Skip to main content

Advertisement

Log in

The Role of a Gut Microbial-Derived Metabolite, Trimethylamine N-Oxide (TMAO), in Neurological Disorders

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Trimethylamine lyases are expressed in a wide range of intestinal microbiota which metabolize dietary nutrients like choline, betaine, and L-carnitine to form trimethylamine (TMA). Trimethylamine N-oxide (TMAO) is an oxidative product of trimethylamine (TMA) catalyzed by the action of flavin monooxygenases (FMO) in the liver. Higher levels of TMAO in the plasma and cerebrospinal fluid (CSF) have been shown to contribute to the development of risk factors and actively promote the pathogenesis of metabolic, cardiovascular, and cerebrovascular diseases. The investigations on the harmful effects of TMAO in the development and progression of neurodegenerative and sleep disorders are summarized in this manuscript. Clinical investigations on the role of TMAO in predicting risk factors and prognostic factors in patients with neurological disorders are also summarized. It is observed that the mechanisms underlying TMAO-mediated pathogenesis include activation of inflammatory signaling pathways such as nuclear factor kappa B (NF-κβ), NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, and MAPK/JNK in the periphery and brain. Data suggests that TMAO levels increase with age-related cognitive dysfunction and also induce mitochondrial dysfunction, oxidative stress, neuronal senescence, and synaptic damage in the brain. Further research into the relationships between dietary food consumption and gut microbiota-dependent TMAO levels could provide novel therapeutic options for neurological illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available in standard research databases such as PubMed, Science Direct, or Google Scholar, and/or on public domains that can be searched with either key words or DOI numbers.

Abbreviations

Aβ:

Amyloid-beta

AD:

Alzheimer’s disease

ALC:

Acetyl L-carnitine

ALS:

Amyotrophic lateral sclerosis

BBB:

Blood-brain barrier

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

CVD:

Cardiovascular diseases

EAE:

Experimental autoimmune encephalomyelitis

ETX:

Epsilon toxin

FMO:

Flavin-containing monooxygenases

FMT:

Fecal microbiota transplantation

HD:

Huntington’s disease

JNKs:

Jun N-terminal kinases

LPS:

Lipopolysaccharides

LTP:

Long term potentiation

MAPKs:

P38 mitogen-activated protein kinases

MCI:

Mild cognitive impairment

MS:

Multiple sclerosis

mTOR:

Mammalian target of rapamycin

NF-κβ:

Nuclear factor kappa B

NFTs:

Neurofibrillary tangles

NLRP3:

NOD-, LRR-, and pyrin domain-containing protein 3

OSAS:

Obstructive sleep apnea syndrome

PD:

Parkinson’s disease

PERK:

Protein kinase R-like endoplasmic reticulum kinase

PolyQ:

Polyglutamine

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

TDP43:

DNA-binding protein 43

TMA:

Trimethylamine

TMAO:

Trimethylamine N-oxide

References

  1. Gregory JC, Buffa JA, Org E et al (2015) Transmission of atherosclerosis susceptibility with gut microbial transplantation *. J Biol Chem 290:5647–5660. https://doi.org/10.1074/JBC.M114.618249

    Article  CAS  PubMed  Google Scholar 

  2. Zhu Y, Jameson E, Crosatti M et al (2014) Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc Natl Acad Sci USA 111:4268–4273. https://doi.org/10.1073/pnas.1316569111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jie Z, Xia H, Zhong SL et al (2017) The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 8:1–11. https://doi.org/10.1038/s41467-017-00900-1

    Article  CAS  Google Scholar 

  4. Romano KA, Vivas EI, Amador-noguez D, Rey FE (2015) from diet and accumulation of the proatherogenic metabolite. Intest Microbiota Choline Metab 6:1–8. https://doi.org/10.1128/mBio.02481-14.Editor

    Article  Google Scholar 

  5. Stubbs JR, House JA, Ocque AJ et al (2016) Serum trimethylamine-N-Oxide is elevated in CKD and correlates with coronary atherosclerosis burden. J Am Soc Nephrol 27:305–313. https://doi.org/10.1681/ASN.2014111063

    Article  CAS  PubMed  Google Scholar 

  6. Koeth RA, Wang Z, Levison BS et al (2013) Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576–585. https://doi.org/10.1038/nm.3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wallace TC, Blusztajn JK, Caudill MA et al (2018) Choline: the underconsumed and underappreciated essential nutrient. Nutr Today 53:240. https://doi.org/10.1097/NT.0000000000000302

