Skip to main content
Log in

Nuclear Inhibitor of Protein Phosphatase 1 (NIPP1) Regulates CNS Tau Phosphorylation and Myelination During Development

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Nuclear inhibitor of protein phosphatase 1 (NIPP1) is a known regulator of gene expression and plays roles in many physiological or pathological processes such as stem cell proliferation and skin inflammation. While NIPP1 has many regulatory roles in proliferating cells, its function in the central nervous system (CNS) has not been directly investigated. In the present study, we examined NIPP1 CNS function using a conditional knockout (cKO) mouse model in which the Nipp1 gene is excised from neural precursor cells. These mice exhibited severe developmental impairments that led to premature lethality. To delineate the neurological changes occurring in these animals, we first assessed microtubule-associated protein tau, a known target of NIPP1 activity. We found that phosphorylation of tau is significantly enhanced in NIPP1 cKO mice. Consistent with this, we found altered AKT and PP1 activity in NIPP1 cKO mice, suggesting that increased tau phosphorylation likely results from a shift in kinase/phosphatase activity. Secondly, we observed tremors in the NIPP1 cKO mice which prompted us to explore the integrity of the myelin sheath, an integral structure for CNS function. We demonstrated that in NIPP1 cKO mice, there is a significant decrease in MBP protein expression in the cortex, along with deficits in both the conduction of compound action potentials (CAP) and the percentage of myelinated axons in the optic nerve. Our study suggests that NIPP1 in neural precursor cells regulates phosphorylation of tau and CNS myelination and may represent a novel therapeutic target for neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Trinkle-Mulcahy L, Ajuh P, Prescott A, Claverie-Martin F, Cohen S, Lamond AI, Cohen P (1999) Nuclear organisation of NIPP1, a regulatory subunit of protein phosphatase 1 that associates with pre-mRNA splicing factors. J Cell Sci 112(Pt 2):157–168

    Article  CAS  PubMed  Google Scholar 

  2. Winkler, C., R. Rouget, D. Wu, M. Beullens, A. Van Eynde, and M (2018) Bollen, Overexpression of PP1-NIPP1 limits the capacity of cells to repair DNA double-strand breaks. J Cell Sci 131(13).

  3. Ferreira M, Verbinnen I, Fardilha M, Van Eynde A, Bollen M (2018) The deletion of the protein phosphatase 1 regulator NIPP1 in testis causes hyperphosphorylation and degradation of the histone methyltransferase EZH2. J Biol Chem 293(47):18031–18039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jin Q, van Eynde A, Beullens M, Roy N, Thiel G, Stalmans W, Bollen M (2003) The protein phosphatase-1 (PP1) regulator, nuclear inhibitor of PP1 (NIPP1), interacts with the polycomb group protein, embryonic ectoderm development (EED), and functions as a transcriptional repressor. J Biol Chem 278(33):30677–30685

    Article  CAS  PubMed  Google Scholar 

  5. Minnebo N, Gornemann J, O’Connell N, Van Dessel N, Derua R, Vermunt MW, Page R et al (2013) NIPP1 maintains EZH2 phosphorylation and promoter occupancy at proliferation-related target genes. Nucleic Acids Res 41(2):842–854

    Article  CAS  PubMed  Google Scholar 

  6. Van Dessel N, Beke L, Gornemann J, Minnebo N, Beullens M, Tanuma N, Shima H, Van Eynde A, Bollen M (2010) The phosphatase interactor NIPP1 regulates the occupancy of the histone methyltransferase EZH2 at Polycomb targets. Nucleic Acids Res 38(21):7500–7512

    Article  PubMed  PubMed Central  Google Scholar 

  7. Van Eynde A, Nuytten M, Dewerchin M, Schoonjans L, Keppens S, Beullens M, Moons L, Carmeliet P, Stalmans W, Bollen M (2004) The nuclear scaffold protein NIPP1 is essential for early embryonic development and cell proliferation. Mol Cell Biol 24(13):5863–5874

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boens S, Verbinnen I, Verhulst S, Szeker K, Ferreira M, Gevaert T, Baes M, Roskams T et al (2016) Brief report: the deletion of the phosphatase regulator NIPP1 causes progenitor cell expansion in the adult liver. Stem Cells 34(8):2256–2262

    Article  CAS  PubMed  Google Scholar 

  9. Ferreira M, Boens S, Winkler C, Szeker K, Verbinnen I, Van Eynde A, Fardilha M, Bollen M (2017) The protein phosphatase 1 regulator NIPP1 is essential for mammalian spermatogenesis. Sci Rep 7(1):13364

    Article  PubMed  PubMed Central  Google Scholar 

  10. Verbinnen I, Jonkhout M, Liakath-Ali K, Szeker K, Ferreira M, Boens S, Rouget R, Nikolic M et al (2020) Phosphatase regulator NIPP1 restrains chemokine-driven skin inflammation. J Invest Dermatol 140(8):1576–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Novoyatleva T, Heinrich B, Tang Y, Benderska N, Butchbach ME, Lorson CL, Lorson MA, Ben-Dov C et al (2008) Protein phosphatase 1 binds to the RNA recognition motif of several splicing factors and regulates alternative pre-mRNA processing. Hum Mol Genet 17(1):52–70

    Article  CAS  PubMed  Google Scholar 

  12. Welden JR, van Doorn J, Nelson PT, Stamm S (2018) The human MAPT locus generates circular RNAs. Biochim Biophys Acta Mol Basis Dis 1864(9):2753–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Y, Mandelkow E (2016) Tau in physiology and pathology. Nat Rev Neurosci 17(1):5–21

