Skip to main content

Advertisement

Log in

Neuritin Promotes Bone Marrow-Derived Mesenchymal Stem Cell Migration to Treat Diabetic Peripheral Neuropathy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The purpose of this study is to explore the effect and mechanism of neuritin overexpression in the bone marrow on peripheral neuropathy in type 2 diabetic (db/db) mice. We analyzed the impact of bone marrow neuritin overexpression on diabetic peripheral neuropathy and migration of bone marrow mesenchymal stem cells in db/db mice. Antagonists were used to inhibit the stromal cell-derived factor (SDF)-1α/C-X-C chemokine receptor type 4 (CXCR4)-phosphoinositide 3-kinase (PI3K)/Akt signaling pathway in primary cultured bone marrow mesenchymal stem cells. Immunofluorescence, transmission electron microscopy, Oil Red O staining, and transwell migration assays were used. Bone marrow-specific overexpression of neuritin in db/db mice was successfully established. Overexpression of neuritin in the bone marrow ameliorated hyperglycemia, prevented diabetic peripheral neuropathy, protected the ultrastructure of the sciatic nerve and intra-epidermal nerve fiber density, and promoted Schwann cell proliferation and remyelination in the sciatic nerve. Moreover, it ameliorated fat accumulation, adipocyte number, and vascular and nerve densities; decreased glutamate content in serum and bone marrow; restored gradient SDF-1α contents between bone marrow, blood, and sciatic nerve; and promoted impaired diabetic bone marrow mesenchymal stem cell migration. Neuritin improves bone marrow mesenchymal stem cell migration via the SDF-1α/CXCR4-PI3K/Akt signaling pathway in vitro. Overexpression of neuritin in the bone marrow can locally ameliorate neuropathy in the bone marrow. This improves the migration capability of bone marrow mesenchymal stem cells and repairs diabetic peripheral neuropathy, at least partly by activating the PI3K/Akt pathway through the SDF-1α/CXCR4 axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Yes.

Code Availability

Not applicable.

Abbreviations

CXCR4:

CXC chemokine receptor 4

G-CSF:

Granulocyte colony-stimulating factor

GFAP:

Glial fibrillary acidic protein

MSCs:

Mesenchymal stem cells

NMDA:

N-methyl-D-aspartate receptor

SDF-1α:

Stromal cell-derived factor-1α

VGLUT1:

Vesicular glutamate transporter 1

References

  1. Shen H, Zhao J, Liu Y, Sun G (2018) Interactions between and shared molecular mechanisms of diabetic peripheral neuropathy and obstructive sleep apnea in type 2 diabetes patients. J Diabetes Res 2018:3458615. https://doi.org/10.1155/2018/3458615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hussain N, Adrian TE (2017) Diabetic neuropathy: update on pathophysiological mechanism and the possible involvement of glutamate pathways. Curr Diabetes Rev 13(5):488–497. https://doi.org/10.2174/1573399812666160624122605

    Article  CAS  PubMed  Google Scholar 

  3. Oikawa A, Siragusa M, Quaini F, Mangialardi G, Katare RG, Caporali A, van Buul JD, van Alphen FP et al (2010) Diabetes mellitus induces bone marrow microangiopathy. Arterioscler Thromb Vasc Biol 30(3):498–508. https://doi.org/10.1161/ATVBAHA.109.200154

    Article  CAS  PubMed  Google Scholar 

  4. Spinetti G, Cordella D, Fortunato O, Sangalli E, Losa S, Gotti A, Carnelli F, Rosa F et al (2013) Global remodeling of the vascular stem cell niche in bone marrow of diabetic patients: implication of the microRNA-155/FOXO3a signaling pathway. Circ Res 112(3):510–522. https://doi.org/10.1161/CIRCRESAHA.112.300598

    Article  CAS  PubMed  Google Scholar 

  5. Ferraro F, Lymperi S, Mendez-Ferrer S, Saez B, Spencer JA, Yeap BY, Masselli E, Graiani G et al (2011) Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci Transl Med 3(104):104ra101. https://doi.org/10.1126/scitranslmed.3002191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Busik JV, Tikhonenko M, Bhatwadekar A, Opreanu M, Yakubova N, Caballero S, Player D, Nakagawa T et al (2009) Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock. J Exp Med 206(13):2897–2906. https://doi.org/10.1084/jem.20090889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Albiero M, Poncina N, Tjwa M, Ciciliot S, Menegazzo L, Ceolotto G, Vigili de Kreutzenberg S, Moura R et al (2014) Diabetes causes bone marrow autonomic neuropathy and impairs stem cell mobilization via dysregulated p66Shc and Sirt1. Diabetes 63(4):1353–1365. https://doi.org/10.2337/db13-0894

