Skip to main content

Advertisement

Log in

Carnosic Acid Attenuates AβOs-Induced Apoptosis and Synaptic Impairment via Regulating NMDAR2B and Its Downstream Cascades in SH-SY5Y Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract 

Neuronal death and synaptic loss are principal pathological features of Alzheimer’s disease (AD). Amyloid beta oligomers (AβOs) constitute the main neurotoxin underscoring AD pathology. AβOs interact with N-methyl-D-aspartate receptors (NMDARs), resulting in neurotoxic events, including activation of apoptosis and synaptic impairment. Carnosic acid (CA), extracted from Salvia rosmarinus, has been verified its neuroprotective effects in AD. However, the precise mechanisms by which CA induces synaptic protection remain unclear. In this study, we established an in vitro AD model using SH-SY5Y human neuroblastoma cells. We observed that CA improved neuronal survival by suppressing apoptosis. Moreover, CA restored synaptic impairments by increasing expression levels of brain-derived neurotrophic factor (BDNF), postsynaptic density protein-95 (PSD-95), and synaptophysin (Syn). Furthermore, we found these protective effects were dependent on inhibiting the phosphorylation of NMDAR subtype 2B (NMDAR2B), which further suppressed calcium overload and promoted activation of the extracellular signal-regulated kinase (ERK)–cAMP response element-binding protein (CREB) pathway. Administration of N-methyl-D-aspartic acid (NMDA), an agonist of NMDARs, abolished these effects of CA. Our findings demonstrate that CA exerts neuroprotective effects in an in vitro model of AD by regulating NMDAR2B and its downstream cascades, highlighting the therapeutic potential of CA as a NMDARs-targeted candidate in the treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during this study are available from the corresponding author upon reasonable request.

Abbreviations

AD:

Alzheimer’s disease

CA:

Carnosic acid

Aβ:

Amyloid β

AβOs:

Aβ oligomers

NMDA:

N-Methyl-D-aspartic acid

NMDARs:

N-Methyl-D-aspartate receptors

NMDAR2B:

N-Methyl-D-aspartate receptor subtype 2B

ERK:

Extracellular signal-regulated kinase

CREB:

CAMP response element binding protein

BDNF:

Brain-derived neurotrophic factor

Bax:

B cell lymphoma 2 associated X

Bcl-2:

B cell lymphoma 2

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

HBSS:

Hank’s Balanced Salt Solution

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

References

  1. GBD (2019) Dementia Forecasting Collaborators (2022) Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7:e105–e125. https://doi.org/10.1016/s2468-2667(21)00249-8

    Article  Google Scholar 

  2. Cummings J, Lee G, Zhong K, Fonseca J, Taghva K (2021) Alzheimer’s disease drug development pipeline: 2021. Alzheimers Dement (N Y) 7:e12179. https://doi.org/10.1002/trc2.12179

    Article  Google Scholar 

  3. Cummings JL, Morstorf T, Zhong K (2014) Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 6:37. https://doi.org/10.1186/alzrt269

    Article  Google Scholar 

  4. Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, Cummings J, van der Flier WM (2021) Alzheimer’s disease. Lancet 397:1577–1590. https://doi.org/10.1016/s0140-6736(20)32205-4

    Article  CAS  Google Scholar 

  5. Li K, Wei Q, Liu FF, Hu F, Xie AJ, Zhu LQ, Liu D (2018) Synaptic dysfunction in Alzheimer’s disease: Aβ, Tau, and epigenetic alterations. Mol Neurobiol 55:3021–3032. https://doi.org/10.1007/s12035-017-0533-3

    Article  CAS  Google Scholar 

  6. Tu S, Okamoto S, Lipton SA, Xu H (2014) Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease. Mol Neurodegener 9:48. https://doi.org/10.1186/1750-1326-9-48

    Article  CAS  Google Scholar 

  7. Zhang Y, Li P, Feng J, Wu M (2016) Dysfunction of NMDA receptors in Alzheimer’s disease. Neurol Sci 37:1039–1047. https://doi.org/10.1007/s10072-016-2546-5

