Skip to main content
Log in

Minocycline Ameliorates Chronic Unpredictable Mild Stress-Induced Neuroinflammation and Abnormal mPFC-HIPP Oscillations in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Stress-induced neuroinflammation is a hallmark of modern society and has been linked to various emotional disorders, including anxiety. However, how microglia-associated neuroinflammation under chronic unpredictable mild stress (CUMS) alters mitochondrial function and subsequent medial prefrontal cortex-hippocampus (mPFC-HIPP) connectivity remains obscure. We speculated that CUMS might induce neuroinflammation, which involves altered mitochondrial protein levels, blockade of neuroinflammation by a microglial modulator, minocycline, protects against CUMS-induced alterations. Mice were exposed to CUMS for 3 weeks and received minocycline (50 mg/kg) intraperitoneally for 7 consecutive days during the 3rd week of CUMS. Novelty-suppressed feeding test and contextual anxiety test assessed anxiety-like behavior. Western blotting and immunofluorescent staining were employed to evaluate levels of proteins involved in neuroinflammation and mitochondrial function. In vivo dual-site extracellular recordings of local field potential (LFP) were conducted to evaluate the oscillatory activity and brain connectivity in mPFC-HIPP circuitry. We show that CUMS results in excessive microglial activation accompanied by aberrant levels of mitochondrial proteins, such as ATP-5A and the fission protein, Drp-1, increased oxidative stress indicated by elevated levels of nitrotyrosine, and decreased Nrf-2 levels. Furthermore, CUMS causes downregulation of α1 subunit of GABAAR, vesicular GABA transporter (Vgat), and glutamine synthetase (GS), leading to impaired LFP and connectivity of the mPFC-HIPP circuitry. Strikingly, blockage of microglial activation by minocycline ameliorates CUMS-induced aberrant levels of mitochondrial and GABAergic signaling proteins and prevents CUMS-induced anxiety-like behavior in mice. To the end, the study revealed that microglia is critically involved in stress-induced neuroinflammation, which may underlie the molecular mechanism of CUMS-induced anxiety behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analyzed in this study are available from the corresponding author on reasonable request.

References

  1. Bandelow B, Michaelis S (2015) Epidemiology of anxiety disorders in the 21st century. Dialogues Clin Neurosci 17(3):327–335

    Article  Google Scholar 

  2. Disease GBD, Injury I, Prevalence C (2018) Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392(10159):1789–1858. https://doi.org/10.1016/S0140-6736(18)32279-7

    Article  Google Scholar 

  3. Chen HJ, Antonson AM, Rajasekera TA, Patterson JM, Bailey MT, Gur TL (2020) Prenatal stress causes intrauterine inflammation and serotonergic dysfunction, and long-term behavioral deficits through microbe- and CCL2-dependent mechanisms. Transl Psychiatry 10(1):191. https://doi.org/10.1038/s41398-020-00876-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Soder E, Krkovic K, Lincoln TM (2020) The relevance of chronic stress for the acute stress reaction in people at elevated risk for psychosis. Psychoneuroendocrinology 119:104684. https://doi.org/10.1016/j.psyneuen.2020.104684

  5. Bollinger JL, Horchar MJ, Wohleb ES (2020) Diazepam limits microglia-mediated neuronal remodeling in the prefrontal cortex and associated behavioral consequences following chronic unpredictable stress. Neuropsychopharmacol : Offi Publ Am Coll Neuropsychopharmacol 45(10):1766–1776. https://doi.org/10.1038/s41386-020-0720-1

    Article  CAS  Google Scholar 

  6. Anacker C, Luna VM, Stevens GS, Millette A, Shores R, Jimenez JC, Chen B, Hen R (2018) Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature 559(7712):98–102. https://doi.org/10.1038/s41586-018-0262-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang YL, Wu HR, Zhang SS, Xiao HL, Yu J, Ma YY, Zhang YD, Liu Q (2021) Catalpol ameliorates depressive-like behaviors in CUMS mice via oxidative stress-mediated NLRP3 inflammasome and neuroinflammation. Transl Psychiatry 11(1):353. https://doi.org/10.1038/s41398-021-01468-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bondi CO, Rodriguez G, Gould GG, Frazer A, Morilak DA (2008) Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacol : Off Publ Am Coll Neuropsychopharmacol 33(2):320–331. https://doi.org/10.1038/sj.npp.1301410