    Article  CAS  PubMed  Google Scholar 

  8. Fadini GP, Albiero M, Seeger F, Poncina N, Menegazzo L, Angelini A, Castellani C, Thiene G et al (2013) Stem cell compartmentalization in diabetes and high cardiovascular risk reveals the role of DPP-4 in diabetic stem cell mobilopathy. Basic Res Cardiol 108(1):313. https://doi.org/10.1007/s00395-012-0313-1

    Article  CAS  PubMed  Google Scholar 

  9. Fadini GP, Albiero M, Vigili de Kreutzenberg S, Boscaro E, Cappellari R, Marescotti M, Poncina N, Agostini C et al (2013) Diabetes impairs stem cell and proangiogenic cell mobilization in humans. Diabetes Care 36(4):943–949. https://doi.org/10.2337/dc12-1084

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhou JY, Zhang Z, Qian GS (2016) Mesenchymal stem cells to treat diabetic neuropathy: a long and strenuous way from bench to the clinic. Cell Death Discov 2:16055. https://doi.org/10.1038/cddiscovery.2016.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fan B, Li C, Szalad A, Wang L, Pan W, Zhang R, Chopp M, Zhang ZG et al (2020) Mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes. Diabetologia 63(2):431–443. https://doi.org/10.1007/s00125-019-05043-0

    Article  CAS  PubMed  Google Scholar 

  12. Zhou H, Yang J, Xin T, Zhang T, Hu S, Zhou S, Chen G, Chen Y (2015) Exendin-4 enhances the migration of adipose-derived stem cells to neonatal rat ventricular cardiomyocyte-derived conditioned medium via the phosphoinositide 3-kinase/Akt-stromal cell-derived factor-1alpha/CXC chemokine receptor 4 pathway. Mol Med Rep 11(6):4063–4072. https://doi.org/10.3892/mmr.2015.3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Olkku A, Mahonen A (2008) Wnt and steroid pathways control glutamate signalling by regulating glutamine synthetase activity in osteoblastic cells. Bone 43(3):483–493. https://doi.org/10.1016/j.bone.2008.04.016

    Article  CAS  PubMed  Google Scholar 

  14. Blais A, Rochefort GY, Moreau M, Calvez J, Wu X, Matsumoto H, Blachier F (2019) Monosodium glutamate supplementation improves bone status in mice under moderate protein restriction. JBMR plus 3(10):e10224. https://doi.org/10.1002/jbm4.10224

    Article  PubMed  PubMed Central  Google Scholar 

  15. Takarada T, Yoneda Y (2008) Pharmacological topics of bone metabolism: glutamate as a signal mediator in bone. J Pharmacol Sci 106(4):536–541. https://doi.org/10.1254/jphs.fm0070243

    Article  CAS  PubMed  Google Scholar 

  16. Di Prisco S, Olivero G, Merega E, Bonfiglio T, Marchi M, Pittaluga A (2016) CXCR4 and NMDA receptors are functionally coupled in rat hippocampal noradrenergic and glutamatergic nerve endings. J Neuroimmune Pharmacol 11(4):645–656. https://doi.org/10.1007/s11481-016-9677-6

    Article  PubMed  Google Scholar 

  17. Zhou S, Zhou J (2014) Neuritin, a neurotrophic factor in nervous system physiology. Curr Med Chem 21(10):1212–1219. https://doi.org/10.2174/0929867321666131218093327

    Article  CAS  PubMed  Google Scholar 

  18. Son H, Banasr M, Choi M, Chae SY, Licznerski P, Lee B, Voleti B, Li N et al (2012) Neuritin produces antidepressant actions and blocks the neuronal and behavioral deficits caused by chronic stress. Proc Natl Acad Sci USA 109(28):11378–11383. https://doi.org/10.1073/pnas.1201191109

    Article  PubMed  PubMed Central  Google Scholar 

  19. Karamoysoyli E, Burnand RC, Tomlinson DR, Gardiner NJ (2008) Neuritin mediates nerve growth factor-induced axonal regeneration and is deficient in experimental diabetic neuropathy. Diabetes 57(1):181–189. https://doi.org/10.2337/db07-0895

    Article  CAS  PubMed  Google Scholar 

  20. Wang X, Liu C, Xu F, Cui L, Tan S, Chen R, Yang L, Huang J (2015) Effects of neuritin on the migration, senescence and proliferation of human bone marrow mesenchymal stem cells. Cell Mol Biol Lett 20(3):466–474. https://doi.org/10.1515/cmble-2015-0026