    Article  Google Scholar 

  8. Koh W, Park M, Chun YE, Lee J, Shim HS, Park MG, Kim S, Sa M, Joo J, Kang H, Oh SJ, Woo J, Chun H, Lee SE, Hong J, Feng J, Li Y, Ryu H, Cho J, Lee CJ (2022) Astrocytes render memory flexible by releasing D-serine and regulating NMDA receptor tone in the hippocampus. Biol Psychiatry 91:740–752. https://doi.org/10.1016/j.biopsych.2021.10.012

    Article  CAS  Google Scholar 

  9. Griego E, Hernández-Frausto M, Márquez LA, Lara-Valderrabano L, López Rubalcava C, Galván EJ (2022) Activation of D1/D5 receptors ameliorates decreased intrinsic excitability of hippocampal neurons induced by neonatal blockade of N-methyl-d-aspartate receptors. Br J Pharmacol 179:1695–1715. https://doi.org/10.1111/bph.15735

    Article  CAS  Google Scholar 

  10. Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM, Balel C, Wang M, Jia N, Zhang W, Lew F, Chan SL, Chen Y, Lu Y (2010) DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 140:222–234. https://doi.org/10.1016/j.cell.2009.12.055

    Article  CAS  Google Scholar 

  11. Parsons MP, Raymond LA (2014) Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron 82:279–293. https://doi.org/10.1016/j.neuron.2014.03.030

    Article  CAS  Google Scholar 

  12. Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW, Wu DC, Lu J, Tymianski M, Craig AM, Wang YT (2007) NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 27:2846–2857. https://doi.org/10.1523/jneurosci.0116-07.2007

    Article  CAS  Google Scholar 

  13. Bao Y, Yang X, Fu Y, Li Z, Gong R, Lu W (2021) NMDAR-dependent somatic potentiation of synaptic inputs is correlated with β amyloid-mediated neuronal hyperactivity. Transl Neurodegener 10:34. https://doi.org/10.1186/s40035-021-00260-3

    Article  CAS  Google Scholar 

  14. Ahmed H, Haider A, Ametamey SM (2020) N-Methyl-D-Aspartate (NMDA) receptor modulators: a patent review (2015-present). Expert Opin Ther Pat 30:743–767. https://doi.org/10.1080/13543776.2020.1811234

    Article  CAS  Google Scholar 

  15. de Oliveira MR (2016) The dietary components carnosic acid and carnosol as neuroprotective agents: a mechanistic view. Mol Neurobiol 53:6155–6168. https://doi.org/10.1007/s12035-015-9519-1

    Article  CAS  Google Scholar 

  16. Feng M, Cui D, Li Y, Shi J, Xiang L, Bian H, Ma Z, Xia W, Wei G (2020) Carnosic acid reverses the inhibition of ApoE4 on cell surface level of ApoER2 and reelin signaling pathway. J Alzheimers Dis 73:517–528. https://doi.org/10.3233/jad-190914

    Article  CAS  Google Scholar 

  17. Rasoolijazi H, Azad N, Joghataei MT, Kerdari M, Nikbakht F, Soleimani M (2013) The protective role of carnosic acid against beta-amyloid toxicity in rats. ScientificWorldJournal 2013:917082. https://doi.org/10.1155/2013/917082

    Article  CAS  Google Scholar 

  18. Satoh T, Trudler D, Oh CK and Lipton SA (2022) Potential therapeutic use of the rosemary diterpene carnosic acid for Alzheimer’s disease, Parkinson’s disease, and long-COVID through NRF2 activation to counteract the NLRP3 inflammasome. Antioxidants (Basel) 11. https://doi.org/10.3390/antiox11010124

  19. Liu Y, Zhang Y, Hu M, Li YH, Cao XH (2019) Carnosic acid alleviates brain injury through NF-κB-regulated inflammation and Caspase-3-associated apoptosis in high fat-induced mouse models. Mol Med Rep 20:495–504. https://doi.org/10.3892/mmr.2019.10299

