Skip to main content

Advertisement

Log in

Neuroprotective Effect of Exogenous Galectin-1 in Status Epilepticus

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Intrahippocampal pilocarpine microinjection (H-PILO) induces status epilepticus (SE) that can lead to spontaneous recurrent seizures (SRS) and neurodegeneration in rodents. Studies using animal models have indicated that lectins mediate a variety of biological activities with neuronal benefits, especially galectin-1 (GAL-1), which has been identified as an effective neuroprotective compound. GAL-1 is associated with the regulation of cell adhesion, proliferation, programmed cell death, and immune responses, as well as attenuating neuroinflammation. Here, we administrated GAL-1 to Wistar rats and evaluated the severity of the SE, neurodegenerative and inflammatory patterns in the hippocampal formation. Administration of GAL-1 caused a reduction in the number of class 2 and 4 seizures, indicating a decrease in seizure severity. Furthermore, we observed a reduction in inflammation and neurodegeneration 24 h and 15 days after SE. Overall, these results suggest that GAL-1 has a neuroprotective effect in the early stage of epileptogenesis and provides new insights into the roles of exogenous lectins in temporal lobe epilepsy (TLE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Alkadhi KA (2019) Cellular and molecular differences between area CA1 and the dentate gyrus of the hippocampus. Mol Neurobiol. https://doi.org/10.1007/s12035-019-1541-2

    Article  PubMed  Google Scholar 

  2. Lothman EW, Bertram EH, Stringer JL (1991) Functional anatomy of hippocampal seizures. Prog Neurobiol 37:1–82. https://doi.org/10.1016/0301-0082(91)90011-O

    Article  CAS  PubMed  Google Scholar 

  3. Upadhya D, Hattiangady B, Castro OW et al (2019) Human induced pluripotent stem cell-derived MGE cell grafting after status epilepticus attenuates chronic epilepsy and comorbidities via synaptic integration. Proc Natl Acad Sci 116:287–296. https://doi.org/10.1073/pnas.1814185115

    Article  CAS  PubMed  Google Scholar 

  4. Wu D, Chang F, Peng D et al (2020) The morphological characteristics of hippocampus and thalamus in mesial temporal lobe epilepsy. BMC Neurol 20:235. https://doi.org/10.1186/s12883-020-01817-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lowenstein DH (1999) Status epilepticus: an overview of the clinical problem. Epilepsia 40 Suppl 1:S3-8; discussion S21-2

    Article  CAS  PubMed  Google Scholar 

  6. Sloviter RS (1999) Status epilepticus-induced neuronal injury and network reorganization. Epilepsia 40:34–39. https://doi.org/10.1111/j.1528-1157.1999.tb00876.x

    Article  Google Scholar 

  7. Santos VR, Melo IS, Pacheco ALD, Castro OWD (2019) Life and death in the hippocampus: what’s bad? Epilepsy Behav. https://doi.org/10.1016/j.yebeh.2019.106595

    Article  PubMed  Google Scholar 

  8. van Liefferinge J, Massie A, Portelli J et al (2013) Are vesicular neurotransmitter transporters potential treatment targets for temporal lobe epilepsy? Front Cell Neurosci 7:139. https://doi.org/10.3389/fncel.2013.00139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Upadhya D, Kodali M, Gitai D et al (2019) A model of chronic temporal lobe epilepsy presenting constantly rhythmic and robust spontaneous seizures, co-morbidities and hippocampal neuropathology. Aging Dis 10:915–936. https://doi.org/10.14336/AD.2019.0720

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sharma AK, Reams RY, Jordan WH et al (2007) Mesial temporal lobe epilepsy: pathogenesis, induced rodent models and lesions. Toxicol Pathol 35:984–999. https://doi.org/10.1080/01926230701748305

    Article  PubMed  Google Scholar 

  11. Castro OW, Furtado MA, Tilelli CQ et al (2011) Comparative neuroanatomical and temporal characterization of FluoroJade-positive neurodegeneration after status epilepticus induced by systemic and intrahippocampal pilocarpine in Wistar rats. Brain Res 1374:43–55. https://doi.org/10.1016/j.brainres.2010.12.012