    Article  PubMed  Google Scholar 

  14. Braithwaite SP, Stock JB, Lombroso PJ, Nairn AC (2012) Protein phosphatases and Alzheimer’s disease. Prog Mol Biol Transl Sci 106:343–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Readhead C, Hood L (1990) The dysmyelinating mouse mutations shiverer (shi) and myelin deficient (shimld). Behav Genet 20(2):213–234

    Article  CAS  PubMed  Google Scholar 

  16. Hou H, Sun L, Siddoway BA, Petralia RS, Yang H, Gu H, Nairn AC, Xia H (2013) Synaptic NMDA receptor stimulation activates PP1 by inhibiting its phosphorylation by Cdk5. J Cell Biol 203(3):521–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mayoral SR, Etxeberria A, Shen YA, Chan JR (2018) Initiation of CNS myelination in the optic nerve is dependent on axon caliber. Cell Rep 25(3):544–550 (e3)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang H, Hou H, Pahng A, Gu H, Nairn AC, Tang YP, Colombo PJ, Xia H (2015) Protein phosphatase-1 inhibitor-2 is a novel memory suppressor. J Neurosci 35(45):15082–15087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dickson DW, Kouri N, Murray ME, Josephs KA (2011) Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau). J Mol Neurosci 45(3):384–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saab AS, Tzvetavona ID, Trevisiol A, Baltan S, Dibaj P, Kusch K, Mobius W, Goetze B et al (2016) Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91(1):119–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B, Tohyama K, Richardson WD (2014) Motor skill learning requires active central myelination. Science 346(6207):318–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Monje M (2018) Myelin plasticity and nervous system function. Annu Rev Neurosci 41:61–76

    Article  CAS  PubMed  Google Scholar 

  23. Birey F, Kloc M, Chavali M, Hussein I, Wilson M, Christoffel DJ, Chen T, Frohman MA et al (2015) Genetic and stress-induced loss of NG2 glia triggers emergence of depressive-like behaviors through reduced secretion of FGF2. Neuron 88(5):941–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fields RD (2008) White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31(7):361–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Raabe, F.J., L. Slapakova, M.J. Rossner, L. Cantuti-Castelvetri, M. Simons, P.G. Falkai, and A. Schmitt (2019) Oligodendrocytes as a new therapeutic target in schizophrenia: from histopathological findings to neuron-oligodendrocyte interaction. Cells, 8(12).

  26. Lee S, Leach MK, Redmond SA, Chong SY, Mellon SH, Tuck SJ, Feng ZQ, Corey JM, Chan JR (2012) A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nat Methods 9(9):917–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bonetto G, Kamen Y, Evans KA, Karadottir RT (2020) Unraveling myelin plasticity Front Cell Neurosci 14:156

    Article  CAS  PubMed  Google Scholar 

  28. Demerens C, Stankoff B, Logak M, Anglade P, Allinquant B, Couraud F, Zalc B, Lubetzki C (1996) Induction of myelination in the central nervous system by electrical activity. Proc Natl Acad Sci U S A 93(18):9887–9892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE et al (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344(6183):1252304

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mitew S, Gobius I, Fenlon LR, McDougall SJ, Hawkes D, Xing YL, Bujalka H, Gundlach AL et al (2018) Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner. Nat Commun 9(1):306

    Article  PubMed  PubMed Central  Google Scholar 

  31. Goebbels S, Wieser GL, Pieper A, Spitzer S, Weege B, Yan K, Edgar JM, Yagensky O et al (2017) A neuronal PI(3,4,5)P3-dependent program of oligodendrocyte precursor recruitment and myelination. Nat Neurosci 20(1):10–15

    Article  CAS  PubMed  Google Scholar 

  32. Siddoway B, Hou H, Yang J, Sun L, Yang H, Wang GY, Xia H (2014) Potassium channel Kv2.1 is regulated through protein phosphatase-1 in response to increases in synaptic activity. Neurosci Lett 583:142–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shrager P, Youngman M (2017) Preferential conduction block of myelinated axons by nitric oxide. J Neurosci Res 95(7):1402–1414

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the technical help of Karen Bentley, director of Electron Microscopy Core of URMC, and Drs. Mathieu Bollen and Aleyde Van Eynde (KU Leuven, Belgium) for providing the floxed NIPP1 mice in our study.

Funding

This work is supported by the National Institutes of Health (NIH) (R01 MH109719) and the National Science Foundation (NSF) (IOS-1457336) to HX and the NIH (F30 MH122046) to KF.

Author information

Authors and Affiliations

Authors

Contributions

Houhui Xia contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Cody McKee, Peter Shrager, Arindam Gosh Mazumder, Archan Ganguly, Abigail Mayer, Karl Foley, Nancy Ward, Margaret Youngman, and Hailong Hou. The first draft of the manuscript was written by Houhui Xia and Cody McKee, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hailong Hou or Houhui Xia.

Ethics declarations

Ethics Approval

All mouse experiments were performed in accordance with protocols approved by the University Committee on Animal Resources of the University of Rochester Medical Center (URMC). Our experiments comply with the ARRIVE guidelines and were carried out in accordance with the National Research Council’s Guide for the Care and Use of Laboratory Animals.

Research Involving Human Participants and/or Animals

Our research involved use of animals, but not of human subjects.

Informed Consent

Not applicable.

Consent to Participate

Not applicable. There are no human subjects involved in our study.

Consent to Publish

Not applicable. There are no human subjects involved in our study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McKee, C., Shrager, P., Mazumder, A.G. et al. Nuclear Inhibitor of Protein Phosphatase 1 (NIPP1) Regulates CNS Tau Phosphorylation and Myelination During Development. Mol Neurobiol 59, 7486–7494 (2022). https://doi.org/10.1007/s12035-022-03040-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03040-w

Keywords

Navigation