    Article  CAS  Google Scholar 

  20. Das S, Dewanjee S, Dua TK, Joardar S, Chakraborty P, Bhowmick S, Saha A, Bhattacharjee S and De Feo V (2019) Carnosic acid attenuates cadmium induced nephrotoxicity by inhibiting oxidative stress, promoting Nrf2/HO-1 signalling and impairing TGF-β1/Smad/collagen IV signalling. Molecules 24.https://doi.org/10.3390/molecules24224176

  21. Kuo CF, Su JD, Chiu CH, Peng CC, Chang CH, Sung TY, Huang SH, Lee WC, Chyau CC (2011) Anti-inflammatory effects of supercritical carbon dioxide extract and its isolated carnosic acid from Rosmarinus officinalis leaves. J Agric Food Chem 59:3674–3685. https://doi.org/10.1021/jf104837w

    Article  CAS  Google Scholar 

  22. Uddin N, Ali N, Uddin Z, Nazir N, Zahoor M, Rashid U, Ullah R, Alqahtani AS, Alqahtani AM, Nasr FA, Liu M, Nisar M (2020) Evaluation of cholinesterase inhibitory potential of different genotypes of Ziziphus nummularia, their HPLC-UV, and molecular docking analysis. Molecules 25(21):5011. https://doi.org/10.3390/molecules25215011 (2020 Oct 29)

    Article  CAS  Google Scholar 

  23. Azri FA, Selamat J, Sukor R, Yusof NA, Raston NHA, Eissa S, Zourob M, Chinnappan R (2021) Determination of minimal sequence for zearalenone aptamer by computational docking and application on an indirect competitive electrochemical aptasensor. Anal Bioanal Chem 413(15):3861–3872. https://doi.org/10.1007/s00216-021-03336-1

    Article  CAS  Google Scholar 

  24. Bordji K, Becerril-Ortega J, Buisson A (2011) Synapses, NMDA receptor activity and neuronal Aβ production in Alzheimer’s disease. Rev Neurosci 22:285–294. https://doi.org/10.1515/rns.2011.029

    Article  CAS  Google Scholar 

  25. Jia G, Diao Z, Liu Y, Sun C, Wang C (2021) Neural stem cell-conditioned medium ameliorates Aβ25–35-induced damage in SH-SY5Y cells by protecting mitochondrial function. Bosn J Basic Med Sci 21:179–186. https://doi.org/10.17305/bjbms.2020.4570

    Article  CAS  Google Scholar 

  26. Cascella R and Cecchi C (2021) Calcium dyshomeostasis in Alzheimer’s disease pathogenesis. Int J Mol Sci 22. https://doi.org/10.3390/ijms22094914

  27. Xu HN, Li LX, Wang YX, Wang HG, An D, Heng B, Liu YQ (2019) Genistein inhibits Aβ(25–35) -induced SH-SY5Y cell damage by modulating the expression of apoptosis-related proteins and Ca(2+) influx through ionotropic glutamate receptors. Phytother Res 33:431–441. https://doi.org/10.1002/ptr.6239

    Article  CAS  Google Scholar 

  28. Padmanabhan P, Kneynsberg A, Götz J (2021) Super-resolution microscopy: a closer look at synaptic dysfunction in Alzheimer disease. Nat Rev Neurosci 22:723–740. https://doi.org/10.1038/s41583-021-00531-y

    Article  CAS  Google Scholar 

  29. Chen MK, Mecca AP, Naganawa M, Finnema SJ, Toyonaga T, Lin SF, Najafzadeh S, Ropchan J, Lu Y, McDonald JW, Michalak HR, Nabulsi NB, Arnsten AFT, Huang Y, Carson RE, van Dyck CH (2018) Assessing synaptic density in Alzheimer disease with synaptic vesicle glycoprotein 2A positron emission tomographic imaging. JAMA Neurol 75:1215–1224. https://doi.org/10.1001/jamaneurol.2018.1836

    Article  Google Scholar 

  30. Li S, Selkoe DJ (2020) A mechanistic hypothesis for the impairment of synaptic plasticity by soluble Aβ oligomers from Alzheimer’s brain. J Neurochem 154:583–597. https://doi.org/10.1111/jnc.15007