    Article  CAS  PubMed  Google Scholar 

  12. Furtado MA, Castro OW, del Vecchio F et al (2011) Study of spontaneous recurrent seizures and morphological alterations after status epilepticus induced by intrahippocampal injection of pilocarpine. Epilepsy Behav 20:257–266. https://doi.org/10.1016/j.yebeh.2010.11.024

    Article  CAS  PubMed  Google Scholar 

  13. Castro OW, Upadhya D, Kodali M, Shetty AK (2017) Resveratrol for easing status epilepticus induced brain injury, inflammation, epileptogenesis, and cognitive and memory dysfunction—are we there yet? Front Neurol 8:603. https://doi.org/10.3389/fneur.2017.00603

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhu K, Yuan B, Hu M et al (2018) Ablation of aberrant neurogenesis fails to attenuate cognitive deficit of chronically epileptic mice. Epilepsy Res 142:1–8. https://doi.org/10.1016/j.eplepsyres.2018.03.004

    Article  PubMed  Google Scholar 

  15. de Melo IS, dos Santos YMO, Pacheco ALD et al (2020) Role of modulation of hippocampal glucose following pilocarpine-induced status epilepticus. Mol Neurobiol. https://doi.org/10.1007/s12035-020-02173-0

    Article  PubMed  Google Scholar 

  16. Rondouin G, Lerner-Natoli M, Hashizume A (1987) Wet dog shakes in limbic versus generalized seizures. Exp Neurol 95:500–505. https://doi.org/10.1016/0014-4886(87)90156-7

    Article  CAS  PubMed  Google Scholar 

  17. Rodrigues MCA, Rossetti F, Foresti ML et al (2005) Correlation between shaking behaviors and seizure severity in five animal models of convulsive seizures. Epilepsy Behav 6:328–336. https://doi.org/10.1016/j.yebeh.2005.02.005

    Article  PubMed  Google Scholar 

  18. Melo IS, Santos YMO, Costa MA et al (2016) Inhibition of sodium glucose cotransporters following status epilepticus induced by intrahippocampal pilocarpine affects neurodegeneration process in hippocampus. Epilepsy Behav 61:258–268. https://doi.org/10.1016/j.yebeh.2016.05.026

    Article  PubMed  Google Scholar 

  19. Manouze H, Bouchatta O, Bennis M et al (2019) Anticonvulsive and neuroprotective effects of aqueous and methanolic extracts of Anacyclus pyrethrum root in kainic acid-induced-status epilepticus in mice. Epilepsy Res 158.https://doi.org/10.1016/j.eplepsyres.2019.106225

  20. Vega-García A, Santana-Gómez CE, Rocha L et al (2019) Magnolia officinalis reduces the long-term effects of the status epilepticus induced by kainic acid in immature rats. Brain Res Bull 149:156–167. https://doi.org/10.1016/j.brainresbull.2019.04.003

    Article  CAS  PubMed  Google Scholar 

  21. Mante PK, Adongo DW, Woode E (2017) Anticonvulsant effects of antiaris toxicaria aqueous extract: Investigation using animal models of temporal lobe epilepsy. BMC Res Notes 10.https://doi.org/10.1186/s13104-017-2488-x

  22. Pernot F, Heinrich C, Barbier L et al (2011) Inflammatory changes during epileptogenesis and spontaneous seizures in a mouse model of mesiotemporal lobe epilepsy. Epilepsia 52:2315–2325. https://doi.org/10.1111/j.1528-1167.2011.03273.x

    Article  PubMed  Google Scholar 

  23. Wu XL, Tang YC, Lu QY et al (2015) Astrocytic Cx 43 and Cx 40 in the mouse hippocampus during and after pilocarpine-induced status epilepticus. Exp Brain Res 233:1529–1539. https://doi.org/10.1007/s00221-015-4226-8