    Article  PubMed  PubMed Central  Google Scholar 

  8. Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157:121–141. https://doi.org/10.1016/j.cell.2014.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gagliardi A, Totino V, Cacciotti F, et al (2018) Rebuilding the gut microbiota ecosystem. Int J Environ Res Public Health 15: https://doi.org/10.3390/ijerph15081679

  10. Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65. https://doi.org/10.1038/nature08821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rinninella E, Raoul P, Cintoni M, et al (2019) What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7: https://doi.org/10.3390/MICROORGANISMS7010014

  12. Dinan TG, Cryan JF (2015) The impact of gut microbiota on brain and behaviour: Implications for psychiatry. Curr Opin Clin Nutr Metab Care 18:552–558. https://doi.org/10.1097/MCO.0000000000000221

    Article  PubMed  Google Scholar 

  13. Eckburg PB, Bik EM, Bernstein CN et al (2005) Microbiology: diversity of the human intestinal microbial flora. Science 308:1635–1638. https://doi.org/10.1126/SCIENCE.1110591/SUPPL_FILE/ECKBURG_SOM.PDF

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bäckhed F, Bäckhed F (2011) Programming of host metabolism by the gut microbiota. Ann Nutr Metab 58:44–52. https://doi.org/10.1159/000328042

    Article  CAS  PubMed  Google Scholar 

  15. Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180. https://doi.org/10.1038/NATURE09944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maes M, Kubera M, Leunis JC (2008) The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuro Endocrinol Lett 29(1):117–24

    PubMed  Google Scholar 

  17. O’Mahony SM, Marchesi JR, Scully P et al (2009) Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiat 65:263–267. https://doi.org/10.1016/J.BIOPSYCH.2008.06.026

    Article  PubMed  Google Scholar 

  18. Yun SW, Kim JK, Lee KE et al (2020) A probiotic Lactobacillus gasseri alleviates Escherichia coli-induced cognitive impairment and depression in mice by regulating IL-1β expression and gut microbiota. Nutrients 12:3441. https://doi.org/10.3390/NU12113441

    Article  CAS  PubMed Central  Google Scholar 

  19. Grenham S, Clarke G, Cryan JF, Dinan TG (2011) Brain-gut-microbe communication in health and disease. Frontiers in Physiology 2 DEC: https://doi.org/10.3389/FPHYS.2011.00094

  20. Clarke G, Grenham S, Scully P et al (2012) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatr 2013 18(6):666–673. https://doi.org/10.1038/mp.2012.77

    Article  CAS  Google Scholar 

  21. Sherwin E, Rea K, Dinan TG, Cryan JF (2016) A gut (microbiome) feeling about the brain. Curr Opin Gastroenterol 32:96–102. https://doi.org/10.1097/MOG.0000000000000244

    Article  CAS  PubMed  Google Scholar 

  22. Kelly JR, Borre Y, O’Brien C et al (2016) Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 82:109–118. https://doi.org/10.1016/J.JPSYCHIRES.2016.07.019

    Article  PubMed  Google Scholar 

  23. Chidambaram SB, Essa MM, Rathipriya AG et al (2022) Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: tales of a vicious cycle. Pharmacol Ther 231:107988. https://doi.org/10.1016/J.PHARMTHERA.2021.107988

    Article  CAS  PubMed  Google Scholar 

  24. Ma Q, Xing C, Long W, et al (2019) Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J Neuroinflammation 16:https://doi.org/10.1186/S12974-019-1434-3

  25. Xiao Q, Shu R, Wu C et al (2020) Crocin-I alleviates the depression-like behaviors probably via modulating “microbiota-gut-brain” axis in mice exposed to chronic restraint stress. J Affect Disord 276:476–486. https://doi.org/10.1016/J.JAD.2020.07.041

    Article  CAS  PubMed  Google Scholar 

  26. Kloiber O, Banjac B, Drewes LR (1988) Protection against acute hyperammonemia: the role of quaternary amines. Toxicology 49:83–90. https://doi.org/10.1016/0300-483X(88)90178-3