    Article  CAS  Google Scholar 

  9. Han X, Shao W, Liu Z, Fan S, Yu J, Chen J, Qiao R, Zhou J, Xie P (2015) iTRAQ-based quantitative analysis of hippocampal postsynaptic density-associated proteins in a rat chronic mild stress model of depression. Neuroscience 298:220–292. https://doi.org/10.1016/j.neuroscience.2015.04.006

    Article  CAS  PubMed  Google Scholar 

  10. Goshen I, Yirmiya R (2009) Interleukin-1 (IL-1): a central regulator of stress responses. Front Neuroendocrinol 30(1):30–45. https://doi.org/10.1016/j.yfrne.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  11. Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77(1):10–18. https://doi.org/10.1016/j.neuron.2012.12.023

    Article  CAS  PubMed  Google Scholar 

  12. Hafizi S, Da Silva T, Gerritsen C, Kiang M, Bagby RM, Prce I, Wilson AA, Houle S et al (2017) Imaging microglial activation in individuals at clinical high risk for psychosis: an in vivo PET study with [(18)F]FEPPA. Neuropsychopharmacol : Off Publ Am Coll Neuropsychopharmacol 42(13):2474–2481. https://doi.org/10.1038/npp.2017.111

    Article  Google Scholar 

  13. Kalin NH (2017) Mechanisms underlying the early risk to develop anxiety and depression: a translational approach. Eur neuropsychopharmacol : j Eur Coll Neuropsychopharmacol 27(6):543–553. https://doi.org/10.1016/j.euroneuro.2017.03.004

    Article  CAS  Google Scholar 

  14. Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, Maier SF, Yirmiya R (2014) Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry 19(6):699–709. https://doi.org/10.1038/mp.2013.155

    Article  CAS  PubMed  Google Scholar 

  15. Feng XY, Hu HD, Chen J, Long C, Yang L, Wang L (2021) Acute neuroinflammation increases excitability of prefrontal parvalbumin interneurons and their functional recruitment during novel object recognition. Brain Behav Immun 98:48–58. https://doi.org/10.1016/j.bbi.2021.08.216

    Article  CAS  PubMed  Google Scholar 

  16. Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35(3):676–692. https://doi.org/10.1016/j.pnpbp.2010.05.004

    Article  CAS  PubMed  Google Scholar 

  17. Picard M, McManus MJ, Gray JD, Nasca C, Moffat C, Kopinski PK, Seifert EL, McEwen BS et al (2015) Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc Natl Acad Sci USA 112(48):E6614-6623. https://doi.org/10.1073/pnas.1515733112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Manoli I, Alesci S, Blackman MR, Su YA, Rennert OM, Chrousos GP (2007) Mitochondria as key components of the stress response. Trends Endocrinol Metab 18(5):190–198. https://doi.org/10.1016/j.tem.2007.04.004

    Article  CAS  PubMed  Google Scholar 

  19. Moylan S, Berk M, Dean OM, Samuni Y, Williams LJ, O’Neil A, Hayley AC, Pasco JA, Anderson G, Jacka FN, Maes M (2014) Oxidative & nitrosative stress in depression: why so much stress? Neurosci Biobehav Rev 45:46–62. https://doi.org/10.1016/j.neubiorev.2014.05.007

    Article  CAS  PubMed  Google Scholar 

  20. Wilkins HM, Swerdlow RH (2016) Relationships between mitochondria and neuroinflammation: implications for Alzheimer’s disease. Curr Top Med Chem 16(8):849–857. https://doi.org/10.2174/1568026615666150827095102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87(3):873–904. https://doi.org/10.1152/physrev.00041.2006

