Skip to main content
Log in

A1 Adenosine Receptor Activation Inhibits P2X3 Receptor–Mediated ATP Currents in Rat Dorsal Root Ganglion Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Purinergic signaling is involved in multiple pain processes. P2X3 receptor is a key target in pain therapeutics, while A1 adenosine receptor signaling plays a role in analgesia. However, it remains unclear whether there is a link between them in pain. The present results showed that the A1 adenosine receptor agonist N6-cyclopentyladenosine (CPA) concentration dependently suppressed P2X3 receptor–mediated and α,β-methylene-ATP (α,β-meATP)–evoked inward currents in rat dorsal root ganglion (DRG) neurons. CPA significantly decreased the maximal current response to α,β-meATP, as shown a downward shift of the concentration–response curve for α,β-meATP. CPA suppressed ATP currents in a voltage-independent manner. Inhibition of ATP currents by CPA was completely prevented by the A1 adenosine receptor antagonist KW-3902, and disappeared after the intracellular dialysis of either the Gi/o protein inhibitor pertussis toxin, the adenylate cyclase activator forskolin, or the cAMP analog 8-Br-cAMP. Moreover, CPA suppressed the membrane potential depolarization and action potential bursts, which were induced by α,β-meATP in DRG neurons. Finally, CPA relieved α,β-meATP-induced nociceptive behaviors in rats by activating peripheral A1 adenosine receptors. These results indicated that CPA inhibited the activity of P2X3 receptors in rat primary sensory neurons by activating A1 adenosine receptors and its downstream cAMP signaling pathway, revealing a novel peripheral mechanism underlying its analgesic effect.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated during this study are included in this article or are available on reasonable request from the corresponding authors.

References

  1. Luongo L, Guida F, Maione S, Jacobson KA, Salvemini D (2021) Adenosine metabotropic receptors in chronic pain management. Front Pharmacol 12:651038. https://doi.org/10.3389/fphar.2021.651038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jung SM, Peyton L, Essa H, Choi DS (2022) Adenosine receptors: emerging non-opioids targets for pain medications. Neurobiol Pain 11:100087. https://doi.org/10.1016/j.ynpai.2022.100087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sawynok J (2016) Adenosine receptor targets for pain. Neuroscience 338:1–18. https://doi.org/10.1016/j.neuroscience.2015.10.031

    Article  CAS  PubMed  Google Scholar 

  4. Vincenzi F, Pasquini S, Borea PA, Varani K (2020) Targeting adenosine receptors: a potential pharmacological avenue for acute and chronic pain. Int J Mol Sci 21(22):8710. https://doi.org/10.3390/ijms21228710

    Article  CAS  PubMed Central  Google Scholar 

  5. Schulte G, Robertson B, Fredholm BB, DeLander GE, Shortland P, Molander C (2003) Distribution of antinociceptive adenosine A1 receptors in the spinal cord dorsal horn, and relationship to primary afferents and neuronal subpopulations. Neuroscience 121(4):907–916. https://doi.org/10.1016/s0306-4522(03)00480-9

    Article  CAS  PubMed  Google Scholar 

  6. Zahn PK, Straub H, Wenk M, Pogatzki-Zahn EM (2007) Adenosine A1 but not A2a receptor agonist reduces hyperalgesia caused by a surgical incision in rats: a pertussis toxin-sensitive G protein-dependent process. Anesthesiology 107(5):797–806. https://doi.org/10.1097/01.anes.0000286982.36342.3f

    Article  CAS  PubMed  Google Scholar 

  7. Poon A, Sawynok J (1998) Antinociception by adenosine analogs and inhibitors of adenosine metabolism in an inflammatory thermal hyperalgesia model in the rat. Pain 74(2–3):235–245. https://doi.org/10.1016/s0304-3959(97)00186-3

    Article  CAS  PubMed  Google Scholar 

  8. Okumura T, Nozu T, Ishioh M, Igarashi S, Kumei S, Ohhira M (2020) Adenosine A1 receptor agonist induces visceral antinociception via 5-HT1A, 5-HT2A, dopamine D1 or cannabinoid CB1 receptors, and the opioid system in the central nervous system. Physiol Behav 220:112881. https://doi.org/10.1016/j.physbeh.2020.112881