    Article  CAS  PubMed  Google Scholar 

  21. Subramanian J, Michel K, Benoit M, Nedivi E (2019) CPG15/neuritin mimics experience in selecting excitatory synapses for stabilization by facilitating PSD95 recruitment. Cell Rep 28(6):1584-1595 e1585. https://doi.org/10.1016/j.celrep.2019.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sayyed SG, Kumar A, Sharma SS (2006) Effects of U83836E on nerve functions, hyperalgesia and oxidative stress in experimental diabetic neuropathy. Life Sci 79(8):777–783. https://doi.org/10.1016/j.lfs.2006.02.033

    Article  CAS  PubMed  Google Scholar 

  23. Sharma SS, Kumar A, Kaundal RK (2008) Protective effects of 4-amino1,8-napthalimide, a poly (ADP-ribose) polymerase inhibitor in experimental diabetic neuropathy. Life Sci 82(11–12):570–576. https://doi.org/10.1016/j.lfs.2007.11.031

    Article  CAS  PubMed  Google Scholar 

  24. Sharma S, Kulkarni SK, Agrewala JN, Chopra K (2006) Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur J Pharmacol 536(3):256–261. https://doi.org/10.1016/j.ejphar.2006.03.006

    Article  CAS  PubMed  Google Scholar 

  25. Yamakawa I, Kojima H, Terashima T, Katagi M, Oi J, Urabe H, Sanada M, Kawai H et al (2011) Inactivation of TNF-alpha ameliorates diabetic neuropathy in mice. Am J Physiol Endocrinol Metab 301(5):E844-852. https://doi.org/10.1152/ajpendo.00029.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dai C, Li J, Lin W, Li G, Sun M, Wang F, Li J (2012) Electrophysiology and ultrastructural changes in mouse sciatic nerve associated with colistin sulfate exposure. Toxicol Mech Methods 22(8):592–596. https://doi.org/10.3109/15376516.2012.704956

    Article  CAS  PubMed  Google Scholar 

  27. Duque G, El Abdaimi K, Macoritto M, Miller MM, Kremer R (2002) Estrogens (E2) regulate expression and response of 1,25-dihydroxyvitamin D3 receptors in bone cells: changes with aging and hormone deprivation. Biochem Biophys Res Commun 299(3):446–454. https://doi.org/10.1016/s0006-291x(02)02657-8

    Article  CAS  PubMed  Google Scholar 

  28. Duque G, Macoritto M, Kremer R (2004) Vitamin D treatment of senescence accelerated mice (SAM-P/6) induces several regulators of stromal cell plasticity. Biogerontology 5(6):421–429. https://doi.org/10.1007/s10522-004-3192-5

    Article  CAS  PubMed  Google Scholar 

  29. Carozzi V, Chiorazzi A, Canta A, Oggioni N, Gilardini A, Rodriguez-Menendez V, Avezza F, Crippa L et al (2009) Effect of the chronic combined administration of cisplatin and paclitaxel in a rat model of peripheral neurotoxicity. Eur J Cancer 45(4):656–665. https://doi.org/10.1016/j.ejca.2008.10.038

    Article  CAS  PubMed  Google Scholar 

  30. Anjos-Afonso F, Bonnet D (2008) Isolation, culture, and differentiation potential of mouse marrow stromal cells. Curr Protoc Stem Cell Biol. https://doi.org/10.1002/9780470151808.sc02b03s7 (Chapter 2:Unit 2B 3)

    Article  PubMed  Google Scholar 

  31. Zhang Z, Zhou H, Zhou J (2021) Neuritin inhibits astrogliosis to ameliorate diabetic cognitive dysfunction. J Mol Endocrinol 66(4):259–272. https://doi.org/10.1530/JME-20-0321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Naeve GS, Ramakrishnan M, Kramer R, Hevroni D, Citri Y, Theill LE (1997) Neuritin: a gene induced by neural activity and neurotrophins that promotes neuritogenesis. Proc Natl Acad Sci U S A 94(6):2648–2653. https://doi.org/10.1073/pnas.94.6.2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao JJ, Hu JX, Lu DX, Ji CX, Qi Y, Liu XY, Sun FY, Huang F et al (2017) Soluble cpg15 from astrocytes ameliorates neurite outgrowth recovery of hippocampal neurons after mouse cerebral ischemia. J Neurosci 37(6):1628–1647. https://doi.org/10.1523/JNEUROSCI.1611-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Putz U, Harwell C, Nedivi E (2005) Soluble CPG15 expressed during early development rescues cortical progenitors from apoptosis. Nat Neurosci 8(3):322–331. https://doi.org/10.1038/nn1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fujino T, Leslie JH, Eavri R, Chen JL, Lin WC, Flanders GH, Borok E, Horvath TL et al (2011) CPG15 regulates synapse stability in the developing and adult brain. Genes Dev 25(24):2674–2685. https://doi.org/10.1101/gad.176172.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shimada T, Yoshida T, Yamagata K (2016) Neuritin mediates activity-dependent axonal branch formation in part via FGF signaling. J Neurosci 36(16):4534–4548. https://doi.org/10.1523/JNEUROSCI.1715-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang H, Li X, Shan L, Zhu J, Chen R, Li Y, Yuan W, Yang L et al (2016) Recombinant hNeuritin promotes structural and functional recovery of sciatic nerve injury in rats. Front Neurosci 10:589. https://doi.org/10.3389/fnins.2016.00589