    Article  CAS  PubMed  Google Scholar 

  24. Li R, Ma L, Huang H et al (2016) Altered expression of CXCL13 and CXCR5 in intractable temporal lobe epilepsy patients and pilocarpine-induced epileptic rats. Neurochem Res. https://doi.org/10.1007/s11064-016-2102-y

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xu KL, Liu XQ, Yao YL et al (2018) Effect of dexmedetomidine on rats with convulsive status epilepticus and association with activation of cholinergic anti-inflammatory pathway. Biochem Biophys Res Commun 495:421–426. https://doi.org/10.1016/j.bbrc.2017.10.124

    Article  CAS  PubMed  Google Scholar 

  26. de Melo IS, Pacheco ALD, dos Santos YMO et al (2021) Modulation of glucose availability and effects of hypo- and hyperglycemia on status epilepticus: what we do not know yet? Mol Neurobiol 58:505–519. https://doi.org/10.1007/s12035-020-02133-8

    Article  CAS  PubMed  Google Scholar 

  27. Sedaghat R, Taab Y, Kiasalari Z et al (2017) Berberine ameliorates intrahippocampal kainate-induced status epilepticus and consequent epileptogenic process in the rat: underlying mechanisms. Biomed Pharmacother 87:200–208. https://doi.org/10.1016/j.biopha.2016.12.109

    Article  CAS  PubMed  Google Scholar 

  28. Mohd Sairazi NS, Sirajudeen KNS, Muzaimi M, Mummedy S, Asari MA, Sulaiman SA (2018) Tualang honey reduced neuroinflammation and caspase-3 activity in rat brain after kainic acid-induced status epilepticus. Evid Based Complement Alternat Med 2018:7287820. https://doi.org/10.1155/2018/7287820

    Article  PubMed  PubMed Central  Google Scholar 

  29. Miskin C, Hasbani DM (2014) Status epilepticus: immunologic and inflammatory mechanisms. Semin Pediatr Neurol 21:221–225. https://doi.org/10.1016/j.spen.2014.09.001

    Article  PubMed  Google Scholar 

  30. Jiang J, Yu Y, Kinjo ER et al (2019) Suppressing pro-inflammatory prostaglandin signaling attenuates excitotoxicity-associated neuronal inflammation and injury. Neuropharmacology 149:149–160. https://doi.org/10.1016/j.neuropharm.2019.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Du Y, Kemper T, Qiu J, Jiang J (2016) Defining the therapeutic time window for suppressing the inflammatory prostaglandin E2 signaling after status epilepticus. Expert Rev Neurother 16:123–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rojas A, Ganesh T, Lelutiu N et al (2015) Inhibition of the prostaglandin EP2 receptor is neuroprotective and accelerates functional recovery in a rat model of organophosphorus induced status epilepticus. Neuropharmacology 93:15–27. https://doi.org/10.1016/j.neuropharm.2015.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leite JP, Garcia-Cairasco N, Cavalheiro EA (2002) New insights from the use of pilocarpine and kainate models. Epilepsy Res 50:93–103. https://doi.org/10.1016/S0920-1211(02)00072-4

    Article  CAS  PubMed  Google Scholar 

  34. Mishra V, Shuai B, Kodali M et al (2016) Resveratrol treatment after status epilepticus restrains neurodegeneration and abnormal neurogenesis with suppression of oxidative stress and inflammation. Sci Rep 5:17807. https://doi.org/10.1038/srep17807

    Article  CAS  Google Scholar 

  35. Zenki KC, Kalinine E, Zimmer ER et al (2018) Memantine decreases neuronal degeneration in young rats submitted to LiCl-pilocarpine-induced status epilepticus. Neurotoxicology 66:45–52. https://doi.org/10.1016/j.neuro.2018.03.005