    Article  CAS  PubMed  Google Scholar 

  9. Curros-Criado MM, Herrero JF (2005) The antinociceptive effects of the systemic adenosine A1 receptor agonist CPA in the absence and in the presence of spinal cord sensitization. Pharmacol Biochem Behav 82(4):721–726. https://doi.org/10.1016/j.pbb.2005.11.014

    Article  CAS  PubMed  Google Scholar 

  10. Katz NK, Ryals JM, Wright DE (2015) Central or peripheral delivery of an adenosine A1 receptor agonist improves mechanical allodynia in a mouse model of painful diabetic neuropathy. Neuroscience 285:312–323. https://doi.org/10.1016/j.neuroscience.2014.10.065

    Article  CAS  PubMed  Google Scholar 

  11. Gao X, Lu Q, Chou G, Wang Z, Pan R, Xia Y, Hu H, Dai Y (2014) Norisoboldine attenuates inflammatory pain via the adenosine A1 receptor. Eur J Pain 18(7):939–948. https://doi.org/10.1002/j.1532-2149.2013.00439.x

    Article  CAS  PubMed  Google Scholar 

  12. Goldman N, Chen M, Fujita T, Xu Q, Peng W, Liu W, Jensen TK, Pei Y et al (2010) Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nat Neurosci 13(7):883–888. https://doi.org/10.1038/nn.2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liao HY, Hsieh CL, Huang CP, Lin YW (2017) Electroacupuncture attenuates CFA-induced inflammatory pain by suppressing Nav1.8 through S100B, TRPV1, opioid, and adenosine pathways in mice. Sci Rep 7:42531. https://doi.org/10.1038/srep42531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takano T, Chen X, Luo F, Fujita T, Ren Z, Goldman N, Zhao Y, Markman JD et al (2012) Traditional acupuncture triggers a local increase in adenosine in human subjects. J Pain 13(12):1215–1223. https://doi.org/10.1016/j.jpain.2012.09.012

    Article  PubMed  PubMed Central  Google Scholar 

  15. Valerio DA, Ferreira FI, Cunha TM, Alves-Filho JC, Lima FO, De Oliveira JR, Ferreira SH, Cunha FQ et al (2009) Fructose-1,6-bisphosphate reduces inflammatory pain-like behaviour in mice: role of adenosine acting on A1 receptors. Br J Pharmacol 158(2):558–568. https://doi.org/10.1111/j.1476-5381.2009.00325.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zylka MJ (2010) Needling adenosine receptors for pain relief. Nat Neurosci 13(7):783–784. https://doi.org/10.1038/nn0710-783

    Article  CAS  PubMed  Google Scholar 

  17. Draper-Joyce CJ, Bhola R, Wang J, Bhattarai A, Nguyen ATN, Cowie-Kent I, O’Sullivan K, Chia LY et al (2021) Positive allosteric mechanisms of adenosine A1 receptor-mediated analgesia. Nature 597(7877):571–576. https://doi.org/10.1038/s41586-021-03897-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vincenzi F, Targa M, Romagnoli R, Merighi S, Gessi S, Baraldi PG, Borea PA, Varani K (2014) TRR469, a potent A(1) adenosine receptor allosteric modulator, exhibits anti-nociceptive properties in acute and neuropathic pain models in mice. Neuropharmacology 81:6–14. https://doi.org/10.1016/j.neuropharm.2014.01.028

    Article  CAS  PubMed  Google Scholar 

  19. Kan HW, Chang CH, Lin CL, Lee YC, Hsieh ST, Hsieh YL (2018) Downregulation of adenosine and adenosine A1 receptor contributes to neuropathic pain in resiniferatoxin neuropathy. Pain 159(8):1580–1591. https://doi.org/10.1097/j.pain.0000000000001246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johansson B, Halldner L, Dunwiddie TV, Masino SA, Poelchen W, Gimenez-Llort L, Escorihuela RM, Fernandez-Teruel A et al (2001) Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci U S A 98(16):9407–9412. https://doi.org/10.1073/pnas.161292398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu WP, Hao JX, Halldner L, Lovdahl C, DeLander GE, Wiesenfeld-Hallin Z, Fredholm BB, Xu XJ (2005) Increased nociceptive response in mice lacking the adenosine A1 receptor. Pain 113(3):395–404. https://doi.org/10.1016/j.pain.2004.11.020