    Article  PubMed  PubMed Central  Google Scholar 

  38. Azuchi Y, Namekata K, Shimada T, Guo X, Kimura A, Harada C, Saito A, Yamagata K et al (2018) Role of neuritin in retinal ganglion cell death in adult mice following optic nerve injury. Sci Rep 8(1):10132. https://doi.org/10.1038/s41598-018-28425-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sharma TP, Liu Y, Wordinger RJ, Pang IH, Clark AF (2015) Neuritin 1 promotes retinal ganglion cell survival and axonal regeneration following optic nerve crush. Cell Death Dis 6:e1661. https://doi.org/10.1038/cddis.2015.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou J, Du X, Long M, Zhang Z, Zhou S, Zhou J, Qian G (2016) Neuroprotective effect of berberine is mediated by MAPK signaling pathway in experimental diabetic neuropathy in rats. Eur J Pharmacol 774:87–94. https://doi.org/10.1016/j.ejphar.2016.02.007

    Article  CAS  PubMed  Google Scholar 

  41. Shahani P, Mahadevan A (1867) Datta I (2021) Fundamental changes in endogenous bone marrow mesenchymal stromal cells during type I diabetes is a pre-neuropathy event. Biochim Biophys Acta 10:166187. https://doi.org/10.1016/j.bbadis.2021.166187

    Article  CAS  Google Scholar 

  42. Hamasaki H, Hamasaki Y (2017) Diabetic neuropathy evaluated by a novel device: sural nerve conduction is associated with glycemic control and ankle-brachial pressure index in Japanese patients with diabetes. Front Endocrinol (Lausanne) 8:203. https://doi.org/10.3389/fendo.2017.00203

    Article  Google Scholar 

  43. England JD, Gronseth GS, Franklin G, Carter GT, Kinsella LJ, Cohen JA, Asbury AK, Szigeti K et al (2009) Practice parameter: evaluation of distal symmetric polyneuropathy: role of autonomic testing, nerve biopsy, and skin biopsy (an evidence-based review). Report of the American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, and American Academy of Physical Medicine and Rehabilitation. Neurology 72(2):177–184. https://doi.org/10.1212/01.wnl.0000336345.70511.0f

    Article  CAS  PubMed  Google Scholar 

  44. Lauria G, Hsieh S, Johansson O, Kennedy W, Leger J, Mellgren S, Nolano M, Merkies I et al (2010) European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur J Neurol 17(7):903

    Article  CAS  Google Scholar 

  45. Thompson RJ, Doran JF, Jackson P, Dhillon AP, Rode J (1983) PGP 9.5–a new marker for vertebrate neurons and neuroendocrine cells. Brain Res 278(1–2):224–228. https://doi.org/10.1016/0006-8993(83)90241-x

    Article  CAS  PubMed  Google Scholar 

  46. Evangelista AF, Vannier-Santos MA, de Assis Silva GS, Silva DN, Juiz PJL, Nonaka CKV, Dos Santos RR, Soares MBP et al (2018) Bone marrow-derived mesenchymal stem/stromal cells reverse the sensorial diabetic neuropathy via modulation of spinal neuroinflammatory cascades. J Neuroinflammation 15(1):189. https://doi.org/10.1186/s12974-018-1224-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ciric D, Martinovic T, Petricevic S, Trajkovic V, Bumbasirevic V, Kravic-Stevovic T (2018) Metformin exacerbates and simvastatin attenuates myelin damage in high fat diet-fed C57BL/6 J mice. Neuropathology 38(5):468–474. https://doi.org/10.1111/neup.12507

    Article  CAS  PubMed  Google Scholar 

  48. Han JW, Choi D, Lee MY, Huh YH, Yoon YS (2016) Bone marrow-derived mesenchymal stem cells improve diabetic neuropathy by direct modulation of both angiogenesis and myelination in peripheral nerves. Cell Transplant 25(2):313–326. https://doi.org/10.3727/096368915X688209