    Article  CAS  PubMed  Google Scholar 

  36. Mori MA, Meyer E, Soares LM et al (2017) Cannabidiol reduces neuroinflammation and promotes neuroplasticity and functional recovery after brain ischemia. Prog Neuropsychopharmacol Biol Psychiatry 75:94–105. https://doi.org/10.1016/j.pnpbp.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  37. Ambrogini P, Torquato P, Bartolini D et al (2019) Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: The role of vitamin E. Biochim Biophys Acta (BBA) - Mol Basis Dis. https://doi.org/10.1016/j.bbadis.2019.01.026

    Article  Google Scholar 

  38. Pacheco ALD, de Melo IS, de Souza FMA et al (2021) Maternal crack cocaine use in rats leads to depressive- and anxiety-like behavior, memory impairment, and increased seizure susceptibility in the offspring. Eur Neuropsychopharmacol 44:34–50. https://doi.org/10.1016/j.euroneuro.2020.12.011

    Article  CAS  PubMed  Google Scholar 

  39. Engel J (2014) Approaches to refractory epilepsy. Ann Indian Acad Neurol 17:12. https://doi.org/10.4103/0972-2327.128644

    Article  Google Scholar 

  40. Vezzani A, Balosso S, Ravizza T (2019) Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 15:459–472. https://doi.org/10.1038/s41582-019-0217-x

    Article  CAS  PubMed  Google Scholar 

  41. Yamane J, Nakamura M, Iwanami A et al (2010) Transplantation of galectin-1-expressing human neural stem cells into the injured spinal cord of adult common marmosets. J Neurosci Res 88:1394–1405. https://doi.org/10.1002/jnr.22322

    Article  CAS  PubMed  Google Scholar 

  42. Wang J, Xia J, Zhang F et al (2015) Galectin-1-secreting neural stem cells elicit long-term neuroprotection against ischemic brain injury. Sci Rep 5:9621. https://doi.org/10.1038/srep09621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rinaldi M, Thomas L, Mathieu P et al (2016) Galectin-1 circumvents lysolecithin-induced demyelination through the modulation of microglial polarization/phagocytosis and oligodendroglial differentiation. Neurobiol Dis 96:127–143. https://doi.org/10.1016/j.nbd.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  44. Osborne AL, Solowij N, Babic I et al (2019) Effect of cannabidiol on endocannabinoid, glutamatergic and GABAergic signalling markers in male offspring of a maternal immune activation (poly I:C) model relevant to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 95:109666. https://doi.org/10.1016/j.pnpbp.2019.109666

    Article  CAS  PubMed  Google Scholar 

  45. Huang Y, Liu Z, Cao B-B et al (2020) Treg cells attenuate neuroinflammation and protect neurons in a mouse model of Parkinson’s disease. J Neuroimmune Pharmacol 15:224–237. https://doi.org/10.1007/s11481-019-09888-5

    Article  PubMed  Google Scholar 

  46. Li Y, Chen N, Wu C et al (2020) Galectin-1 attenuates neurodegeneration in Parkinson’s disease model by modulating microglial MAPK/IκB/NFκB axis through its carbohydrate-recognition domain. Brain Behav Immun 83:214–225. https://doi.org/10.1016/j.bbi.2019.10.015

    Article  CAS  PubMed  Google Scholar 

  47. Starossom SC, Mascanfroni ID, Imitola J et al (2012) Galectin-1 Deactivates Classically Activated Microglia and Protects from Inflammation-Induced Neurodegeneration. Immunity 37:249–263. https://doi.org/10.1016/j.immuni.2012.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Verkerke H, Dias-Baruffi M, Cummings RD, Arthur CM, Stowell SR (2022) Galectins: an ancient family of carbohydrate-binding proteins with modern functions. Methods Mol Biol 2442:1–40. https://doi.org/10.1007/978-1-0716-2055-7_1

    Article  PubMed  Google Scholar 

  49. Camby I (2006) Galectin-1: a small protein with major functions. Glycobiology 16:137R-157R. https://doi.org/10.1093/glycob/cwl025

    Article  CAS  PubMed  Google Scholar 

  50. Ishibashi S, Kuroiwa T, Sakaguchi M et al (2007) Galectin-1 regulates neurogenesis in the subventricular zone and promotes functional recovery after stroke. Exp Neurol 207:302–313. https://doi.org/10.1016/j.expneurol.2007.06.024

