/j.mayocp.2019.01.001

    Article  PubMed  Google Scholar 

  14. Teixeira FG, Carvalho MM, Panchalingam KM, Rodrigues AJ, Mendes-Pinheiro B, Anjo S, Manadas B, Behie LA et al (2017) Impact of the secretome of human mesenchymal stem cells on brain structure and animal behavior in a rat model of Parkinson’s disease. Stem Cells Transl Med 6(2):634–646. https://doi.org/10.5966/sctm.2016-0071

    Article  CAS  PubMed  Google Scholar 

  15. Guo M, Yin Z, Chen F, Lei P (2020) Mesenchymal stem cell-derived exosome: a promising alternative in the therapy of Alzheimer’s disease. Alzheimers Res Ther 12(1):109. https://doi.org/10.1186/s13195-020-00670-x

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cui GH, Wu J, Mou FF, Xie WH, Wang FB, Wang QL, Fang J, Xu YW et al (2018) Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice. FASEB J 32(2):654–668. https://doi.org/10.1096/fj.201700600R

    Article  CAS  PubMed  Google Scholar 

  17. Losurdo M, Pedrazzoli M, D’Agostino C, Elia CA, Massenzio F, Lonati E, Mauri M, Rizzi L et al (2020) Intranasal delivery of mesenchymal stem cell-derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of Alzheimer’s disease. Stem Cells Transl Med 9(9):1068–1084. https://doi.org/10.1002/sctm.19-0327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cone AS, Yuan X, Sun L, Duke LC, Vreones MP, Carrier AN, Kenyon SM, Carver SR et al (2021) Mesenchymal stem cell-derived extracellular vesicles ameliorate Alzheimer’s disease-like phenotypes in a preclinical mouse model. Theranostics 11(17):8129–8142. https://doi.org/10.7150/thno.62069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Delorme B, Nivet E, Gaillard J, Haupl T, Ringe J, Deveze A, Magnan J, Sohier J et al (2010) The human nose harbors a niche of olfactory ectomesenchymal stem cells displaying neurogenic and osteogenic properties. Stem Cells Dev 19(6):853–866. https://doi.org/10.1089/scd.2009.0267

    Article  CAS  PubMed  Google Scholar 

  20. Alvites RD, Branquinho MV, Caseiro AR, Amorim I, Santos Pedrosa S, Rema A, Faria F, Porto B et al (2020) Rat olfactory mucosa mesenchymal stem/stromal cells (OM-MSCs): a characterization study. Int J Cell Biol 2020:2938258. https://doi.org/10.1155/2020/2938258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ge L, Jiang M, Duan D, Wang Z, Qi L, Teng X, Zhao Z, Wang L et al (2016) Secretome of olfactory mucosa mesenchymal stem cell, a multiple potential stem cell. Stem Cells Int 2016:1243659. https://doi.org/10.1155/2016/1243659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Girard SD, Deveze A, Nivet E, Gepner B, Roman FS, Feron F (2011) Isolating nasal olfactory stem cells from rodents or humans. J Vis Exp (54). https://doi.org/10.3791/2762

  23. Veron AD, Bienboire-Frosini C, Girard SD, Sadelli K, Stamegna JC, Khrestchatisky M, Alexis J, Pageat P et al (2018) Syngeneic transplantation of olfactory ectomesenchymal stem cells restores learning and memory abilities in a rat model of global cerebral ischemia. Stem Cells Int 2018:2683969. https://doi.org/10.1155/2018/2683969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alvites RD, Branquinho MV, Sousa AC, Amorim I, Magalhaes R, Joao F, Almeida D, Amado S et al (2021) Combined use of chitosan and olfactory mucosa mesenchymal stem/stromal cells to promote peripheral nerve regeneration in vivo. Stem Cells Int 2021:6613029. https://doi.org/10.1155/2021/6613029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lindsay SL, Toft A, Griffin J, Emraja AMM, Barnett SC, Riddell JS (2017) Human olfactory mesenchymal stromal cell transplants promote remyelination and earlier improvement in gait co-ordination after spinal cord injury. Glia 65(4):639–656. https://doi.org/10.1002/glia.23117

    Article  PubMed  PubMed Central  Google Scholar 

  26. Young E, Westerberg B, Yanai A, Gregory-Evans K (2018) The olfactory mucosa: a potential source of stem cells for hearing regeneration. Regen Med 13(5):581–593. https://doi.org/10.2217/rme-2018-0009

    Article  CAS  PubMed  Google Scholar 

  27. Qin C, Lu Y, Wang K, Bai L, Shi G, Huang Y, Li Y (2020) Transplantation of bone marrow mesenchymal stem cells improves cognitive deficits and alleviates neuropathology in animal models of Alzheimer’s disease: a meta-analytic review on potential mechanisms. Transl Neurodegener 9(1):20. https://doi.org/10.1186/s40035-020-00199-x

    Article  PubMed  PubMed Central  Google Scholar 

  28. Naaldijk Y, Jager C, Fabian C, Leovsky C, Bluher A, Rudolph L, Hinze A, Stolzing A (2017) Effect of systemic transplantation of bone marrow-derived mesenchymal stem cells on neuropathology markers in APP/PS1 Alzheimer mice. Neuropathol Appl Neurobiol 43(4):299–314. https://doi.org/10.1111/nan.12319