    Article  PubMed  Google Scholar 

  49. Kim BJ, Jin HK, Bae JS (2011) Bone marrow-derived mesenchymal stem cells improve the functioning of neurotrophic factors in a mouse model of diabetic neuropathy. Lab Anim Res 27(2):171–176. https://doi.org/10.5625/lar.2011.27.2.171

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shibata T, Naruse K, Kamiya H, Kozakae M, Kondo M, Yasuda Y, Nakamura N, Ota K et al (2008) Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes 57(11):3099–3107. https://doi.org/10.2337/db08-0031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dey I, Midha N, Singh G, Forsyth A, Walsh SK, Singh B, Kumar R, Toth C et al (2013) Diabetic Schwann cells suffer from nerve growth factor and neurotrophin-3 underproduction and poor associability with axons. Glia 61(12):1990–1999. https://doi.org/10.1002/glia.22570

    Article  PubMed  Google Scholar 

  52. Kobayashi M, Ishibashi S, Tomimitsu H, Yokota T, Mizusawa H (2012) Proliferating immature Schwann cells contribute to nerve regeneration after ischemic peripheral nerve injury. J Neuropathol Exp Neurol 71(6):511–519. https://doi.org/10.1097/NEN.0b013e318257fe7b

    Article  CAS  PubMed  Google Scholar 

  53. Wang L, Chopp M, Szalad A, Liu Z, Bolz M, Alvarez FM, Lu M, Zhang L et al (2011) Phosphodiesterase-5 is a therapeutic target for peripheral neuropathy in diabetic mice. Neuroscience 193:399–410. https://doi.org/10.1016/j.neuroscience.2011.07.039

    Article  CAS  PubMed  Google Scholar 

  54. Chen L, Li B, Chen B, Shao Y, Luo Q, Shi X, Chen Y (2016) Thymoquinone alleviates the experimental diabetic peripheral neuropathy by modulation of inflammation. Sci Rep 6:31656. https://doi.org/10.1038/srep31656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang J, Ding F, Gu Y, Liu J, Gu X (2009) Bone marrow mesenchymal stem cells promote cell proliferation and neurotrophic function of Schwann cells in vitro and in vivo. Brain Res 1262:7–15. https://doi.org/10.1016/j.brainres.2009.01.056

    Article  CAS  PubMed  Google Scholar 

  56. Fadini GP, Ciciliot S, Albiero M (2017) Concise review: perspectives and clinical implications of bone marrow and circulating stem cell defects in diabetes. Stem Cells 35(1):106–116. https://doi.org/10.1002/stem.2445

    Article  PubMed  Google Scholar 

  57. de Figueiredo CS, Dos Reis LC (2021) Stem cell therapies for the treatment of diabetic neuropathies: future perspectives. Curr Diabetes Rev 17(1):2–10. https://doi.org/10.2174/1573399816666200417121915

    Article  CAS  PubMed  Google Scholar 

  58. Naruse K (2019) Schwann cells as crucial players in diabetic neuropathy. Adv Exp Med Biol 1190:345–356. https://doi.org/10.1007/978-981-32-9636-7_22

    Article  CAS  PubMed  Google Scholar 

  59. Varejao AS, Cabrita AM, Meek MF, Bulas-Cruz J, Melo-Pinto P, Raimondo S, Geuna S, Giacobini-Robecchi MG (2004) Functional and morphological assessment of a standardized rat sciatic nerve crush injury with a non-serrated clamp. J Neurotrauma 21(11):1652–1670. https://doi.org/10.1089/neu.2004.21.1652

    Article  PubMed  Google Scholar 

  60. Omura K, Ohbayashi M, Sano M, Omura T, Hasegawa T, Nagano A (2004) The recovery of blood-nerve barrier in crush nerve injury–a quantitative analysis utilizing immunohistochemistry. Brain Res 1001(1–2):13–21. https://doi.org/10.1016/j.brainres.2003.10.067

    Article  CAS  PubMed  Google Scholar 

  61. Mata M, Alessi D, Fink DJ (1990) S100 is preferentially distributed in myelin-forming Schwann cells. J Neurocytol 19(3):432–442. https://doi.org/10.1007/BF01188409

    Article  CAS  PubMed  Google Scholar 

  62. Quattrini A, Previtali S, Feltri ML, Canal N, Nemni R, Wrabetz L (1996) Beta 4 integrin and other Schwann cell markers in axonal neuropathy. Glia 17(4):294–306. https://doi.org/10.1002/(SICI)1098-1136(199608)17:4%3c294::AID-GLIA4%3e3.0.CO;2-#