    Article  CAS  Google Scholar 

  31. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112. https://doi.org/10.1038/nrm2101

    Article  CAS  Google Scholar 

  32. Sha S, Xing XN, Wang T, Li Y, Zhang RW, Shen XL, Cao YP, Qu L (2022) DNA vaccines targeting amyloid-β oligomer ameliorate cognitive deficits of aged APP/PS1/tau triple-transgenic mouse models of Alzheimer’s disease. Neural Regen Res 17:2305–2310. https://doi.org/10.4103/1673-5374.337054

    Article  Google Scholar 

  33. Kan Z, Wang Y, Chen Q, Tang X, Thompson HJ, Huang J, Zhang J, Gao F, Shen Y, Wan X (2021) Green tea suppresses amyloid β levels and alleviates cognitive impairment by inhibiting APP cleavage and preventing neurotoxicity in 5XFAD mice. Mol Nutr Food Res 65:e2100626. https://doi.org/10.1002/mnfr.202100626

    Article  CAS  Google Scholar 

  34. Meng C, He Z, Xing D (2013) Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: implications for Alzheimer’s disease. J Neurosci 33:13505–13517. https://doi.org/10.1523/jneurosci.0918-13.2013

    Article  CAS  Google Scholar 

  35. Amidfar M, de Oliveira J, Kucharska E, Budni J, Kim YK (2020) The role of CREB and BDNF in neurobiology and treatment of Alzheimer’s disease. Life Sci 257:118020. https://doi.org/10.1016/j.lfs.2020.118020

    Article  CAS  Google Scholar 

  36. Sivanesan S, Tan A, Rajadas J (2013) Pathogenesis of Abeta oligomers in synaptic failure. Curr Alzheimer Res 10:316–323. https://doi.org/10.2174/1567205011310030011

    Article  CAS  Google Scholar 

  37. Dore K, Carrico Z, Alfonso S, Marino M, Koymans K, Kessels HW, Malinow R (2021) PSD-95 protects synapses from β-amyloid. Cell Rep 35:109194. https://doi.org/10.1016/j.celrep.2021.109194

    Article  CAS  Google Scholar 

  38. Vaka SRK, Murthy SN, Repka MA, Nagy T (2011) Upregulation of endogenous neurotrophin levels in the brain by intranasal administration of carnosic acid. J Pharm Sci 100:3139–3145. https://doi.org/10.1002/jps.22528

    Article  CAS  Google Scholar 

  39. Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696. https://doi.org/10.1038/nrn2911

    Article  CAS  Google Scholar 

  40. Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400. https://doi.org/10.1038/nrn3504

    Article  CAS  Google Scholar 

  41. Ortiz-Sanz C, Balantzategi U, Quintela-López T, Ruiz A, Luchena C, Zuazo-Ibarra J, Capetillo-Zarate E, Matute C, Zugaza JL, Alberdi E (2022) Amyloid β / PKC-dependent alterations in NMDA receptor composition are detected in early stages of Alzheimer´s disease. Cell Death Dis 13:253. https://doi.org/10.1038/s41419-022-04687-y

    Article  CAS  Google Scholar 

  42. Fani G, Mannini B, Vecchi G, Cascella R, Cecchi C, Dobson CM, Vendruscolo M, Chiti F (2021) Aβ oligomers dysregulate calcium homeostasis by mechanosensitive activation of AMPA and NMDA receptors. ACS Chem Neurosci 12:766–781. https://doi.org/10.1021/acschemneuro.0c00811

    Article  CAS  Google Scholar 

  43. Lian WW, Zhou W, Zhang BY, Jia H, Xu LJ, Liu AL, Du GH (2021) DL0410 ameliorates cognitive disorder in SAMP8 mice by promoting mitochondrial dynamics and the NMDAR-CREB-BDNF pathway. Acta Pharmacol Sin 42:1055–1068. https://doi.org/10.1038/s41401-020-00506-2