    Article  PubMed  Google Scholar 

  22. Mateus-Pinheiro A, Patricio P, Alves ND, Martins-Macedo J, Caetano I, Silveira-Rosa T, Araujo B, Mateus-Pinheiro M et al (2021) Hippocampal cytogenesis abrogation impairs inter-regional communication between the hippocampus and prefrontal cortex and promotes the time-dependent manifestation of emotional and cognitive deficits. Mol Psychiatry. https://doi.org/10.1038/s41380-021-01287-8

    Article  PubMed  Google Scholar 

  23. Arnsten AF (2009) Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci 10(6):410–422. https://doi.org/10.1038/nrn2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Padilla-Coreano N, Bolkan SS, Pierce GM, Blackman DR, Hardin WD, Garcia-Garcia AL, Spellman TJ, Gordon JA (2016) Direct ventral hippocampal-prefrontal input is required for anxiety-related neural activity and behavior. Neuron 89(4):857–866. https://doi.org/10.1016/j.neuron.2016.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Akam T, Kullmann DM (2014) Oscillatory multiplexing of population codes for selective communication in the mammalian brain. Nat Rev Neurosci 15(2):111–122. https://doi.org/10.1038/nrn3668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Adhikari A, Topiwala MA, Gordon JA (2010) Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 65(2):257–269. https://doi.org/10.1016/j.neuron.2009.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Han YY, Jin K, Pan QS, Li B, Wu ZQ, Gan L, Yang L, Long C (2020) Microglial activation in the dorsal striatum participates in anxiety-like behavior in Cyld knockout mice. Brain Behav Immun 89:326–338. https://doi.org/10.1016/j.bbi.2020.07.011

    Article  CAS  PubMed  Google Scholar 

  28. Frisbee JC, Brooks SD, Stanley SC, d'Audiffret AC (2015) An unpredictable chronic mild stress protocol for instigating depressive symptoms, behavioral changes and negative health outcomes in rodents. J Vis Exp : JoVE (106) https://doi.org/10.3791/53109

  29. Cerniauskas I, Winterer J, de Jong JW, Lukacsovich D, Yang H, Khan F, Peck JR, Obayashi SK et al (2019) Chronic stress induces activity, synaptic, and transcriptional remodeling of the lateral habenula associated with deficits in motivated behaviors. Neuron 104(5):899-915 e898

    Article  CAS  Google Scholar 

  30. Shi X, Gao Y, Song L, Zhao P, Zhang Y, Ding Y, Sun R, Du Y et al (2020) Sulfur dioxide derivatives produce antidepressant- and anxiolytic-like effects in mice. Neuropharmacology 176:108252. https://doi.org/10.1016/j.neuropharm.2020.108252

    Article  CAS  PubMed  Google Scholar 

  31. Li HD, Li DN, Yang L, Long C (2021) Deficiency of the CYLD impairs fear memory of mice and disrupts neuronal activity and synaptic transmission in the basolateral amygdala. Front Cell Neurosci 15:740165. https://doi.org/10.3389/fncel.2021.740165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luyck K, Tambuyzer T, Deprez M, Rangarajan J, Nuttin B, Luyten L (2017) Electrical stimulation of the bed nucleus of the stria terminalis reduces anxiety in a rat model. Transl Psychiatry 7(2):e1033. https://doi.org/10.1038/tp.2017.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luyten L, Casteels C, Vansteenwegen D, van Kuyck K, Koole M, Van Laere K, Nuttin B (2012) Micro-positron emission tomography imaging of rat brain metabolism during expression of contextual conditioning. J Neurosci : Off J Soc Neurosci 32(1):254–263. https://doi.org/10.1523/JNEUROSCI.3701-11.2012