    Article  CAS  PubMed  Google Scholar 

  51. Motohashi T, Nishioka M, Kitagawa D et al (2017) Galectin-1 enhances the generation of neural crest cells. Int J Dev Biol 61:407–413. https://doi.org/10.1387/ijdb.160380tm

    Article  CAS  PubMed  Google Scholar 

  52. Sasaki T, Hirabayashi J, Manya H et al (2004) Galectin-1 induces astrocyted differentiation, which leads to production of brain-derived neurotrophic factor. Glycobiology 14:357–363. https://doi.org/10.1093/glycob/cwh043

    Article  CAS  PubMed  Google Scholar 

  53. Shen Z, Xu H, Song W et al (2021) Galectin‐1 ameliorates perioperative neurocognitive disorders in aged mice. CNS Neurosci Ther:cns.13645. https://doi.org/10.1111/cns.13645

  54. Gaudet AD, Sweet DR, Polinski NK et al (2015) Galectin-1 in injured rat spinal cord: Implications for macrophage phagocytosis and neural repair. Mol Cell Neurosci 64:84–94. https://doi.org/10.1016/j.mcn.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  55. Kajitani K, Nomaru H, Ifuku M et al (2009) Galectin-1 promotes basal and kainate-induced proliferation of neural progenitors in the dentate gyrus of adult mouse hippocampus. Cell Death Differ 16:417–427. https://doi.org/10.1038/cdd.2008.162

    Article  CAS  PubMed  Google Scholar 

  56. Parikh NU, Aalinkeel R, Reynolds JL et al (2015) Galectin-1 suppresses methamphetamine induced neuroinflammation in human brain microvascular endothelial cells: neuroprotective role in maintaining blood brain barrier integrity. Brain Res 1624:175–187. https://doi.org/10.1016/j.brainres.2015.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Aalinkeel R, Mangum CS, Abou-Jaoude E et al (2017) Galectin-1 reduces neuroinflammation via modulation of nitric oxide-arginase signaling in HIV-1 transfected microglia: a gold nanoparticle-galectin-1 “nanoplex” a possible neurotherapeutic? J Neuroimmune Pharmacol 12:133–151. https://doi.org/10.1007/s11481-016-9723-4

    Article  PubMed  Google Scholar 

  58. Bateman A, Martin M-J, Orchard S et al (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49:D480–D489. https://doi.org/10.1093/nar/gkaa1100

    Article  CAS  Google Scholar 

  59. Berman HM (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bodenhofer U, Bonatesta E, Horejš-Kainrath C, Hochreiter S (2015) msa: an R package for multiple sequence alignment. Bioinformatics:btv494. https://doi.org/10.1093/bioinformatics/btv494

  62. Vangone A, Schaarschmidt J, Koukos P et al (2019) Large-scale prediction of binding affinity in protein–small ligand complexes: the PRODIGY-LIG web server. Bioinformatics 35:1585–1587. https://doi.org/10.1093/bioinformatics/bty816

    Article  CAS  PubMed  Google Scholar 

  63. Dias-Baruffi M, Zhu H, Cho M et al (2003) Dimeric galectin-1 induces surface exposure of phosphatidylserine and phagocytic recognition of leukocytes without inducing apoptosis. J Biol Chem 278:41282–41293. https://doi.org/10.1074/jbc.M306624200

    Article  CAS  PubMed  Google Scholar 

  64. Sartim MA, Riul TB, del Cistia-Andrade C et al (2014) Galatrox is a C-type lectin in Bothrops atrox snake venom that selectively binds LacNAc-terminated glycans and can induce acute inflammation. Glycobiology 24:1010–1021. https://doi.org/10.1093/glycob/cwu061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alves SS, da Silva Junior RMP, Delfino-Pereira P et al (2022) A genetic model of epilepsy with a partial Alzheimer’s Disease-Like Phenotype And Central Insulin Resistance. Mol Neurobiol 59:3721–3737. https://doi.org/10.1007/s12035-022-02810-w