    Article  CAS  PubMed  Google Scholar 

  22. Doak GJ, Sawynok J (1995) Complex role of peripheral adenosine in the genesis of the response to subcutaneous formalin in the rat. Eur J Pharmacol 281(3):311–318. https://doi.org/10.1016/0014-2999(95)00257-l

    Article  CAS  PubMed  Google Scholar 

  23. Karlsten R, Gordh T, Post C (1992) Local antinociceptive and hyperalgesic effects in the formalin test after peripheral administration of adenosine analogues in mice. Pharmacol Toxicol 70(6 Pt 1):434–438. https://doi.org/10.1111/j.1600-0773.1992.tb00503.x

    Article  CAS  PubMed  Google Scholar 

  24. Macedo-Junior SJ, Nascimento FP, Luiz-Cerutti M, Santos ARS (2021) The role of peripheral adenosine receptors in glutamate-induced pain nociceptive behavior. Purinergic Signal 17(2):303–312. https://doi.org/10.1007/s11302-021-09781-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu J, Reid AR, Sawynok J (2013) Antinociception by systemically-administered acetaminophen (paracetamol) involves spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors. Neurosci Lett 536:64–68. https://doi.org/10.1016/j.neulet.2012.12.052

    Article  CAS  PubMed  Google Scholar 

  26. Sawynok J, Reid AR, Liu J (2013) Spinal and peripheral adenosine A(1) receptors contribute to antinociception by tramadol in the formalin test in mice. Eur J Pharmacol 714(1–3):373–378. https://doi.org/10.1016/j.ejphar.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  27. Bradbury EJ, Burnstock G, McMahon SB (1998) The expression of P2X3 purinoreceptors in sensory neurons: effects of axotomy and glial-derived neurotrophic factor. Mol Cell Neurosci 12(4–5):256–268. https://doi.org/10.1006/mcne.1998.0719

    Article  CAS  PubMed  Google Scholar 

  28. Vulchanova L, Riedl MS, Shuster SJ, Buell G, Surprenant A, North RA, Elde R (1997) Immunohistochemical study of the P2X2 and P2X3 receptor subunits in rat and monkey sensory neurons and their central terminals. Neuropharmacology 36(9):1229–1242. https://doi.org/10.1016/s0028-3908(97)00126-3

    Article  CAS  PubMed  Google Scholar 

  29. Burnstock G (2016) Purinergic mechanisms and pain. Adv Pharmacol 75:91–137. https://doi.org/10.1016/bs.apha.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  30. Inoue K (2022) The role of ATP receptors in pain signaling. Neurochem Res. https://doi.org/10.1007/s11064-021-03516-6

    Article  PubMed  Google Scholar 

  31. Honore P, Kage K, Mikusa J, Watt AT, Johnston JF, Wyatt JR, Faltynek CR, Jarvis MF et al (2002) Analgesic profile of intrathecal P2X(3) antisense oligonucleotide treatment in chronic inflammatory and neuropathic pain states in rats. Pain 99(1–2):11–19. https://doi.org/10.1016/s0304-3959(02)00032-5

    Article  CAS  PubMed  Google Scholar 

  32. Jarvis MF, Burgard EC, McGaraughty S, Honore P, Lynch K, Brennan TJ, Subieta A, Van Biesen T et al (2002) A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci U S A 99(26):17179–17184. https://doi.org/10.1073/pnas.252537299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McGaraughty S, Wismer CT, Zhu CZ, Mikusa J, Honore P, Chu KL, Lee CH, Faltynek CR et al (2003) Effects of A-317491, a novel and selective P2X3/P2X2/3 receptor antagonist, on neuropathic, inflammatory and chemogenic nociception following intrathecal and intraplantar administration. Br J Pharmacol 140(8):1381–1388. https://doi.org/10.1038/sj.bjp.0705574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barclay J, Patel S, Dorn G, Wotherspoon G, Moffatt S, Eunson L, Abdel’al S, Natt F et al (2002) Functional downregulation of P2X3 receptor subunit in rat sensory neurons reveals a significant role in chronic neuropathic and inflammatory pain. J Neurosci 22(18):8139–8147

    Article  CAS  Google Scholar 

  35. Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G et al (2000) Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407(6807):1011–1015. https://doi.org/10.1038/35039519