    Article  CAS  Google Scholar 

  34. Steenland HW, Wu V, Fukushima H, Kida S, Zhuo M (2010) CaMKIV over-expression boosts cortical 4–7 Hz oscillations during learning and 1–4 Hz delta oscillations during sleep. Mol Brain 3:16. https://doi.org/10.1186/1756-6606-3-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hamrahi H, Chan B, Horner RL (2001) On-line detection of sleep-wake states and application to produce intermittent hypoxia only in sleep in rats. J Appl Physiol 90(6):2130–2140. https://doi.org/10.1152/jappl.2001.90.6.2130

    Article  CAS  PubMed  Google Scholar 

  36. Antzoulatos EG, Miller EK (2014) Increases in functional connectivity between prefrontal cortex and striatum during category learning. Neuron 83(1):216–225. https://doi.org/10.1016/j.neuron.2014.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

    Article  PubMed  Google Scholar 

  38. Yong VW, Wells J, Giuliani F, Casha S, Power C, Metz LM (2004) The promise of minocycline in neurology. Lancet Neurol 3(12):744–751. https://doi.org/10.1016/S1474-4422(04)00937-8

    Article  PubMed  Google Scholar 

  39. Garrido-Mesa N, Zarzuelo A, Galvez J (2013) Minocycline: far beyond an antibiotic. Br J Pharmacol 169(2):337–352. https://doi.org/10.1111/bph.12139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang J, Boska M, Zheng Y, Liu J, Fox HS, Xiong H (2021) Minocycline attenuation of rat corpus callosum abnormality mediated by low-dose lipopolysaccharide-induced microglia activation. J Neuroinflammation 18(1):100. https://doi.org/10.1186/s12974-021-02142-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Taylor M, Murphy SE, Selvaraj S, Wylezinkska M, Jezzard P, Cowen PJ, Evans J (2008) Differential effects of citalopram and reboxetine on cortical Glx measured with proton MR spectroscopy. J Psychopharmacol 22(5):473–476. https://doi.org/10.1177/0269881107081510

    Article  CAS  PubMed  Google Scholar 

  42. Rajkowska G, Miguel-Hidalgo JJ (2007) Gliogenesis and glial pathology in depression. CNS Neurol Disord: Drug Targets 6(3):219–233. https://doi.org/10.2174/187152707780619326

    Article  CAS  Google Scholar 

  43. Guo X, Rao Y, Mao R, Cui L, Fang Y (2020) Common cellular and molecular mechanisms and interactions between microglial activation and aberrant neuroplasticity in depression. Neuropharmacology 181:108336. https://doi.org/10.1016/j.neuropharm.2020.108336

    Article  CAS  PubMed  Google Scholar 

  44. Becher B, Spath S, Goverman J (2017) Cytokine networks in neuroinflammation. Nat Rev Immunol 17(1):49–59. https://doi.org/10.1038/nri.2016.123

    Article  CAS  PubMed  Google Scholar 

  45. Halder N, Lal G (2021) Cholinergic system and its therapeutic importance in inflammation and autoimmunity. Front Immunol 12:660342. https://doi.org/10.3389/fimmu.2021.660342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li L, Liu Z, Jiang YY, Shen WX, Peng YP, Qiu YH (2019) Acetylcholine suppresses microglial inflammatory response via alpha7nAChR to protect hippocampal neurons. J Integr Neurosci 18(1):51–56. https://doi.org/10.31083/j.jin.2019.01.114

    Article  PubMed  Google Scholar 

  47. Gamage R, Wagnon I, Rossetti I, Childs R, Niedermayer G, Chesworth R, Gyengesi E (2020) Cholinergic modulation of glial function during aging and chronic neuroinflammation. Front Cell Neurosci 14:577912. https://doi.org/10.3389/fncel.2020.577912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tata AM, Velluto L, D’Angelo C, Reale M (2014) Cholinergic system dysfunction and neurodegenerative diseases: cause or effect? CNS Neurol Disord: Drug Targets 13(7):1294–1303. https://doi.org/10.2174/1871527313666140917121132

    Article  CAS  Google Scholar 

  49. Chang EH, Chavan SS, Pavlov VA (2019) Cholinergic control of inflammation, metabolic dysfunction, and cognitive impairment in obesity-associated disorders: mechanisms and novel therapeutic opportunities. Front Neurosci 13:263. https://doi.org/10.3389/fnins.2019.00263