    Article  CAS  PubMed  Google Scholar 

  66. Geiger P, Mayer B, Wiest I et al (2016) Binding of galectin-1 to breast cancer cells MCF7 induces apoptosis and inhibition of proliferation in vitro in a 2D- and 3D- cell culture model. BMC Cancer 16:870. https://doi.org/10.1186/s12885-016-2915-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, San Diego

    Google Scholar 

  68. Qu WS, Wang YH, Ma JF et al (2011) Galectin-1 attenuates astrogliosis-associated injuries and improves recovery of rats following focal cerebral ischemia. J Neurochem 116:217–226. https://doi.org/10.1111/j.1471-4159.2010.07095.x

    Article  CAS  PubMed  Google Scholar 

  69. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294

    Article  CAS  PubMed  Google Scholar 

  70. Schmued LC, Albertson C, Slikker W (1997) Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res 751:37–46

    Article  CAS  PubMed  Google Scholar 

  71. Cooper D (2002) Galectinomics: finding themes in complexity. Biochim Biophys Acta Gen Subj 1572:209–231. https://doi.org/10.1016/S0304-4165(02)00310-0

    Article  CAS  Google Scholar 

  72. Ueda T, Nakamura Y, Smith CM et al (2013) Isolation of novel prototype galectins from the marine ball sponge Cinachyrella sp. guided by their modulatory activity on mammalian glutamate-gated ion channels. Glycobiology 23:412–425. https://doi.org/10.1093/glycob/cws165

    Article  CAS  PubMed  Google Scholar 

  73. Chadli A, LeCaer J-P, Bladier D et al (2002) Purification and characterization of a human brain Galectin-1 ligand. J Neurochem 68:1640–1647. https://doi.org/10.1046/j.1471-4159.1997.68041640.x

    Article  Google Scholar 

  74. Quintá HR, Wilson C, Blidner AG et al (2016) Ligand-mediated Galectin-1 endocytosis prevents intraneural H2O2 production promoting F-actin dynamics reactivation and axonal re-growth. Exp Neurol 283:165–178. https://doi.org/10.1016/j.expneurol.2016.06.009

    Article  CAS  PubMed  Google Scholar 

  75. Joubert R, Caron M, Avellana-Adalid V et al (1992) Human brain lectin: a soluble lectin that binds actin. J Neurochem 58:200–203. https://doi.org/10.1111/j.1471-4159.1992.tb09296.x

    Article  CAS  PubMed  Google Scholar 

  76. Turski WA, Cavalheiro EA, Schwarz M et al (1983) Limbic seizures produced by pilocarpine in rats: Behavioural, electroencephalographic and neuropathological study. Behav Brain Res 9:315–335. https://doi.org/10.1016/0166-4328(83)90136-5

    Article  CAS  PubMed  Google Scholar 

  77. Amado D, Cavalheiro EA (1998) Hormonal and gestational parameters in female rats submitted to the pilocarpine model of epilepsy. Epilepsy Res 32:266–274. https://doi.org/10.1016/S0920-1211(98)00057-6

    Article  CAS  PubMed  Google Scholar 

  78. Martini L, Melcangi RC, Maggi R (1993) Androgen and progesterone metabolism in the central and peripheral nervous system. J Steroid Biochem Mol Biol 47:195–205. https://doi.org/10.1016/0960-0760(93)90075-8

    Article  CAS  PubMed  Google Scholar 

  79. Woolley CS (2000) Estradiol facilitates kainic acid-induced, but not flurothyl-induced, behavioral seizure activity in adult female rats. Epilepsia 41:510–515. https://doi.org/10.1111/j.1528-1157.2000.tb00203.x

    Article  CAS  PubMed  Google Scholar 

  80. Iqbal R, Ahmed S, Jain GK, Vohora D (2019) Design and development of letrozole nanoemulsion: a comparative evaluation of brain targeted nanoemulsion with free letrozole against status epilepticus and neurodegeneration in mice. Int J Pharm 565:20–32. https://doi.org/10.1016/j.ijpharm.2019.04.076