    Article  CAS  PubMed  Google Scholar 

  27. Miñana MD, Hermenegildo C, Llansola M et al (1996) Carnitine and choline derivatives containing a trimethylamine group prevent ammonia toxicity in mice and glutamate toxicity in primary cultures of neurons. J Pharmacol Exp Ther 279:194–199

    PubMed  Google Scholar 

  28. Ma J, Pazos IM, Gai F (2014) Microscopic insights into the protein-stabilizing effect of trimethylamine N-oxide (TMAO). Proc Natl Acad Sci USA 111:8476–8481. https://doi.org/10.1073/pnas.1403224111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dumas ME, Rothwell AR, Hoyles L et al (2017) Microbial-host co-metabolites are prodromal markers predicting phenotypic heterogeneity in behavior, obesity, and impaired glucose tolerance. Cell Rep 20:136–148. https://doi.org/10.1016/J.CELREP.2017.06.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63. https://doi.org/10.1038/nature09922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vogt NM, Romano KA, Darst BF et al (2018) The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease. Alzheimer’s Res Ther 10:1–8. https://doi.org/10.1186/s13195-018-0451-2

    Article  CAS  Google Scholar 

  32. Gao Q, Wang Y, Wang X et al (2019) Decreased levels of circulating trimethylamine N-oxide alleviate cognitive and pathological deterioration in transgenic mice: a potential therapeutic approach for Alzheimer’s disease. Aging 11:8642–8663. https://doi.org/10.18632/aging.102352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Z, Roberts AB, Buffa JA et al (2015) Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163:1585–1595. https://doi.org/10.1016/J.CELL.2015.11.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Del Rio D, Zimetti F, Caffarra P et al (2017) The gut microbial metabolite trimethylamine-N-oxide is present in human cerebrospinal fluid. Nutrients 9:1053. https://doi.org/10.3390/NU9101053

    Article  PubMed Central  Google Scholar 

  35. Enko D, Zelzer S, Niedrist T et al (2020) Assessment of trimethylamine-n-oxide at the blood-cerebrospinal fluid barrier: results from 290 lumbar punctures. EXCLI J 19:1275–1281. https://doi.org/10.17179/excli2020-2763

    Article  PubMed  PubMed Central  Google Scholar 

  36. Boini KM, Hussain T, Li PL, Koka SS (2017) Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction. Cell Physiol Biochem: Int J Exp Cell Physiol, Biochem, Pharmacol 44:152. https://doi.org/10.1159/000484623

    Article  Google Scholar 

  37. Ma GH, Pan B, Chen Y, et al (2017) Trimethylamine N-oxide in atherogenesis: impairing endothelial self-repair capacity and enhancing monocyte adhesion. Biosci Rep 37: 10.1042/BSR20160244/82854

  38. Li D, Ke Y, Zhan R et al (2018) Trimethylamine-N-oxide promotes brain aging and cognitive impairment in mice. Aging Cell 17:1–13. https://doi.org/10.1111/acel.12768

    Article  CAS  Google Scholar 

  39. Sankowski B, Księżarczyk K, Raćkowska E et al (2020) Higher cerebrospinal fluid to plasma ratio of p-cresol sulfate and indoxyl sulfate in patients with Parkinson’s disease. Clin Chim Acta 501:165–173. https://doi.org/10.1016/j.cca.2019.10.038

    Article  CAS  PubMed  Google Scholar 

  40. Zeisel SH, Warrier M (2017) Trimethylamine N-oxide, the microbiome, and heart and kidney disease. Annu Rev Nutr 37:157–181. https://doi.org/10.1146/annurev-nutr-071816-064732

    Article  CAS  PubMed  Google Scholar 

  41. Bennett BJ, Vallim TQDA, Wang Z et al (2013) Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab 17:49–60. https://doi.org/10.1016/j.cmet.2012.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shih DM, Wang Z, Lee R et al (2015) Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J Lipid Res 56:22–37. https://doi.org/10.1194/JLR.M051680/ATTACHMENT/62754C1E-4EB2-4F8C-9F52-E04A9472A8CF/MMC1.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li T, Chen Y, Gua C, Li X (2017) Elevated circulating trimethylamine N-oxide levels contribute to endothelial dysfunction in aged rats through vascular inflammation and oxidative stress. 8:1–8. https://doi.org/10.3389/fphys.2017.00350

  44. Janeiro MH, Ramírez MJ, Milagro FI, et al (2018) Implication of trimethylamine n-oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients 10: https://doi.org/10.3390/nu10101398