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zaghloul N, Addorisio ME, Silverman HA, Patel HL, Valdes-Ferrer SI, Ayasolla KR, Lehner KR, Olofsson PS et al (2017) Forebrain cholinergic dysfunction and systemic and brain inflammation in murine sepsis survivors. Front Immunol 8:1673. https://doi.org/10.3389/fimmu.2017.01673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. D’Angelo C, Costantini E, Salvador N, Marchioni M, Di Nicola M, Greig NH, Reale M (2021) nAChRs gene expression and neuroinflammation in APPswe/PS1dE9 transgenic mouse. Sci Rep 11(1):9711. https://doi.org/10.1038/s41598-021-89139-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Candas D, Li JJ (2014) MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx. Antioxid Redox Signal 20(10):1599–1617. https://doi.org/10.1089/ars.2013.5305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dominiak K, Koziel A, Jarmuszkiewicz W (2018) The interplay between mitochondrial reactive oxygen species formation and the coenzyme Q reduction level. Redox Biol 18:256–265. https://doi.org/10.1016/j.redox.2018.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, Knight AR, Taylor EL et al (2015) Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal 23(14):1144–1170. https://doi.org/10.1089/ars.2015.6317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Souza JM, Peluffo G, Radi R (2008) Protein tyrosine nitration—functional alteration or just a biomarker? Free Radical Biol Med 45(4):357–366. https://doi.org/10.1016/j.freeradbiomed.2008.04.010

    Article  CAS  Google Scholar 

  56. Hamilton CA, Good AG, Taylor GJ (2001) Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat. Plant Physiol 125(4):2068–2077. https://doi.org/10.1104/pp.125.4.2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee JE, Westrate LM, Wu H, Page C, Voeltz GK (2016) Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540(7631):139–143. https://doi.org/10.1038/nature20555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456(7222):605–610. https://doi.org/10.1038/nature07534

    Article  CAS  PubMed  Google Scholar 

  59. Wang J, Zhang W, Lv C, Wang Y, Ma B, Zhang H, Fan Z, Li M et al (2020) A novel biscoumarin compound ameliorates cerebral ischemia reperfusion-induced mitochondrial oxidative injury via Nrf2/Keap1/ARE signaling. Neuropharmacology 167:107918. https://doi.org/10.1016/j.neuropharm.2019.107918

    Article  CAS  PubMed  Google Scholar 

  60. Mah L, Szabuniewicz C, Fiocco AJ (2016) Can anxiety damage the brain? Curr Opin Psychiatry 29(1):56–63. https://doi.org/10.1097/YCO.0000000000000223

    Article  PubMed  Google Scholar 

  61. Lozano-Soldevilla D, ter Huurne N, Cools R, Jensen O (2014) GABAergic modulation of visual gamma and alpha oscillations and its consequences for working memory performance. Current biol : CB 24(24):2878–2887. https://doi.org/10.1016/j.cub.2014.10.017

    Article  CAS  Google Scholar 

  62. Jiang J, Tang B, Wang L, Huo Q, Tan S, Misrani A, Han Y, Li H et al (2022) Systemic LPS-induced microglial activation results in increased GABAergic tone: a mechanism of protection against neuroinflammation in the medial prefrontal cortex in mice. Brain Behav Immun 99:53–69. https://doi.org/10.1016/j.bbi.2021.09.017

    Article  CAS  PubMed  Google Scholar 

  63. Tay TL, Savage JC, Hui CW, Bisht K, Tremblay ME (2017) Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. J Physiol 595(6):1929–1945. https://doi.org/10.1113/JP272134

    Article  CAS  PubMed  Google Scholar 

  64. Albrecht J, Sidoryk-Wegrzynowicz M, Zielinska M, Aschner M (2010) Roles of glutamine in neurotransmission. Neuron Glia Biol 6(4):263–276. https://doi.org/10.1017/S1740925X11000093