    Article  CAS  PubMed  Google Scholar 

  81. Cavalheiro EA, Silva DF, Turski WA et al (1987) The susceptibility of rats to pilocarpine-induced seizures is age-dependent. Dev Brain Res 37:43–58. https://doi.org/10.1016/0165-3806(87)90227-6

    Article  CAS  Google Scholar 

  82. González Otárula KA, Schuele S (2020) Networks in temporal lobe epilepsy. Neurosurg Clin N Am 31:309–317. https://doi.org/10.1016/j.nec.2020.02.001

    Article  PubMed  Google Scholar 

  83. Jinde S, Zsiros V, Nakazawa K (2013) Hilar mossy cell circuitry controlling dentate granule cell excitability. Front Neural Circuits 7.https://doi.org/10.3389/fncir.2013.00014

  84. Althaus AL, Zhang H, Parent JM (2016) Axonal plasticity of age-defined dentate granule cells in a rat model of mesial temporal lobe epilepsy. Neurobiol Dis 86:187–196. https://doi.org/10.1016/j.nbd.2015.11.024

    Article  CAS  PubMed  Google Scholar 

  85. Baulac M, Pitkänen A (2009) Research priorities in epilepsy for the next decade-a representative view of the European scientific community: Summary of the ILAE Epilepsy Research Workshop, Brussels, 17–18 January 2008. Epilepsia 50:571–578. https://doi.org/10.1111/j.1528-1167.2008.01811.x

    Article  Google Scholar 

  86. DeLorenzo RJ, Hauser WA, Towne AR et al (1996) A prospective, population-based epidemiologic study of status epilepticus in Richmond, Virginia. Neurology 46:1029–1035

    Article  CAS  PubMed  Google Scholar 

  87. Malheiros JM, Polli RS, Paiva FF et al (2012) Manganese-enhanced magnetic resonance imaging detects mossy fiber sprouting in the pilocarpine model of epilepsy. Epilepsia 53:1225–1232. https://doi.org/10.1111/j.1528-1167.2012.03521.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Buckmaster PS, Lew FH (2011) Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy. J Neurosci 31:2337–2347. https://doi.org/10.1523/JNEUROSCI.4852-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Twible C, Abdo R, Zhang Q (2021) Astrocyte role in temporal lobe epilepsy and development of mossy fiber sprouting. Front Cell Neurosci 15.https://doi.org/10.3389/fncel.2021.725693

  90. Cavarsan CF, Queiroz CM, Guilherme J et al (2013) Reduced hippocampal dentate cell proliferation and impaired spatial memory performance in aged-epileptic rats. Front Neurol 4:1–9. https://doi.org/10.3389/fneur.2013.00106

    Article  Google Scholar 

  91. Copits BA, Vernon CG, Sakai R, Swanson GT (2014) Modulation of ionotropic glutamate receptor function by vertebrate galectins. J Physiol 592:2079–2096. https://doi.org/10.1113/jphysiol.2013.269597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lekishvili T, Hesketh S, Brazier MW, Brown DR (2006) Mouse galectin-1 inhibits the toxicity of glutamate by modifying NR1 NMDA receptor expression. Eur J Neurosci 24:3017–3025. https://doi.org/10.1111/j.1460-9568.2006.05207.x

    Article  PubMed  Google Scholar 

  93. Tse K, Beamer E, Simpson D et al (2021) The impacts of surgery and intracerebral electrodes in C57BL/6J mouse kainate model of epileptogenesis: seizure threshold, proteomics, and cytokine profiles. Front Neurol 12.https://doi.org/10.3389/fneur.2021.625017