  45. Wang Z, Hazen J, Jia X et al (2021) The nutritional supplement L-alpha glycerylphosphorylcholine promotes atherosclerosis. Int J Mol Sci 22:13477. https://doi.org/10.3390/ijms222413477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zeisel SH, Mar MH, Howe JC, Holden JM (2003) Concentrations of choline-containing compounds and betaine in common foods. J Nutr 133:1302–1307. https://doi.org/10.1093/JN/133.5.1302

    Article  CAS  PubMed  Google Scholar 

  47. Fennema D, Phillips IR, Shephard EA (2016) Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metab Dispos 44:1839–1850. https://doi.org/10.1124/DMD.116.070615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Walker JA, Friesen JD, Peters SJ et al (2019) Development of a new and reliable assay for choline kinase using 31P NMR. Heliyon 5:e02585. https://doi.org/10.1016/J.HELIYON.2019.E02585

    Article  PubMed  PubMed Central  Google Scholar 

  49. Koeth RA, Levison BS, Culley MK et al (2014) γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab 20:799–812. https://doi.org/10.1016/J.CMET.2014.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rebouche CJ, Seim H (1998) Carnitine metabolism and its regulation in microorganisms and mammals. Annu Rev Nutr 18:39–61. https://doi.org/10.1146/ANNUREV.NUTR.18.1.39

    Article  CAS  PubMed  Google Scholar 

  51. Muramatsu H, Matsuo H, Okada N (2013) Characterization of ergothionase from Burkholderia sp. HME13 and its application to enzymatic quantification of ergothioneine. 5389–5400. https://doi.org/10.1007/s00253-012-4442-0

  52. Craciun S, Balskus EP (2012) Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci USA 109:21307–21312. https://doi.org/10.1073/pnas.1215689109

    Article  PubMed  PubMed Central  Google Scholar 

  53. Al-Waiz M, Mikov M, Mitchell SC, Smith RL (1992) The exogenous origin of trimethylamine in the mouse. Metabolism 41:135–136. https://doi.org/10.1016/0026-0495(92)90140-6

    Article  CAS  PubMed  Google Scholar 

  54. Oellgaard J, Winther SA, Hansen TS, et al (2017) Trimethylamine N-oxide (TMAO) as a new potential therapeutic target for insulin resistance and cancer. Curr Pharm Des 23: https://doi.org/10.2174/1381612823666170622095324

  55. McCrindle SL, Kappler U, McEwan AG (2005) Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration. Adv Microb Physiol 50:147–198. https://doi.org/10.1016/S0065-2911(05)50004-3

    Article  CAS  PubMed  Google Scholar 

  56. Tang WHW, Wang Z, Levison BS et al (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368:1575–1584. https://doi.org/10.1056/NEJMOA1109400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schmidt AC, Leroux J (2020) Treatments of trimethylaminuria : where we are and where we might be heading. Drug Discovery Today 00: https://doi.org/10.1016/j.drudis.2020.06.026

  58. Mackay RJ, McEntyre CJ, Henderson C et al (2011) Trimethylaminuria: causes and diagnosis of a socially distressing condition. Clin Biochemist Rev 32:33

    Google Scholar 

  59. Tomlinson JAP, Wheeler DC (2017) The role of trimethylamine N-oxide as a mediator of cardiovascular complications in chronic kidney disease. Kidney Int 92:809–815. https://doi.org/10.1016/J.KINT.2017.03.053

    Article  CAS  PubMed  Google Scholar 

  60. Velasquez MT, Ramezani A, Manal A, Raj DS (2016) Trimethylamine N-oxide: the good, the bad and the unknown. Toxins 8: https://doi.org/10.3390/toxins8110326

  61. Chhibber-Goel J, Gaur A, Singhal V, et al (2016) The complex metabolism of trimethylamine in humans: endogenous and exogenous sources. Expert Rev Mol Med 18: https://doi.org/10.1017/ERM.2016.6

  62. Taesuwan S, Cho CE, Malysheva OV et al (2017) The metabolic fate of isotopically labeled trimethylamine-N-oxide (TMAO) in humans. J Nutr Biochem 45:77–82. https://doi.org/10.1016/J.JNUTBIO.2017.02.010

