Skip to main content
Log in

Genetic Knockout of TRPM2 Increases Neuronal Excitability of Hippocampal Neurons by Inhibiting Kv7 Channel in Epilepsy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Epilepsy is a chronic brain disease that makes serious cognitive and motor retardation. Ion channels affect the occurrence of epilepsy in various ways, but the mechanisms have not yet been fully elucidated. Transient receptor potential melastain2 (TRPM2) ion channel is a non-selective cationic channel that can permeate Ca2+ and critical for epilepsy. Here, TRPM2 gene knockout mice were used to generate a chronic kindling epilepsy model by PTZ administration in mice. We found that TRPM2 knockout mice were more susceptible to epilepsy than WT mice. Furthermore, the neuronal excitability in the hippocampal CA1 region of TRPM2 knockout mice was significantly increased. Compared with WT group, there were no significant differences in the input resistance and after hyperpolarization of CA1 neurons in TRPM2 knockout mice. Firing adaptation rate of hippocampal CA1 pyramidal neurons of TRPM2 knockout mice was lower than that of WT mice. We also found that activation of Kv7 channel by retigabine reduced the firing frequency of action potential in the hippocampal pyramidal neurons of TRPM2 knockout mice. However, inhibiting Kv7 channel increased the firing frequency of action potential in hippocampal pyramidal neurons of WT mice. The data suggest that activation of Kv7 channel can effectively reduce epileptic seizures in TRPM2 knockout mice. We conclude that genetic knockout of TRPM2 in hippocampal CA1 pyramidal neurons may increase neuronal excitability by inhibiting Kv7 channel, affecting the susceptibility to epilepsy. These findings may provide a potential therapeutic target for epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used during the present study are available from the corresponding author upon reasonable request.

Abbreviations

AP:

Action potential

CNS:

Central nervous system

Kv7:

KCNQ-encoded voltage-dependent K+ channels

mAHP:

Medium after hyperpolarization

M current:

Kv7 current

PTZ:

Pentylenetetrazole

RMP:

Resting membrane potential

R in :

Input resistance

ROS:

Reactive oxygen species

sEPSC:

Spontaneous excitatory postsynaptic current

TRPM2:

Transient receptor potential melastain2

References

  1. Thijs RD, Surges R, O’Brien TJ, Sander JW (2019) Epilepsy in adults. Lancet 393:689–701. https://doi.org/10.1016/S0140-6736(18)32596-0

    Article  PubMed  Google Scholar 

  2. Beghi E, Hesdorffer D (2014) Prevalence of epilepsy—an unknown quantity. Epilepsia 55:963–967. https://doi.org/10.1111/epi.12579

    Article  PubMed  Google Scholar 

  3. Megiddo I, Colson A, Chisholm D, Dua T, Nandi A, Laxminarayan R (2016) Health and economic benefits of public financing of epilepsy treatment in India: an agent-based simulation model. Epilepsia 57:464–474. https://doi.org/10.1111/epi.13294

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rogawski MA, Loscher W and Rho JM (2016) Mechanisms of action of antiseizure drugs and the ketogenic diet. Cold Spring Harb Perspect Med 6. https://doi.org/10.1101/cshperspect.a022780

  5. Quilichini PP, Le Van QM, Ivanov A, Turner DA, Carabalona A, Gozlan H, Esclapez M, Bernard C (2012) Hub GABA neurons mediate gamma-frequency oscillations at ictal-like event onset in the immature hippocampus. Neuron 74:57–64. https://doi.org/10.1016/j.neuron.2012.01.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oyrer J, Maljevic S, Scheffer IE, Berkovic SF, Petrou S, Reid CA (2018) Ion channels in genetic epilepsy: from genes and mechanisms to disease-targeted therapies. Pharmacol Rev 70:142–173. https://doi.org/10.1124/pr.117.014456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wei F, Yan L-M, Su T, He N, Lin Z-J, Wang J, Shi Y-W, Yi Y-H, Liao W-P (2017) Ion channel genes and epilepsy: functional alteration, pathogenic potential, and mechanism of epilepsy. Neurosci Bull 33:455–477. https://doi.org/10.1007/s12264-017-0134-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ogiwara I, Miyamoto H, Morita N, Atapour N, Mazaki E, Inoue I, Takeuchi T, Itohara S, Yanagawa Y, Obata K, Furuichi T, Hensch TK, Yamakawa K (2007) Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci Off J Soc Neurosci 27:5903–5914