    Article  PubMed  Google Scholar 

  65. Scimemi A (2014) Structure, function, and plasticity of GABA transporters. Front Cell Neurosci 8:161. https://doi.org/10.3389/fncel.2014.00161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J (2014) Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci 15(10):637–654. https://doi.org/10.1038/nrn3819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Morey RA, Haswell CC, Hooper SR, De Bellis MD (2016) Amygdala, hippocampus, and ventral medial prefrontal cortex volumes differ in maltreated youth with and without chronic posttraumatic stress disorder. Neuropsychopharmacol : Off Publ Am Coll Neuropsychopharmacol 41(3):791–801. https://doi.org/10.1038/npp.2015.205

    Article  Google Scholar 

  68. Kanellopoulos AK, Mariano V, Spinazzi M, Woo YJ, McLean C, Pech U, Li KW, Armstrong JD et al (2020) Aralar sequesters GABA into hyperactive mitochondria, causing social behavior deficits. Cell 180(6):1178-1197 e1120. https://doi.org/10.1016/j.cell.2020.02.044

    Article  CAS  PubMed  Google Scholar 

  69. Camargos QM, Silva BC, Silva DG, Toscano ECB, Oliveira BDS, Bellozi PMQ, Jardim BLO, Vieira ELM et al (2020) Minocycline treatment prevents depression and anxiety-like behaviors and promotes neuroprotection after experimental ischemic stroke. Brain Res Bull 155:1–10. https://doi.org/10.1016/j.brainresbull.2019.11.009

    Article  CAS  PubMed  Google Scholar 

  70. Burke NN, Kerr DM, Moriarty O, Finn DP, Roche M (2014) Minocycline modulates neuropathic pain behaviour and cortical M1–M2 microglial gene expression in a rat model of depression. Brain Behav Immun 42:147–156. https://doi.org/10.1016/j.bbi.2014.06.015

    Article  CAS  PubMed  Google Scholar 

  71. Ohgidani M, Kato TA, Sagata N, Hayakawa K, Shimokawa N, Sato-Kasai M, Kanba S (2016) TNF-alpha from hippocampal microglia induces working memory deficits by acute stress in mice. Brain Behav Immun 55:17–24. https://doi.org/10.1016/j.bbi.2015.08.022

    Article  CAS  PubMed  Google Scholar 

  72. Xu ZX, Kim GH, Tan JW, Riso AE, Sun Y, Xu EY, Liao GY, Xu H et al (2020) Elevated protein synthesis in microglia causes autism-like synaptic and behavioral aberrations. Nat Commun 11(1):1797. https://doi.org/10.1038/s41467-020-15530-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K, Hirakawa A, Takeuchi H et al (2013) Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis 4:e525. https://doi.org/10.1038/cddis.2013.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462. https://doi.org/10.1038/35013070

    Article  CAS  PubMed  Google Scholar 

  75. Lopez-Lopez AL, Jaime HB, Escobar Villanueva MDC, Padilla MB, Palacios GV, Aguilar FJA (2016) Chronic unpredictable mild stress generates oxidative stress and systemic inflammation in rats. Physiol Behav 161:15–23. https://doi.org/10.1016/j.physbeh.2016.03.017

    Article  CAS  PubMed  Google Scholar 

  76. Di Meo S, Reed TT, Venditti P, Victor VM (2016) Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev 2016:1245049. https://doi.org/10.1155/2016/1245049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kang TC (2020) Nuclear factor-erythroid 2-related factor 2 (Nrf2) and mitochondrial dynamics/mitophagy in neurological diseases. Antioxidants 9 (7) https://doi.org/10.3390/antiox9070617

  78. Khalifeh S, Oryan S, Digaleh H, Shaerzadeh F, Khodagholi F, Maghsoudi N, Zarrindast MR (2015) Involvement of Nrf2 in development of anxiety-like behavior by linking Bcl2 to oxidative phosphorylation: estimation in rat hippocampus, amygdala, and prefrontal cortex. Journal of molecular neuroscience : MN 55(2):492–499. https://doi.org/10.1007/s12031-014-0370-z