    Article  CAS  PubMed  Google Scholar 

  36. Souslova V, Cesare P, Ding Y, Akopian AN, Stanfa L, Suzuki R, Carpenter K, Dickenson A et al (2000) Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors. Nature 407(6807):1015–1017. https://doi.org/10.1038/35039526

    Article  CAS  PubMed  Google Scholar 

  37. Mo G, Peleshok JC, Cao CQ, Ribeiro-da-Silva A, Seguela P (2013) Control of P2X3 channel function by metabotropic P2Y2 utp receptors in primary sensory neurons. Mol Pharmacol 83(3):640–647. https://doi.org/10.1124/mol.112.082099

    Article  CAS  PubMed  Google Scholar 

  38. Gerevich Z, Zadori Z, Muller C, Wirkner K, Schroder W, Rubini P, Illes P (2007) Metabotropic P2Y receptors inhibit P2X3 receptor-channels via G protein-dependent facilitation of their desensitization. Br J Pharmacol 151(2):226–236. https://doi.org/10.1038/sj.bjp.0707217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gerevich Z, Muller C, Illes P (2005) Metabotropic P2Y1 receptors inhibit P2X3 receptor-channels in rat dorsal root ganglion neurons. Eur J Pharmacol 521(1–3):34–38. https://doi.org/10.1016/j.ejphar.2005.08.001

    Article  CAS  PubMed  Google Scholar 

  40. Hao JW, Qiao WL, Li Q, Wei S, Liu TT, Qiu CY, Hu WP (2022) Suppression of P2X3 receptor-mediated currents by the activation of alpha2A-adrenergic receptors in rat dorsal root ganglion neurons. CNS Neurosci Ther 28(2):289–297. https://doi.org/10.1111/cns.13774

    Article  CAS  PubMed  Google Scholar 

  41. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067. https://doi.org/10.1152/physrev.00015.2002

    Article  CAS  PubMed  Google Scholar 

  42. Bai HH, Liu JP, Yang L, Zhao JY, Suo ZW, Yang X, Hu XD (2017) Adenosine A1 receptor potentiated glycinergic transmission in spinal cord dorsal horn of rats after peripheral inflammation. Neuropharmacology 126:158–167. https://doi.org/10.1016/j.neuropharm.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  43. Hu HZ, Li ZW (1997) Modulation by adenosine of GABA-activated current in rat dorsal root ganglion neurons. J Physiol 501(Pt 1):67–75. https://doi.org/10.1111/j.1469-7793.1997.067bo.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Macedo-Junior SJ, Nascimento FP, Luiz-Cerutti M, Santos AR (2013) Role of pertussis toxin-sensitive G-protein, K+ channels, and voltage-gated Ca2+ channels in the antinociceptive effect of inosine. Purinergic Signal 9(1):51–58. https://doi.org/10.1007/s11302-012-9327-2

    Article  CAS  PubMed  Google Scholar 

  45. Zhu Y, Ikeda SR (1993) Adenosine modulates voltage-gated Ca2+ channels in adult rat sympathetic neurons. J Neurophysiol 70(2):610–620. https://doi.org/10.1152/jn.1993.70.2.610

    Article  CAS  PubMed  Google Scholar 

  46. Stockwell J, Chen Z, Niazi M, Nosib S, Cayabyab FS (2016) Protein phosphatase role in adenosine A1 receptor-induced AMPA receptor trafficking and rat hippocampal neuronal damage in hypoxia/reperfusion injury. Neuropharmacology 102:254–265. https://doi.org/10.1016/j.neuropharm.2015.11.018

    Article  CAS  PubMed  Google Scholar 

  47. van Calker D, Muller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33(5):999–1005. https://doi.org/10.1111/j.1471-4159.1979.tb05236.x

    Article  PubMed  Google Scholar 

  48. Borea PA, Gessi S, Merighi S, Varani K (2016) Adenosine as a multi-signalling guardian angel in human diseases: when, where and how does it exert its protective effects? Trends Pharmacol Sci 37(6):419–434. https://doi.org/10.1016/j.tips.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  49. Fredholm BB, AP IJ, Jacobson KA, Klotz KN, Linden J (2001) International union of pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–552