    Article  CAS  Google Scholar 

  9. Wimmer VC, Harty RC, Richards KL, Phillips AM, Miyazaki H, Nukina N, Petrou S (2015) Sodium channel β1 subunit localizes to axon initial segments of excitatory and inhibitory neurons and shows regional heterogeneity in mouse brain. J Comp Neurol 523:814–830. https://doi.org/10.1002/cne.23715

    Article  CAS  PubMed  Google Scholar 

  10. Howell KB, McMahon JM, Carvill GL, Tambunan D, Mackay MT, Rodriguez-Casero V, Webster R, Clark D, Freeman JL, Calvert S, Olson HE, Mandelstam S, Poduri A, Mefford HC, Harvey AS, Scheffer IE (2015) SCN2A encephalopathy: a major cause of epilepsy of infancy with migrating focal seizures. Neurol 85:958–966. https://doi.org/10.1212/WNL.0000000000001926

    Article  CAS  Google Scholar 

  11. Hu W, Tian C, Li T, Yang M, Hou H, Shu Y (2009) Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nat Neurosci 12:996–1002. https://doi.org/10.1038/nn.2359

    Article  CAS  PubMed  Google Scholar 

  12. Veeramah KR, O’Brien JE, Meisler MH, Cheng X, Dib-Hajj SD, Waxman SG, Talwar D, Girirajan S, Eichler EE, Restifo LL, Erickson RP, Hammer MF (2012) De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet 90:502–510. https://doi.org/10.1016/j.ajhg.2012.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Denis J, Villeneuve N, Cacciagli P, Mignon-Ravix C, Lacoste C, Lefranc J, Napuri S, Damaj L, Villega F, Pedespan J-M, Moutton S, Mignot C, Doummar D, Lion-François L, Gataullina S, Dulac O, Martin M, Gueden S, Lesca G, Julia S, Cances C, Journel H, Altuzarra C, Ben Zeev B, Afenjar A, Barth M, Villard L, Milh M (2019) Clinical study of 19 patients with SCN8A-related epilepsy: two modes of onset regarding EEG and seizures. Epilepsia 60:845–856. https://doi.org/10.1111/epi.14727

    Article  CAS  PubMed  Google Scholar 

  14. Jan LY, Jan YN (2012) Voltage-gated potassium channels and the diversity of electrical signalling. J Physiol 590:2591–2599. https://doi.org/10.1113/jphysiol.2011.224212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Glasscock E, Yoo JW, Chen TT, Klassen TL, Noebels JL (2010) Kv1.1 potassium channel deficiency reveals brain-driven cardiac dysfunction as a candidate mechanism for sudden unexplained death in epilepsy. J Neurosci Off J Soc Neurosci 30:5167–5175. https://doi.org/10.1523/JNEUROSCI.5591-09.2010

    Article  CAS  Google Scholar 

  16. Maljevic S, Lerche H (2013) Potassium channels: a review of broadening therapeutic possibilities for neurological diseases. J Neurol 260:2201–2211. https://doi.org/10.1007/s00415-012-6727-8

    Article  CAS  PubMed  Google Scholar 

  17. Brew HM, Gittelman JX, Silverstein RS, Hanks TD, Demas VP, Robinson LC, Robbins CA, McKee-Johnson J, Chiu SY, Messing A, Tempel BL (2007) Seizures and reduced life span in mice lacking the potassium channel subunit Kv1.2, but hypoexcitability and enlarged Kv1 currents in auditory neurons. J Neurophysiol 98:1501–1525