    Article  CAS  PubMed  Google Scholar 

  79. Kasai S, Shimizu SS Tatara Y, Mimura J, Itoh K (2020) Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology. Biomolecules 10 (2) https://doi.org/10.3390/biom10020320

  80. Dinkova-Kostova AT, Abramov AY (2015) The emerging role of Nrf2 in mitochondrial function. Free Radical Biol Med 88(Pt B):179–188. https://doi.org/10.1016/j.freeradbiomed.2015.04.036

    Article  CAS  Google Scholar 

  81. Li Y, Kang C, Wei Z, Qu X, Liu T, Zhou Y, Hu Y (2017) Beta oscillations in major depression—signalling a new cortical circuit for central executive function. Sci Rep 7(1):18021. https://doi.org/10.1038/s41598-017-18306-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Knyazev GG, Schutter DJ, van Honk J (2006) Anxious apprehension increases coupling of delta and beta oscillations. Int J Psychophysiol 61(2):283–287. https://doi.org/10.1016/j.ijpsycho.2005.12.003

    Article  PubMed  Google Scholar 

  83. Khemka S, Barnes G, Dolan RJ, Bach DR (2017) Dissecting the function of hippocampal oscillations in a human anxiety model. J Neurosci 37(29):6869–6876. https://doi.org/10.1523/JNEUROSCI.1834-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, Zhang WN, Pothuizen HH et al (2004) Regional dissociations within the hippocampus—memory and anxiety. Neurosci Biobehav Rev 28(3):273–283. https://doi.org/10.1016/j.neubiorev.2004.03.004

    Article  CAS  PubMed  Google Scholar 

  85. Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8(1):45–56. https://doi.org/10.1038/nrn2044

    Article  CAS  PubMed  Google Scholar 

  86. Whittington MA, Traub RD (2003) Interneuron diversity series: inhibitory interneurons and network oscillations in vitro. Trends Neurosci 26(12):676–682. https://doi.org/10.1016/j.tins.2003.09.016

    Article  CAS  PubMed  Google Scholar 

  87. David F, Courtiol E, Buonviso N, Fourcaud-Trocme N (2015) Competing mechanisms of gamma and beta oscillations in the olfactory bulb based on multimodal inhibition of mitral cells over a respiratory cycle. eNeuro 2 (6). https://doi.org/10.1523/ENEURO.0018-15.2015

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (32170950, 31970915, 31871170, 81804197, 31771219), the Guangdong Natural Science Foundation for Major Cultivation Project (2018B030336001), and the Guangdong Grant 'Key Technologies for Treatment of Brain Disorders’ (2018B030332001).

Author information

Authors and Affiliations

Authors

Contributions

ST, project initiation, experimental design, western blotting, behavior, statistical analysis, and manuscript writing; AM, western blotting, statistical analysis, and manuscript writing; QH, LFP recording, data analysis, and figure generation; AA, immunostaining and analysis; CL, funding acquisition and supervision; LY guided the experiments and was responsible for funding acquisition and critical revision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Cheng Long or Li Yang.

Ethics declarations

Ethics Approval

This study was approved by the Guangzhou University and South China Normal University Institutional Review Boards. The use of animals in experiments was approved by the Institutional Animal Care and Use Committee (IACUC) and followed National Institutes of Health (NIH) guidelines.

Consent to Participate

Not applicable.

Consent for Publication

All authors have read the manuscript and approved the final version of the manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1689 KB)

Supplementary file2 (DOCX 2764 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabassum, S., Misrani, A., Huo, Q. et al. Minocycline Ameliorates Chronic Unpredictable Mild Stress-Induced Neuroinflammation and Abnormal mPFC-HIPP Oscillations in Mice. Mol Neurobiol 59, 6874–6895 (2022). https://doi.org/10.1007/s12035-022-03018-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03018-8

Keywords

Navigation