    CAS  PubMed  Google Scholar 

  50. Wei S, Hao JW, Qiao WL, Li Q, Liu TT, Qiu CY, Hu WP (2022) Suppression of ASIC activity by the activation of A1 adenosine receptors in rat primary sensory neurons. Neuropharmacology 205:108924. https://doi.org/10.1016/j.neuropharm.2021.108924

    Article  CAS  PubMed  Google Scholar 

  51. Manago Y, Kanahori Y, Shimada A, Sato A, Amano T, Sato-Sano Y, Setsuie R, Sakurai M et al (2005) Potentiation of ATP-induced currents due to the activation of P2X receptors by ubiquitin carboxy-terminal hydrolase L1. J Neurochem 92(5):1061–1072. https://doi.org/10.1111/j.1471-4159.2004.02963.x

    Article  CAS  PubMed  Google Scholar 

  52. Sato A, Arimura Y, Manago Y, Nishikawa K, Aoki K, Wada E, Suzuki Y, Osaka H et al (2006) Parkin potentiates ATP-induced currents due to activation of P2X receptors in PC12 cells. J Cell Physiol 209(1):172–182. https://doi.org/10.1002/jcp.20719

    Article  CAS  PubMed  Google Scholar 

  53. Shen JJ, Liu CJ, Li A, Hu XW, Lu YL, Chen L, Zhou Y, Liu LJ (2007) Cannabinoids inhibit ATP-activated currents in rat trigeminal ganglionic neurons. Sheng Li Xue Bao 59(6):745–752

    CAS  PubMed  Google Scholar 

  54. Lei X, Zeng J, Yan Y, Liu X (2022) Blockage of HCN channels inhibits the function of P2X receptors in rat dorsal root ganglion neurons. Neurochem Res 47(4):1083–1096. https://doi.org/10.1007/s11064-021-03509-5

    Article  CAS  PubMed  Google Scholar 

  55. Kulyk VB, Chizhmakov IV, Volkova TM, Maximyuk OP, Krishtal OA (2015) Role phosphoinositid signaling pathway in opioids control of P2x3 receptors in the primary sensory neurons. Fiziol Zh 61(4):22–29. https://doi.org/10.15407/fz61.04.022

    Article  CAS  Google Scholar 

  56. Xu J, Chu KL, Brederson JD, Jarvis MF, McGaraughty S (2012) Spontaneous firing and evoked responses of spinal nociceptive neurons are attenuated by blockade of P2X3 and P2X2/3 receptors in inflamed rats. J Neurosci Res 90(8):1597–1606. https://doi.org/10.1002/jnr.23042

    Article  CAS  PubMed  Google Scholar 

  57. Sottofattori E, Anzaldi M, Ottonello L (2001) HPLC determination of adenosine in human synovial fluid. J Pharm Biomed Anal 24(5–6):1143–1146. https://doi.org/10.1016/s0731-7085(00)00574-4

    Article  CAS  PubMed  Google Scholar 

  58. Yang Z, Cerniway RJ, Byford AM, Berr SS, French BA, Matherne GP (2002) Cardiac overexpression of A1-adenosine receptor protects intact mice against myocardial infarction. Am J Physiol Heart Circ Physiol 282(3):H949-955. https://doi.org/10.1152/ajpheart.00741.2001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Miss. Ying Jin for providing the technical support to carry out this work.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81671101).

Author information

Authors and Affiliations

Authors

Contributions

WPH designed this research. JWH, WLQ, QL, SW, XML, TTL, and CYQ performed the experiments. JWH, WLQ, and QL participated in data analysis. JWH and WPH wrote the paper. All authors contributed substantially to this research and reviewed this manuscript.

Corresponding author

Correspondence to Wang-Ping Hu.

Ethics declarations

Ethics Approval

The animal study was reviewed and approved by the Animal Research Ethics Committee of Hubei University of Science and Technology (2016–03-005).

Consent to Participate

Not applicable.

Consent for Publication

All authors consent to publication of this manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, JW., Qiao, WL., Li, Q. et al. A1 Adenosine Receptor Activation Inhibits P2X3 Receptor–Mediated ATP Currents in Rat Dorsal Root Ganglion Neurons. Mol Neurobiol 59, 7025–7035 (2022). https://doi.org/10.1007/s12035-022-03019-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03019-7

Keywords

Navigation