    Article  CAS  PubMed  Google Scholar 

  29. Ma T, Gong K, Ao Q, Yan Y, Song B, Huang H, Zhang X, Gong Y (2013) Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer’s disease mice. Cell Transplant 22(Suppl 1):S113-126. https://doi.org/10.3727/096368913X672181

    Article  PubMed  Google Scholar 

  30. Lee JK, Jin HK, Endo S, Schuchman EH, Carter JE, Bae JS (2010) Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer’s disease mice by modulation of immune responses. Stem Cells 28(2):329–343. https://doi.org/10.1002/stem.277

    Article  CAS  PubMed  Google Scholar 

  31. Nakano M, Kubota K, Kobayashi E, Chikenji TS, Saito Y, Konari N, Fujimiya M (2020) Bone marrow-derived mesenchymal stem cells improve cognitive impairment in an Alzheimer’s disease model by increasing the expression of microRNA-146a in hippocampus. Sci Rep 10(1):10772. https://doi.org/10.1038/s41598-020-67460-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nivet E, Vignes M, Girard SD, Pierrisnard C, Baril N, Deveze A, Magnan J, Lante F et al (2011) Engraftment of human nasal olfactory stem cells restores neuroplasticity in mice with hippocampal lesions. J Clin Invest 121(7):2808–2820. https://doi.org/10.1172/JCI44489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gangadaran P, Rajendran RL, Lee HW, Kalimuthu S, Hong CM, Jeong SY, Lee SW, Lee J et al (2017) Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia. J Control Release 264:112–126. https://doi.org/10.1016/j.jconrel.2017.08.022

    Article  CAS  PubMed  Google Scholar 

  34. Oh SH, Kim HN, Park HJ, Shin JY, Lee PH (2015) Mesenchymal stem cells increase hippocampal neurogenesis and neuronal differentiation by enhancing the Wnt signaling pathway in an Alzheimer’s disease model. Cell Transplant 24(6):1097–1109. https://doi.org/10.3727/096368914X679237

    Article  PubMed  Google Scholar 

  35. Hu W, Feng Z, Xu J, Jiang Z, Feng M (2019) Brain-derived neurotrophic factor modified human umbilical cord mesenchymal stem cells-derived cholinergic-like neurons improve spatial learning and memory ability in Alzheimer’s disease rats. Brain Res 1710:61–73. https://doi.org/10.1016/j.brainres.2018.12.034

    Article  CAS  PubMed  Google Scholar 

  36. Kim J, Lee Y, Lee S, Kim K, Song M, Lee J (2020) Mesenchymal stem cell therapy and Alzheimer’s disease: current status and future perspectives. J Alzheimers Dis 77(1):1–14. https://doi.org/10.3233/JAD-200219

    Article  CAS  PubMed  Google Scholar 

  37. Vagnucci AH Jr, Li WW (2003) Alzheimer’s disease and angiogenesis. Lancet 361(9357):605–608. https://doi.org/10.1016/S0140-6736(03)12521-4

    Article  CAS  PubMed  Google Scholar 

  38. Hao P, Liang Z, Piao H, Ji X, Wang Y, Liu Y, Liu R, Liu J (2014) Conditioned medium of human adipose-derived mesenchymal stem cells mediates protection in neurons following glutamate excitotoxicity by regulating energy metabolism and GAP-43 expression. Metab Brain Dis 29(1):193–205. https://doi.org/10.1007/s11011-014-9490-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu Z, Li H, Hong C, Chen M, Yue T, Chen C, Wang Z, You Q et al (2018) ALS-associated E478G mutation in human OPTN (optineurin) promotes inflammation and induces neuronal cell death. Front Immunol 9:2647. https://doi.org/10.3389/fimmu.2018.02647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jiang YL, Wang ZX, Liu XX, Wan MD, Liu YW, Jiao B, Liao XX, Luo ZW et al (2022) The protective effects of osteocyte-derived extracellular vesicles against Alzheimer’s disease diminished with aging. Adv Sci (Weinh) 9(17):e2105316. https://doi.org/10.1002/advs.202105316

    Article  CAS  Google Scholar 

  41. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858. https://doi.org/10.1038/nprot.2006.116

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pitsikas N (2007) Effects of scopolamine and L-NAME on rats’ performance in the object location test. Behav Brain Res 179(2):294–298. https://doi.org/10.1016/j.bbr.2007.02.038

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (Grant Nos. 82172502 and 81974127) and Fundamental Research Funds for the Central Universities of Central South University (2019zzts1042, 2020zzts859).

Author information

Authors and Affiliations

Authors

Contributions

Z.Z.L. conceived the study, designed the experimental procedures, analyzed the data, prepared the manuscript, and supervised the project. M.L.C. and C.G.H. performed the experiments and analyzed the data. X.W. and Z.L.P. performed the experiments. R.D. prepared the manuscript. M.L. and L.T.G. conceived the study. H.X. provided the platform for animal experiments and supervised the project.

Corresponding authors

Correspondence to Ming Lu, Hui Xie or Zheng-Zhao Liu.

Ethics declarations

Ethics Approval

This study was approved by the Ethical Review Board at Xiangya Hospital of Central South University, Changsha, China (No. 2022010004).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(PNG 211 KB)

High Resolution Image (TIF 40.0 MB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, CG., Chen, ML., Duan, R. et al. Transplantation of Nasal Olfactory Mucosa Mesenchymal Stem Cells Benefits Alzheimer’s Disease. Mol Neurobiol 59, 7323–7336 (2022). https://doi.org/10.1007/s12035-022-03044-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03044-6

Keywords

Navigation