    Article  CAS  Google Scholar 

  44. Zhu L, Yang L, Zhao X, Liu D, Guo X, Liu P, Chi T, Ji X, Zou L (2018) Xanthoceraside modulates NR2B-containing NMDA receptors at synapses and rescues learning-memory deficits in APP/PS1 transgenic mice. Psychopharmacology 235:337–349. https://doi.org/10.1007/s00213-017-4775-6

    Article  CAS  Google Scholar 

  45. Wang XY, Zhou HR, Wang S, Liu CY, Qin GC, Fu QQ, Zhou JY, Chen LX (2018) NR2B-Tyr phosphorylation regulates synaptic plasticity in central sensitization in a chronic migraine rat model. J Headache Pain 19:102. https://doi.org/10.1186/s10194-018-0935-2

    Article  CAS  Google Scholar 

  46. Li Y, Sun W, Han S, Li J, Ding S, Wang W, Yin Y (2017) IGF-1-involved negative feedback of NR2B NMDA subunits protects cultured hippocampal neurons against NMDA-induced excitotoxicity. Mol Neurobiol 54:684–696. https://doi.org/10.1007/s12035-015-9647-7

    Article  CAS  Google Scholar 

  47. Qiu F, Zhou Y, Deng Y, Yi J, Gong M, Liu N, Wei C, Xiang S (2020) Knockdown of TNFAIP1 prevents di-(2-ethylhexyl) phthalate-induced neurotoxicity by activating CREB pathway. Chemosphere 241:125114. https://doi.org/10.1016/j.chemosphere.2019.125114

    Article  CAS  Google Scholar 

  48. Liu S, Liu C, Xiong L, Xie J, Huang C, Pi R, Huang Z, Li L (2021) Icaritin alleviates glutamate-induced neuronal damage by inactivating GluN2B-containing NMDARs through the ERK/DAPK1 pathway. Front Neurosci 15:525615. https://doi.org/10.3389/fnins.2021.525615

    Article  Google Scholar 

  49. Pang J, Hou J, Zhou Z, Ren M, Mo Y, Yang G, Qu Z, Hu Y (2020) Safflower yellow improves synaptic plasticity in APP/PS1 mice by regulating microglia activation phenotypes and BDNF/TrkB/ERK signaling pathway. Neuromolecular Med 22:341–358. https://doi.org/10.1007/s12017-020-08591-6

    Article  CAS  Google Scholar 

  50. Zhong X, Li G, Qiu F, Huang Z (2018) Paeoniflorin ameliorates chronic stress-induced depression-like behaviors and neuronal damages in rats via activation of the ERK-CREB pathway. Front Psychiatry 9:772. https://doi.org/10.3389/fpsyt.2018.00772

    Article  Google Scholar 

  51. Kushwah N, Jain V, Kadam M, Kumar R, Dheer A, Prasad D, Kumar B, Khan N (2021) Ginkgo biloba L. prevents hypobaric hypoxia-induced spatial memory deficit through small conductance calcium-activated potassium channel inhibition: the role of ERK/CaMKII/CREB signaling. Front Pharmacol 12:669701. https://doi.org/10.3389/fphar.2021.669701

    Article  CAS  Google Scholar 

  52. Liu W, Jiang X, Zu Y, Yang Y, Liu Y, Sun X, Xu Z, Ding H, Zhao Q (2020) A comprehensive description of GluN2B-selective N-methyl-D-aspartate (NMDA) receptor antagonists. Eur J Med Chem 200:112447. https://doi.org/10.1016/j.ejmech.2020.112447

    Article  CAS  Google Scholar 

  53. Loftis JM, Janowsky A (2003) The N-methyl-D-aspartate receptor subunit NR2B: localization, functional properties, regulation, and clinical implications. Pharmacol Ther 97(1):55–85. https://doi.org/10.1016/s0163-7258(02)00302-9

    Article  CAS  Google Scholar 

  54. Geoffroy C, Paoletti P, Mony L (2022) Positive allosteric modulation of NMDA receptors: mechanisms, physiological impact and therapeutic potential. J Physiol 600:233–259. https://doi.org/10.1113/jp280875