    Article  CAS  Google Scholar 

  18. Contet C, Goulding SP, Kuljis DA, Barth AL (2016) BK channels in the central nervous system. Int Rev Neurobiol 128:281–342. https://doi.org/10.1016/bs.irn.2016.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sausbier M, Hu H, Arntz C, Feil S, Kamm S, Adelsberger H, Sausbier U, Sailer CA, Feil R, Hofmann F, Korth M, Shipston MJ, Knaus HG, Wolfer DP, Pedroarena CM, Storm JF, Ruth P (2004) Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+ channel deficiency. Proc Natl Acad Sci USA 101:9474–9478

    Article  CAS  Google Scholar 

  20. Weckhuysen S, Mandelstam S, Suls A, Audenaert D, Deconinck T, Claes LRF, Deprez L, Smets K, Hristova D, Yordanova I, Jordanova A, Ceulemans B, Jansen A, Hasaerts D, Roelens F, Lagae L, Yendle S, Stanley T, Heron SE, Mulley JC, Berkovic SF, Scheffer IE, de Jonghe P (2012) KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol 71:15–25. https://doi.org/10.1002/ana.22644

    Article  CAS  PubMed  Google Scholar 

  21. Grigorov A, Moskalyuk A, Kravchenko M, Veselovsky N, Verkhratsky A, Fedulova S (2014) Kv7 potassium channel subunits and M currents in cultured hippocampal interneurons. Pflugers Arch 466:1747–1758. https://doi.org/10.1007/s00424-013-1406-x

    Article  CAS  PubMed  Google Scholar 

  22. Peters HC, Hu H, Pongs O, Storm JF, Isbrandt D (2005) Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat Neurosci 8:51–60

    Article  CAS  Google Scholar 

  23. Campiglio M, Flucher BE (2015) The role of auxiliary subunits for the functional diversity of voltage-gated calcium channels. J Cell Physiol 230:2019–2031. https://doi.org/10.1002/jcp.24998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Powell KL, Cain SM, Ng C, Sirdesai S, David LS, Kyi M, Garcia E, Tyson JR, Reid CA, Bahlo M, Foote SJ, Snutch TP, O’Brien TJ (2009) A Cav3.2 T-type calcium channel point mutation has splice-variant-specific effects on function and segregates with seizure expression in a polygenic rat model of absence epilepsy. J Neurosci Off J Soc Neurosci 29:371–380. https://doi.org/10.1523/JNEUROSCI.5295-08.2009

    Article  CAS  Google Scholar 

  25. Nava C, Dalle C, Rastetter A, Striano P, de Kovel CGF, Nabbout R, Cancès C, Ville D, Brilstra EH, Gobbi G, Raffo E, Bouteiller D, Marie Y, Trouillard O, Robbiano A, Keren B, Agher D, Roze E, Lesage S, Nicolas A, Brice A, Baulac M, Vogt C, El Hajj N, Schneider E, Suls A, Weckhuysen S, Gormley P, Lehesjoki A-E, De Jonghe P, Helbig I, Baulac S, Zara F, Koeleman BPC, Haaf T, LeGuern E, Depienne C (2014) De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nat Genet 46:640–645. https://doi.org/10.1038/ng.2952

    Article  CAS  PubMed  Google Scholar 

  26. Dyhrfjeld-Johnsen J, Morgan RJ, Soltesz I (2009) Double trouble? Potential for hyperexcitability following both channelopathic up- and downregulation of I(h) in epilepsy. Front Neurosci 3:25–33. https://doi.org/10.3389/neuro.01.005.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shao Y, Chen C, Zhu T, Sun Z, Li S, Gong L, Dong X, Shen W, Zeng L, Xie Y, Jiang P (2021) TRPM2 contributes to neuroinflammation and cognitive deficits in a cuprizone-induced multiple sclerosis model via NLRP3 inflammasome. Neurobiol Dis 160:105534. https://doi.org/10.1016/j.nbd.2021.105534

    Article  CAS  PubMed  Google Scholar 

  28. Hu H, Zhu T, Gong L, Zhao Y, Shao Y, Li S, Sun Z, Ling Y, Tao Y, Ying Y, Lan C, Xie Y, Jiang P (2020) Transient receptor potential melastatin 2 contributes to neuroinflammation and negatively regulates cognitive outcomes in a pilocarpine-induced mouse model of epilepsy. Int Immunopharmacol 87:106824. https://doi.org/10.1016/j.intimp.2020.106824