    Article  CAS  PubMed  Google Scholar 

  63. Ritfeld GJ, Patel A, Chou A, Novosat TL, Castillo DG, Roos RA, Oudega M (2015) The role of brain-derived neurotrophic factor in bone marrow stromal cell-mediated spinal cord repair. Cell Transplant 24(11):2209–2220. https://doi.org/10.3727/096368915X686201

    Article  PubMed  Google Scholar 

  64. Dang Z, Avolio E, Albertario A, Sala-Newby GB, Thomas AC, Wang N, Emanueli C, Madeddu P (2019) Nerve growth factor gene therapy improves bone marrow sensory innervation and nociceptor-mediated stem cell release in a mouse model of type 1 diabetes with limb ischaemia. Diabetologia 62(7):1297–1311. https://doi.org/10.1007/s00125-019-4860-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Abbaszadeh HA, Tiraihi T, Noori-Zadeh A, Delshad AR, Sadeghizade M, Taheri T (2015) Human ciliary neurotrophic factor-overexpressing stable bone marrow stromal cells in the treatment of a rat model of traumatic spinal cord injury. Cytotherapy 17(7):912–921. https://doi.org/10.1016/j.jcyt.2015.03.689

    Article  CAS  PubMed  Google Scholar 

  66. Glavaski-Joksimovic A, Virag T, Mangatu TA, McGrogan M, Wang XS, Bohn MC (2010) Glial cell line-derived neurotrophic factor-secreting genetically modified human bone marrow-derived mesenchymal stem cells promote recovery in a rat model of Parkinson’s disease. J Neurosci Res 88(12):2669–2681. https://doi.org/10.1002/jnr.22435

    Article  CAS  PubMed  Google Scholar 

  67. Yu L, Tu Q, Han Q, Zhang L, Sui L, Zheng L, Meng S, Tang Y et al (2015) Adiponectin regulates bone marrow mesenchymal stem cell niche through a unique signal transduction pathway: an approach for treating bone disease in diabetes. Stem Cells 33(1):240–252. https://doi.org/10.1002/stem.1844

    Article  CAS  PubMed  Google Scholar 

  68. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460(7252):259–263. https://doi.org/10.1038/nature08099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wallner C, Schira J, Wagner JM, Schulte M, Fischer S, Hirsch T, Richter W, Abraham S et al (2015) Application of VEGFA and FGF-9 enhances angiogenesis, osteogenesis and bone remodeling in type 2 diabetic long bone regeneration. PLoS ONE 10(3):e0118823. https://doi.org/10.1371/journal.pone.0118823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124(2):407–421. https://doi.org/10.1016/j.cell.2005.10.041

    Article  CAS  PubMed  Google Scholar 

  71. Méndez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452(7186):442–447. https://doi.org/10.1038/nature06685

    Article  CAS  PubMed  Google Scholar 

  72. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834. https://doi.org/10.1038/nature09262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mendez-Ferrer S, Battista M, Frenette PS (2010) Cooperation of beta(2)- and beta(3)-adrenergic receptors in hematopoietic progenitor cell mobilization. Ann N Y Acad Sci 1192:139–144. https://doi.org/10.1111/j.1749-6632.2010.05390.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dang Z, Maselli D, Spinetti G, Sangalli E, Carnelli F, Rosa F, Seganfreddo E, Canal F et al (2015) Sensory neuropathy hampers nociception-mediated bone marrow stem cell release in mice and patients with diabetes. Diabetologia 58(11):2653–2662. https://doi.org/10.1007/s00125-015-3735-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Huang XT, Li C, Peng XP, Guo J, Yue SJ, Liu W, Zhao FY, Han JZ et al (2017) An excessive increase in glutamate contributes to glucose-toxicity in beta-cells via activation of pancreatic NMDA receptors in rodent diabetes. Sci Rep 7:44120. https://doi.org/10.1038/srep44120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Banday VS, Lejon K (2017) Elevated systemic glutamic acid level in the non-obese diabetic mouse is Idd linked and induces beta cell apoptosis. Immunology 150(2):162–171. https://doi.org/10.1111/imm.12674

    Article  CAS  PubMed  Google Scholar 

  77. Bao Y, Zhao T, Wang X, Qiu Y, Su M, Jia W, Jia W (2009) Metabonomic variations in the drug-treated type 2 diabetes mellitus patients and healthy volunteers. J Proteome Res 8(4):1623–1630. https://doi.org/10.1021/pr800643w

    Article  CAS  PubMed  Google Scholar 

  78. Okabayashi T, Shima Y, Sumiyoshi T, Kozuki A, Iiyama T, Tokumaru T, Namikawa T, Sugimoto T et al (2014) Extrahepatic stem cells mobilized from the bone marrow by the supplementation of branched-chain amino acids ameliorate liver regeneration in an animal model. J Gastroenterol Hepatol 29(4):870–877. https://doi.org/10.1111/jgh.12450