  94. Bischoff V, Deogracias R, Poirier F, Barde Y-A (2012) Seizure-induced neuronal death is suppressed in the absence of the endogenous lectin galectin-1. J Neurosci 32:15590–15600. https://doi.org/10.1523/JNEUROSCI.4983-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pérez CV, Gómez LG, Gualdoni GS et al (2015) Dual roles of endogenous and exogenous galectin-1 in the control of testicular immunopathology. Sci Rep 5:12259. https://doi.org/10.1038/srep12259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from CAPES/CNPq (#458143/2014) and FAPEMIG; Melo IS was a recipient of a FAPEAL fellowship. We would like to thank our collaborators at the Dental Research Center in Biomechanics, Biomaterials, and Cell Biology (CPbio). N.G.C., D.G.L.G., M.D.B (grant number 312606/2019-2), and OWC (grant number 304175/2021-8) were supported by the Research Productivity Scholarship Program in Brazilian National Council for Scientific and Technological Development (CNPq). We thank CAPES-Brazil for the PhD Research Fellowship to I.S.M., Y.M.O.S., A.L.D.P., and M.A.C. Finally, would like to thank Lilian Cataldi Rodrigues, Juliana da Silva Oliveira Faccio, Edite Santos Siqueira and Suélen Santos Alves for technical support.

Funding

This project was supported by FAPEAL, CNPq, and CAPES.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.L.D.P., M.D.B., and O.W.C.; methodology, I.S.M., Y.M.O.S., A.L.D.P., M.M.C.A., N.K.G.T.S., M.A.C., R.S.S., L.M., C.A.F., M.D.B., and O.W.C.; investigation, A.L.D.P.,C.A.F., L.M., I.S.M., A.U.B., R.S.S., and O.W.C.; formal analysis, A.L.D.P., I.S.M., R.S.S. M.D.B., and O.W.C.; supervision and fund acquisition, M.D.B., and O.W.C.; writing—review and editing, A.L.D.P., I.S.M., D.G.L.G., C.A.F., A.L.F.D., A.U.B., R.S.S., R.D.C., M.D.B., and O.W.C.; resources, A.U.B., R.D.C., N.G.C., M.D.B., and O.W.C.

Corresponding authors

Correspondence to Marcelo Dias-Baruffi or Olagide Wagner de Castro.

Ethics declarations

Ethics Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Experiments were performed in accordance with the NIH guidelines for the care and use of laboratory animals and with the approval of the Federal University of Alagoas Animal Use Ethics Committee.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Pilocarpine microinjection into the hippocampus. Note the cannula tract with artefacts. inset shows uncharacteristic anatomical detail of pyramidal neurons. calibration bar 20 μm. (PNG 1680 kb)

High resolution image (TIF 26034 kb)

Supplementary Fig. 2

Multiple alignment and similarity among GAL-1 from different organisms. (A) Multiple sequence alignment of galectin-1 sequences from Human, Rat, Conger myriaster (congerin-1 and -2), and Cinachyrella sp obtained with MAFFT. Chemical similarity color scheme and conservation logos are depicted at the top of the graphical representation constructed with the msa R package. (B) Distance matrix from multiple sequence alignment that depicts dissimilarity index for GAL-1 sequence pairs calculated using R package. (PNG 696 kb)

High resolution image (TIFF 1054 kb)

Supplementary Fig. 3

Total seizures number and time of Racine´s classes 3 and 5 during SE. GAL-1+PILO group presented a tendency to increase the number of class 5 seizures compared VEH+PILO (A), as well as pre-treatment with GAL-1 decreased seizures time in class 3 (C and D). We analyzed the number at classes 3 and 5 of Racine’s scale for window (10 min) in VEH + PILO and GAL-1 + PILO to observe the severity of seizures with more details. P < 0.05. *, ** and *** compared with VEH + PILO; unpaired t test or two-way ANOVA with Tukey’s post-hoc test (PNG 744 kb)

High resolution image (TIF 1100 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacheco, A.L.D., de Melo, I.S., de Araujo Costa, M. et al. Neuroprotective Effect of Exogenous Galectin-1 in Status Epilepticus. Mol Neurobiol 59, 7354–7369 (2022). https://doi.org/10.1007/s12035-022-03038-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03038-4

Keywords

Navigation