    Article  CAS  PubMed  Google Scholar 

  29. Zheng Q, Zhu T, Hu H, Zhao Y, Ying Y, Luo X, Ling Y, Chen Z, Ji H, Jiang P (2020) TRPM2 ion channel is involved in the aggravation of cognitive impairment and down regulation of epilepsy threshold in pentylenetetrazole-induced kindling mice. Brain Res Bull 155:48–60. https://doi.org/10.1016/j.brainresbull.2019.11.018

    Article  CAS  PubMed  Google Scholar 

  30. Alim I, Teves L, Li R, Mori Y, Tymianski M (2013) Modulation of NMDAR subunit expression by TRPM2 channels regulates neuronal vulnerability to ischemic cell death. J Neurosci 33:17264–17277. https://doi.org/10.1523/JNEUROSCI.1729-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ostapchenko VG, Chen M, Guzman MS, Xie YF, Lavine N, Fan J, Beraldo FH, Martyn AC, Belrose JC, Mori Y, MacDonald JF, Prado VF, Prado MA, Jackson MF (2015) The transient receptor potential melastatin 2 (TRPM2) channel contributes to β-amyloid oligomer-related neurotoxicity and memory impairment. J Neurosci 35:15157–15169. https://doi.org/10.1523/jneurosci.4081-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hermosura MC, Cui AM, Go RC, Davenport B, Shetler CM, Heizer JW, Schmitz C, Mocz G, Garruto RM, Perraud AL (2008) Altered functional properties of a TRPM2 variant in Guamanian ALS and PD. Proc Natl Acad Sci U S A 105:18029–18034. https://doi.org/10.1073/pnas.0808218105

    Article  PubMed  PubMed Central  Google Scholar 

  33. Belrose JC, Jackson MF (2018) TRPM2: a candidate therapeutic target for treating neurological diseases. Acta Pharmacol Sin 39:722–732. https://doi.org/10.1038/aps.2018.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li X, Jiang L-H (2018) Multiple molecular mechanisms form a positive feedback loop driving amyloid β42 peptide-induced neurotoxicity via activation of the TRPM2 channel in hippocampal neurons. Cell Death Dis 9:195. https://doi.org/10.1038/s41419-018-0270-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang J, Jackson MF, Xie Y-F (2016) Glia and TRPM2 channels in plasticity of central nervous system and Alzheimer’s diseases. Neural Plast 2016:1680905. https://doi.org/10.1155/2016/1680905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188. https://doi.org/10.1016/j.pneurobio.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  37. Mai C, Mankoo H, Wei L, An X, Li C, Li D, Jiang L-H (2020) TRPM2 channel: a novel target for alleviating ischaemia-reperfusion, chronic cerebral hypo-perfusion and neonatal hypoxic-ischaemic brain damage. J Cell Mol Med 24:4–12. https://doi.org/10.1111/jcmm.14679

    Article  CAS  PubMed  Google Scholar 

  38. Ye M, Yang W, Ainscough JF, Hu XP, Li X, Sedo A, Zhang XH, Zhang X, Chen Z, Li XM, Beech DJ, Sivaprasadarao A, Luo JH, Jiang LH (2014) TRPM2 channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia. Cell Death Dis 5:e1541. https://doi.org/10.1038/cddis.2014.494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bailey JN, Patterson C, de Nijs L, Durón RM, Nguyen V-H, Tanaka M, Medina MT, Jara-Prado A, Martínez-Juárez IE, Ochoa A, Molina Y, Suzuki T, Alonso ME, Wight JE, Lin Y-C, Guilhoto L, Targas Yacubian EM, Machado-Salas J, Daga A, Yamakawa K, Grisar TM, Lakaye B, Delgado-Escueta AV (2017) EFHC1 variants in juvenile myoclonic epilepsy: reanalysis according to NHGRI and ACMG guidelines for assigning disease causality. Genet Med Off J Am Coll Med Genet 19:144–156. https://doi.org/10.1038/gim.2016.86