    Article  CAS  PubMed  Google Scholar 

  79. Yamazaki S, Nakauchi H (2015) Specific amino acid environments of bone marrow are crucial for the maintenance of hematopoietic stem cells. Exp Hematol 43(9):S102–S102. https://doi.org/10.1016/j.exphem.2015.06.284

    Article  Google Scholar 

  80. Hinoi E, Takarada T, Uno K, Inoue M, Murafuji Y, Yoneda Y (2007) Glutamate suppresses osteoclastogenesis through the cystine/glutamate antiporter. Am J Pathol 170(4):1277–1290. https://doi.org/10.2353/ajpath.2007.061039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kiyohara S, Sakai N, Handa K, Yamakawa T, Ishikawa K, Chatani M, Karakawa A, Azetsu Y et al (2020) Effects of N-methyl-d-aspartate receptor antagonist MK-801 (dizocilpine) on bone homeostasis in mice. J Oral Biosci 62(2):131–138. https://doi.org/10.1016/j.job.2020.03.003

    Article  PubMed  Google Scholar 

  82. Serre CM, Farlay D, Delmas PD, Chenu C (1999) Evidence for a dense and intimate innervation of the bone tissue, including glutamate-containing fibers. Bone 25(6):623–629. https://doi.org/10.1016/s8756-3282(99)00215-x

    Article  CAS  PubMed  Google Scholar 

  83. Chenu C (2002) Glutamatergic regulation of bone remodeling. J Musculoskelet Neuronal Interact 2(3):282–284

    CAS  PubMed  Google Scholar 

  84. Yoneda Y (2017) NMDA Receptor in Bone. In: Hashimoto K (ed) The NMDA receptors. The receptors, vol 30. Humana Press, Cham. https://doi.org/10.1007/978-3-319-49795-2_8

  85. Bailey CG, Ryan RM, Thoeng AD, Ng C, King K, Vanslambrouck JM, Auray-Blais C, Vandenberg RJ et al (2011) Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria. J Clin Invest 121(1):446–453. https://doi.org/10.1172/JCI44474

    Article  CAS  PubMed  Google Scholar 

  86. Castillo J, Loza MI, Mirelman D, Brea J, Blanco M, Sobrino T, Campos F (2016) A novel mechanism of neuroprotection: blood glutamate grabber. J Cereb Blood Flow Metab 36(2):292–301. https://doi.org/10.1177/0271678X15606721

    Article  CAS  PubMed  Google Scholar 

  87. Lau TT, Wang DA (2011) Stromal cell-derived factor-1 (SDF-1): homing factor for engineered regenerative medicine. Expert Opin Biol Ther 11(2):189–197. https://doi.org/10.1517/14712598.2011.546338

    Article  CAS  PubMed  Google Scholar 

  88. Liu X, Duan B, Cheng Z, Jia X, Mao L, Fu H, Che Y, Ou L et al (2011) SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein Cell 2(10):845–854. https://doi.org/10.1007/s13238-011-1097-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schober A, Karshovska E, Zernecke A, Weber C (2006) SDF-1alpha-mediated tissue repair by stem cells: a promising tool in cardiovascular medicine? Trends Cardiovasc Med 16(4):103–108. https://doi.org/10.1016/j.tcm.2006.01.006

    Article  CAS  PubMed  Google Scholar 

  90. Nam D, Park A, Dubon MJ, Yu J, Kim W, Son Y, Park KS (2020) Coordinated regulation of mesenchymal stem cell migration by various chemotactic stimuli. Curr Diabetes Rev 21(22):8561. https://doi.org/10.3390/ijms21228561

    Article  CAS  Google Scholar 

  91. Kollet O, Spiegel A, Peled A, Petit I, Byk T, Hershkoviz R, Guetta E, Barkai G et al (2001) Rapid and efficient homing of human CD34(+)CD38(-/low)CXCR4(+) stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2m(null) mice. Blood 97(10):3283–3291. https://doi.org/10.1182/blood.v97.10.3283

    Article  CAS  PubMed  Google Scholar 

  92. Qi L, Ahmadi AR, Huang J, Chen M, Pan B, Kuwabara H, Iwasaki K, Wang W et al (2020) Major improvement in wound healing through pharmacologic mobilization of stem cells in severely diabetic rats. Diabetes 69(4):699–712. https://doi.org/10.2337/db19-0907