    Article  CAS  Google Scholar 

  55. Song Y, Zhao X, Wang D, Zheng Y, Dai C, Guo M, Qin L, Wen X, Zhou X, Liu Z (2019) Inhibition of LPS-induced brain injury by NR2B antagonists through reducing assembly of NR2B-CaMKII-PSD95 signal module. Immunopharmacol Immunotoxicol 41:86–94. https://doi.org/10.1080/08923973.2018.1549566

    Article  CAS  Google Scholar 

  56. Vistrup-Parry M, Chen X, Johansen TL, Bach S, Buch-Larsen SC, Bartling CRO, Ma C, Clemmensen LS, Nielsen ML, Zhang M, Strømgaard K (2021) Site-specific phosphorylation of PSD-95 dynamically regulates the postsynaptic density as observed by phase separation. iScience 24(11):103268. https://doi.org/10.1016/j.isci.2021.103268

    Article  CAS  Google Scholar 

  57. Caffino L, Piva A, Mottarlini F, Di Chio M, Giannotti G, Chiamulera C, Fumagalli F (2018) Ketamine self-administration elevates αCaMKII autophosphorylation in mood and reward-related brain regions in rats. Mol Neurobiol 55(7):5453–5461. https://doi.org/10.1007/s12035-017-0772-3

    Article  CAS  Google Scholar 

  58. Zhang L, Yang J, Cao Y (2013) What is the new target inhibiting the progression of Alzheimer’s disease. Neural Regen Res 25 8(21):1938–47. https://doi.org/10.3969/j.issn.1673-5374.2013.21.002

    Article  CAS  Google Scholar 

  59. Lu W, Fang W, Li J, Zhang B, Yang Q, Yan X, Peng L, Ai H, Wang JJ, Liu X, Luo J, Yang W (2015) Phosphorylation of tyrosine 1070 at the GluN2B subunit is regulated by synaptic activity and critical for surface expression of N-methyl-D-aspartate (NMDA) receptors. J Biol Chem 290(38):22945–22954. https://doi.org/10.1074/jbc.M115.663450

    Article  CAS  Google Scholar 

  60. McQueen J, Ryan TJ, McKay S, Marwick K, Baxter P, Carpanini SM, Wishart TM, Gillingwater TH, Manson JC, Wyllie DJA, Grant SGN, McColl BW, Komiyama NH, Hardingham GE (2017) Pro-death NMDA receptor signaling is promoted by the GluN2B C-terminus independently of Dapk1. Elife 6:e17161. https://doi.org/10.7554/eLife.17161

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Di-yang Lyv, Dr. Heng Zhang, Dr. Min Gong, Dr. Xue-chu Wang, Dr. Tan Zhao, and Dr. Yue Zhang for their generous assistant with performing experiments and suggestions on revising the manuscript. We wish to thank Bing-qiu Li, Wen-wen Li, Ya-na Pang, and Mei-na Quan for their guidance.

Funding

This study was supported by the Key Project of the National Natural Science Foundation of China (U20A20354); Beijing Brain Initiative from Beijing Municipal Science & Technology Commission (Z201100005520016, Z201100005520017); the National Major R&D projects of China-Scientific Technological Innovation 2030 (2021ZD0201802); the National Key Scientific Instrument and Equipment Development Project (31627803); and the Key Project of the National Natural Science Foundation of China (81530036).

Author information

Authors and Affiliations

Authors

Contributions

Jian-ping Jia contributed to the research concept and the study design. Wen-ying Liu designed the study, performed experiments, analyzed data, drew figures, and wrote the manuscript. Yan Li, Yan Li, and Ling-zhi Xu helped with language editing of the manuscript. Jian-ping Jia revised the manuscript critically and obtained funding. All authors contributed to the article and approved the submitted manuscript.

Corresponding author

Correspondence to Jian-ping Jia.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 325 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Wy., Li, Y., Li, Y. et al. Carnosic Acid Attenuates AβOs-Induced Apoptosis and Synaptic Impairment via Regulating NMDAR2B and Its Downstream Cascades in SH-SY5Y Cells. Mol Neurobiol 60, 133–144 (2023). https://doi.org/10.1007/s12035-022-03032-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03032-w

Keywords

Navigation