    Article  CAS  Google Scholar 

  40. Katano M, Numata T, Aguan K, Hara Y, Kiyonaka S, Yamamoto S, Miki T, Sawamura S, Suzuki T, Yamakawa K, Mori Y (2012) The juvenile myoclonic epilepsy-related protein EFHC1 interacts with the redox-sensitive TRPM2 channel linked to cell death. Cell Calcium 51:179–185. https://doi.org/10.1016/j.ceca.2011.12.011

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki T, Delgado-Escueta AV, Aguan K, Alonso ME, Shi J, Hara Y, Nishida M, Numata T, Medina MT, Takeuchi T, Morita R, Bai D, Ganesh S, Sugimoto Y, Inazawa J, Bailey JN, Ochoa A, Jara-Prado A, Rasmussen A, Ramos-Peek J, Cordova S, Rubio-Donnadieu F, Inoue Y, Osawa M, Kaneko S, Oguni H, Mori Y, Yamakawa K (2004) Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat Genet 36:842–849. https://doi.org/10.1038/ng1393

    Article  CAS  PubMed  Google Scholar 

  42. Lee CR, Machold RP, Witkovsky P, Rice ME (2013) TRPM2 channels are required for NMDA-induced burst firing and contribute to H(2)O(2)-dependent modulation in substantia nigra pars reticulata GABAergic neurons. J Neurosci Off J Soc Neurosci 33:1157–1168. https://doi.org/10.1523/JNEUROSCI.2832-12.2013

    Article  CAS  Google Scholar 

  43. Ferreira AFF, Singulani MP, Ulrich H, Feng ZP, Sun HS, Britto LR (2022) Inhibition of TRPM2 by AG490 is neuroprotective in a Parkinson’s disease animal model. Mol Neurobiol 59:1543–1559. https://doi.org/10.1007/s12035-022-02723-8

    Article  CAS  PubMed  Google Scholar 

  44. Grunnet M, Strobaek D, Hougaard C, Christophersen P (2014) Kv7 channels as targets for anti-epileptic and psychiatric drug-development. Eur J Pharmacol 726:133–137. https://doi.org/10.1016/j.ejphar.2014.01.017

    Article  CAS  PubMed  Google Scholar 

  45. Lipinsky M, Tobelaim WS, Peretz A, Simhaev L, Yeheskel A, Yakubovich D, Lebel G, Paas Y, Hirsch JA and Attali B (2020) A unique mechanism of inactivation gating of the Kv channel family member Kv7.1 and its modulation by PIP2 and calmodulin. Sci Adv 6. https://doi.org/10.1126/sciadv.abd6922

  46. Grupe M, Bentzen BH, Benned-Jensen T, Nielsen V, Frederiksen K, Jensen HS, Jacobsen A-M, Skibsbye L, Sams AG, Grunnet M, Rottländer M, Bastlund JF (2020) In vitro and in vivo characterization of Lu AA41178: a novel, brain penetrant, pan-selective Kv7 potassium channel opener with efficacy in preclinical models of epileptic seizures and psychiatric disorders. Eur J Pharmacol 887:173440. https://doi.org/10.1016/j.ejphar.2020.173440

    Article  CAS  PubMed  Google Scholar 

  47. Zhou Y-D, Lee S, Jin Z, Wright M, Smith SEP, Anderson MP (2009) Arrested maturation of excitatory synapses in autosomal dominant lateral temporal lobe epilepsy. Nat Med 15:1208–1214. https://doi.org/10.1038/nm.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shen Y, Qin H, Chen J, Mou L, He Y, Yan Y, Zhou H, Lv Y, Chen Z, Wang J, Zhou Y-D (2016) Postnatal activation of TLR4 in astrocytes promotes excitatory synaptogenesis in hippocampal neurons. J Cell Biol 215:719–734. https://doi.org/10.1083/jcb.201605046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Panebianco M, Bresnahan R, Hemming K, Marson AG (2019) Pregabalin add-on for drug-resistant focal epilepsy. Cochrane Database Syst Rev 7:005612. https://doi.org/10.1002/14651858.CD005612.pub4