    Article  CAS  PubMed  Google Scholar 

  93. Zhou J, Zhang Z, Qian G (2019) Neuropathy and inflammation in diabetic bone marrow. Diabetes Metab Res Rev 35(1):e3083. https://doi.org/10.1002/dmrr.3083

    Article  CAS  PubMed  Google Scholar 

  94. Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25(6):977–988. https://doi.org/10.1016/j.immuni.2006.10.016

    Article  CAS  PubMed  Google Scholar 

  95. Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28(3):585–596. https://doi.org/10.1002/stem.269

    Article  CAS  PubMed  Google Scholar 

  96. Wynn RF, Hart CA, Corradi-Perini C, O’Neill L, Evans CA, Wraith JE, Fairbairn LJ, Bellantuono I (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 104(9):2643–2645. https://doi.org/10.1182/blood-2004-02-0526

    Article  CAS  PubMed  Google Scholar 

  97. Zhu B, Xu D, Deng X, Chen Q, Huang Y, Peng H, Li Y, Jia B et al (2012) CXCL12 enhances human neural progenitor cell survival through a CXCR7- and CXCR4-mediated endocytotic signaling pathway. Stem Cells 30(11):2571–2583. https://doi.org/10.1002/stem.1239

    Article  CAS  PubMed  Google Scholar 

  98. Kadivar M, Alijani N, Farahmandfar M, Rahmati S, Ghahhari NM, Mahdian R (2014) Effect of acute hypoxia on CXCR4 gene expression in C57BL/6 mouse bone marrow-derived mesenchymal stem cells. Adv Biomed Res 3:222. https://doi.org/10.4103/2277-9175.145682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ge J, Hu Y, Gui Y, Hou R, Yang M, Zeng Q, Xia R (2014) Chemotherapy-induced alteration of SDF-1/CXCR4 expression in bone marrow-derived mesenchymal stem cells from adolescents and young adults with acute lymphoblastic leukemia. J Pediatr Hematol Oncol 36(8):617–623. https://doi.org/10.1097/MPH.0000000000000220

    Article  CAS  PubMed  Google Scholar 

  100. Bobis-Wozowicz S, Miekus K, Wybieralska E, Jarocha D, Zawisz A, Madeja Z, Majka M (2011) Genetically modified adipose tissue-derived mesenchymal stem cells overexpressing CXCR4 display increased motility, invasiveness, and homing to bone marrow of NOD/SCID mice. Exp Hematol 39(6):686-696 e684. https://doi.org/10.1016/j.exphem.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  101. Sheu ML, Cheng FC, Su HL, Chen YJ, Chen CJ, Chiang CM, Chiu WT, Sheehan J et al (2012) Recruitment by SDF-1alpha of CD34-positive cells involved in sciatic nerve regeneration. J Neurosurg 116(2):432–444. https://doi.org/10.3171/2011.3.JNS101582

    Article  CAS  PubMed  Google Scholar 

  102. Wu CC, Wang IF, Chiang PM, Wang LC, Shen CJ, Tsai KJ (2017) G-CSF-mobilized bone marrow mesenchymal stem cells replenish neural lineages in Alzheimer’s disease mice via CXCR4/SDF-1 chemotaxis. Mol Neurobiol 54(8):6198–6212. https://doi.org/10.1007/s12035-016-0122-x

    Article  CAS  PubMed  Google Scholar 

  103. Kim BJ, Lee JK, Schuchman EH, Jin HK, Bae JS (2013) Synergistic vasculogenic effects of AMD3100 and stromal-cell-derived factor-1alpha in vasa nervorum of the sciatic nerve of mice with diabetic peripheral neuropathy. Cell Tissue Res 354(2):395–407. https://doi.org/10.1007/s00441-013-1689-4

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study is supported by grants from the National Natural Science Foundation of China (No. 81770806), the Chongqing Natural Science Foundation (No. cstc2021jcyj-msxmX0249), and the Special Project for Enhancing Science and Technology Innovation Ability of Army Medical University (No. 2019XYY16).

Author information

Authors and Affiliations

Authors

Contributions

J.Z. conceived the study and wrote the paper. Z.Z. and Y.L. performed the experimental work. J.Z. contributed to the study design, with reagents, and in writing the manuscript. All authors reviewed and approved the paper.

Corresponding author

Correspondence to Jiyin Zhou.

Ethics declarations

Ethics Approval

Yes.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Liu, Y. & Zhou, J. Neuritin Promotes Bone Marrow-Derived Mesenchymal Stem Cell Migration to Treat Diabetic Peripheral Neuropathy. Mol Neurobiol 59, 6666–6683 (2022). https://doi.org/10.1007/s12035-022-03002-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03002-2

Keywords

Navigation