    Article  Google Scholar 

  50. Zhu C, Lin R, Liu C, Huang M, Lin F, Zhang G, Zhang Y, Miao J, Lin W, Huang H (2020) The antagonism of 5-HT6 receptor attenuates current-induced spikes and improves long-term potentiation via the regulation of M-currents in a pilocarpine-induced epilepsy model. Front Pharmacol 11:475–475. https://doi.org/10.3389/fphar.2020.00475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Otto JF, Yang Y, Frankel WN, White HS, Wilcox KS (2006) A spontaneous mutation involving Kcnq2 (Kv7.2) reduces M-current density and spike frequency adaptation in mouse CA1 neurons. J Neurosci 26:2053–2059. https://doi.org/10.1523/jneurosci.1575-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ghezzi F, Monni L, Nistri A (2018) Functional up-regulation of the M-current by retigabine contrasts hyperexcitability and excitotoxicity on rat hypoglossal motoneurons. J Physiol 596:2611–2629. https://doi.org/10.1113/jp275906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Paz RM, Tubert C, Stahl A, Díaz AL, Etchenique R, Murer MG, Rela L (2018) Inhibition of striatal cholinergic interneuron activity by the Kv7 opener retigabine and the nonsteroidal anti-inflammatory drug diclofenac. Neuropharmacol 137:309–321. https://doi.org/10.1016/j.neuropharm.2018.05.010

    Article  CAS  Google Scholar 

  54. Sheng ZF, Zhang H, Zheng P, Chen S, Gu Z, Zhou JJ, Phaup JG, Chang HM, Yeh ETH, Pan HL, Li DP (2022) Impaired Kv7 channel activity in the central amygdala contributes to elevated sympathetic outflow in hypertension. Cardiovasc Res 118:585–596. https://doi.org/10.1093/cvr/cvab031

    Article  CAS  PubMed  Google Scholar 

  55. Greene DL, Kang S, Hoshi N (2017) XE991 and linopirdine are state-dependent inhibitors for Kv7/KCNQ channels that favor activated single subunits. J Pharmacol Exp Ther 362:177–185. https://doi.org/10.1124/jpet.117.241679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jang Y, Lee B, Kim H, Jung S, Lee SH, Lee S-Y, Jeon JH, Kim I-B, Lee S-H, Kim B-J, Kim U-H, Lee Y, Kim SM, Jeon D, Oh U (2019) TRPM2 ablation accelerates protein aggregation by impaired ADPR and autophagic clearance in the brain. Mol Neurobiol 56:3819–3832. https://doi.org/10.1007/s12035-018-1309-0

    Article  CAS  PubMed  Google Scholar 

  57. Xie Y-F, Belrose JC, Lei G, Tymianski M, Mori Y, Macdonald JF, Jackson MF (2011) Dependence of NMDA/GSK-3β mediated metaplasticity on TRPM2 channels at hippocampal CA3-CA1 synapses. Mol Brain 4:44–44. https://doi.org/10.1186/1756-6606-4-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bal R, Ozturk G, Etem EO, Eraslan E, Ozaydin S (2020) Modulation of the excitability of stellate neurons in the ventral cochlear nucleus of mice by TRPM2 channels. Eur J Pharmacol 882:173163. https://doi.org/10.1016/j.ejphar.2020.173163

    Article  CAS  PubMed  Google Scholar 

  59. Zhou N, Huang S, Li L, Huang D, Yan Y, Du X, Zhang H (2016) Suppression of KV7/KCNQ potassium channel enhances neuronal differentiation of PC12 cells. Neurosci 333:356–367. https://doi.org/10.1016/j.neuroscience.2016.07.024

    Article  CAS  Google Scholar 

  60. Chou S-M, Li K-X, Huang M-Y, Chen C, Lin King Y-H, Li GG, Zhou W, Teo CF, Jan YN, Jan LY and Yang S-B (2021) Kv1.1 channels regulate early postnatal neurogenesis in mouse hippocampus via the TrkB signaling pathway. ELife 10. https://doi.org/10.7554/eLife.58779

  61. Lin King Y-H, Chen C, Lin King JV, Simms J, Glasscock E, Yang S-B, Jan Y-N, Jan LY (2022) K1.1 preserves the neural stem cell pool and facilitates neuron maturation during adult hippocampal neurogenesis. Proc Natl Acad Scie U S A 119:e2118240119. https://doi.org/10.1073/pnas.2118240119

    Article  CAS  Google Scholar 

  62. Peng Y, Lu K, Li Z, Zhao Y, Wang Y, Hu B, Xu P, Shi X, Zhou B, Pennington M, Chandy KG, Tang Y (2014) Blockade of Kv1.3 channels ameliorates radiation-induced brain injury. Neuro Oncol 16:528–539. https://doi.org/10.1093/neuonc/not221

    Article  CAS  PubMed  Google Scholar 

  63. Leung Y-M, Huang C-F, Chao C-C, Lu D-Y, Kuo C-S, Cheng T-H, Chang L-Y, Chou C-H (2011) Voltage-gated K+ channels play a role in cAMP-stimulated neuritogenesis in mouse neuroblastoma N2A cells. J Cell Physiol 226:1090–1098. https://doi.org/10.1002/jcp.22430

    Article  CAS  PubMed  Google Scholar 

  64. Chao R-Y, Cheng C-H, Wu S-N, Chen P-C (2018) Defective trafficking of Kv2.1 channels in MPTP-induced nigrostriatal degeneration. J Neurochem 144:483–497. https://doi.org/10.1111/jnc.14282

    Article  CAS  PubMed  Google Scholar 

  65. Thiffault I, Speca DJ, Austin DC, Cobb MM, Eum KS, Safina NP, Grote L, Farrow EG, Miller N, Soden S, Kingsmore SF, Trimmer JS, Saunders CJ, Sack JT (2015) A novel epileptic encephalopathy mutation in KCNB1 disrupts Kv2.1 ion selectivity, expression, and localization. J Gen Physiol 146:399–410. https://doi.org/10.1085/jgp.201511444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yeh C-Y, Bulas AM, Moutal A, Saloman JL, Hartnett KA, Anderson CT, Tzounopoulos T, Sun D, Khanna R, Aizenman E (2017) Targeting a potassium channel/syntaxin interaction ameliorates cell death in ischemic stroke. J Neurosci Off J Soc Neurosci 37:5648–5658. https://doi.org/10.1523/JNEUROSCI.3811-16.2017

    Article  CAS  Google Scholar 

  67. Wu Y, Shyng S-L, Chen P-C (2015) Concerted trafficking regulation of Kv2.1 and KATP channels by leptin in pancreatic β-cells. J Biol Chem 290:29676–29690. https://doi.org/10.1074/jbc.M115.670877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Peng H, Bian XL, Ma FC, Wang KW (2017) Pharmacological modulation of the voltage-gated neuronal Kv7/KCNQ/M-channel alters the intrinsic excitability and synaptic responses of pyramidal neurons in rat prefrontal cortex slices. Acta Pharmacol Sin 38:1248–1256. https://doi.org/10.1038/aps.2017.72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shah MM, Migliore M, Valencia I, Cooper EC, Brown DA (2008) Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons. Proc Natl Acad Sci U S A 105:7869–7874. https://doi.org/10.1073/pnas.0802805105

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nogueira J, Castelló ME, Lescano C and Caputi Á A (2021) Distinct neuron phenotypes may serve object feature sensing in the electrosensory lobe of Gymnotus omarorum. J Exp Biol 224. https://doi.org/10.1242/jeb.242242

  71. Gu N, Vervaeke K, Hu H, Storm JF (2005) Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J Physiol 566:689–715. https://doi.org/10.1113/jphysiol.2005.086835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lawrence JJ, Saraga F, Churchill JF, Statland JM, Travis KE, Skinner FK, McBain CJ (2006) Somatodendritic Kv7/KCNQ/M channels control interspike interval in hippocampal interneurons. J Neurosci 26:12325–12338. https://doi.org/10.1523/JNEUROSCI.3521-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yue C, Yaari Y (2004) KCNQ/M channels control spike afterdepolarization and burst generation in hippocampal neurons. J Neurosci 24:4614–4624. https://doi.org/10.1523/JNEUROSCI.0765-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang H, Sheng Z-F, Wang J, Zheng P, Kang X, Chang H-M, Yeh ETH, Li D-P (2022) Signaling pathways involved in NMDA-induced suppression of M-channels in corticotropin-releasing hormone neurons in central amygdala. J Neurochem 161:478–491. https://doi.org/10.1111/jnc.15647

    Article  CAS  PubMed  Google Scholar 

  75. Fan X-Z, Wang Y-Y, Cui Z-Y, Cheng Z-H, Zhang H-L, Gamper N, Zhang F, Han M (2022) Kv7.4 channel is a key regulator of vascular inflammation and remodeling in neointimal hyperplasia and abdominal aortic aneurysms. Free Radical Biol Med 178:111–124. https://doi.org/10.1016/j.freeradbiomed.2021.11.041

    Article  CAS  Google Scholar 

  76. van der Horst J, Greenwood IA, Jepps TA (2020) Cyclic AMP-dependent regulation of Kv7 voltage-gated potassium channels. Front Physiol 11:727. https://doi.org/10.3389/fphys.2020.00727

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jiménez-Pérez L, Cidad P, Álvarez-Miguel I, Santos-Hipólito A, Torres-Merino R, Alonso E, de la Fuente MÁ, López-López JR, Pérez-García MT (2016) Molecular determinants of Kv1.3 potassium channels-induced proliferation. J Biol Chem 291:3569–3580. https://doi.org/10.1074/jbc.M115.678995

    Article  CAS  PubMed  Google Scholar 

  78. Zhou X, Song M, Chen D, Wei L, Yu SP (2011) Potential role of KCNQ/M-channels in regulating neuronal differentiation in mouse hippocampal and embryonic stem cell-derived neuronal cultures. Exp Neurol 229:471–483. https://doi.org/10.1016/j.expneurol.2011.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brodie MJ, Lerche H, Gil-Nagel A, Elger C, Hall S, Shin P, Nohria V, Mansbach H (2010) Efficacy and safety of adjunctive ezogabine (retigabine) in refractory partial epilepsy. Neurol 75:1817–1824. https://doi.org/10.1212/WNL.0b013e3181fd6170

    Article  CAS  Google Scholar 

  80. Besag FMC, Vasey MJ (2021) Neurocognitive effects of antiseizure medications in children and adolescents with epilepsy. Paediatr Drugs 23:253–286. https://doi.org/10.1007/s40272-021-00448-0

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The TRPM2 KO mice were kindly provided by Prof. Fang Xiangming from Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Japan. We are grateful to Prof. Zhou Yudong who helped us to successfully complete this research work.

Funding

This work was supported by Grants from the National Natural Science Foundation of China (Nos. 82171438, 81671287, 81372116, 81201511), Zhejiang Provincial Program for the Cultivation of High-Level Innovative Health Talents, and Zhejiang Province Public Welfare Technology Application Research Project (Nos. LY22H090005, LY15H090006).

Author information

Authors and Affiliations

Authors

Contributions

Peifang Jiang and Tao Zhu designed the experiments. Yingchao Ying, Lifen Gong, and Chen Chen performed the experiments. Yingchao Ying and Peifang Jiang analyzed and wrote the manuscript. Other authors helped perform the experiments. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Tao Zhu or Peifang Jiang.

Ethics declarations

Ethics Approval

The animal study was reviewed and approved by the Animal Experiment Ethics Committee of Zhejiang University.

Consent to Participate

Not applicable.

Consent for Publication

All authors consent to the publication of this manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, Y., Gong, L., Tao, X. et al. Genetic Knockout of TRPM2 Increases Neuronal Excitability of Hippocampal Neurons by Inhibiting Kv7 Channel in Epilepsy. Mol Neurobiol 59, 6918–6933 (2022). https://doi.org/10.1007/s12035-022-02993-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02993-2

Keyword

Navigation