    Article  CAS  PubMed  Google Scholar 

  63. Zhang AQ, Mitchell SC, Smith RL (1999) Dietary precursors of trimethylamine in man: a pilot study. Food Chem Toxicol 37:515–520. https://doi.org/10.1016/S0278-6915(99)00028-9

    Article  CAS  PubMed  Google Scholar 

  64. Cho CE, Taesuwan S, Malysheva OV et al (2017) Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial. Mol Nutr Food Res 61:1600324. https://doi.org/10.1002/MNFR.201600324

    Article  Google Scholar 

  65. Gessner A, Di Giuseppe R, Koch M et al (2020) Trimethylamine-N-oxide (TMAO) determined by LC-MS/MS: distribution and correlates in the population-based PopGen cohort. Clin Chem Lab Med 58:733–740. https://doi.org/10.1515/CCLM-2019-1146/DOWNLOADASSET/SUPPL/CCLM-2019-1146_SUPPL.DOCX

    Article  CAS  PubMed  Google Scholar 

  66. Al-Waiz M, Mitchell SC, Idle JR, Smith RL (1987) The metabolism of 14c-labelled trimethylamine and its n-oxide in man. Xenobiotica 17:551–558. https://doi.org/10.3109/00498258709043962

    Article  CAS  PubMed  Google Scholar 

  67. Papandreou C, Moré M, Bellamine A (2020) Trimethylamine N-oxide in relation to cardiometabolic health—cause or effect? Nutrients 12:1330. https://doi.org/10.3390/NU12051330

    Article  CAS  PubMed Central  Google Scholar 

  68. Boutagy NE, Neilson AP, Osterberg KL et al (2015) Short-term high-fat diet increases postprandial trimethylamine-N-oxide in humans. Nutr Res (New York, NY) 35:858–864. https://doi.org/10.1016/J.NUTRES.2015.07.002

    Article  CAS  Google Scholar 

  69. Chen C, Wang C, Hu C et al (2017) Normoalbuminuric diabetic kidney disease. Front Med 11(3):310–318. https://doi.org/10.1007/S11684-017-0542-7

    Article  PubMed  Google Scholar 

  70. Mohammadi A, Najar AG, Yaghoobi MM et al (2015) Trimethylamine-N-oxide treatment induces changes in the ATP-binding cassette transporter A1 and scavenger receptor A1 in murine macrophage J774A.1 cells. Inflammation 39(1):393–404. https://doi.org/10.1007/S10753-015-0261-7

    Article  Google Scholar 

  71. Mohammadi A, Vahabzadeh Z, Jamalzadeh S, Khalili T (2018) Trimethylamine-N-oxide, as a risk factor for atherosclerosis, induces stress in J774A.1 murine macrophages. Adv Med Sci 63:57–63. https://doi.org/10.1016/J.ADVMS.2017.06.006

    Article  PubMed  Google Scholar 

  72. Febbraio M, Podrez EA, Smith JD et al (2000) Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Investig 105:1049–1056. https://doi.org/10.1172/JCI9259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Geng J, Yang C, Wang B et al (2018) Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomed Pharmacother 97:941–947. https://doi.org/10.1016/J.BIOPHA.2017.11.016

    Article  CAS  PubMed  Google Scholar 

  74. Koka S, Xia M, Chen Y et al (2016) Trimethylamine-N-oxide, an intestinal microbial metabolite instigates NLRP3 inflammasome activation and endothelial dysfunction. FASEB J 30:1204.10-1204.10. https://doi.org/10.1096/FASEBJ.30.1_SUPPLEMENT.1204.10

    Article  Google Scholar 

  75. Sun X, Jiao X, Ma Y et al (2016) Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochem Biophys Res Commun 481:63–70. https://doi.org/10.1016/J.BBRC.2016.11.017

    Article  CAS  PubMed  Google Scholar 

  76. Yue C, Yang X, Li J et al (2017) Trimethylamine N-oxide prime NLRP3 inflammasome via inhibiting ATG16L1-induced autophagy in colonic epithelial cells. Biochem Biophys Res Commun 490:541–551. https://doi.org/10.1016/J.BBRC.2017.06.075

    Article  CAS  PubMed  Google Scholar 

  77. Rohrmann S, Linseisen J, Allenspach M et al (2016) Plasma concentrations of trimethylamine-N-oxide are directly associated with dairy food consumption and low-grade inflammation in a German adult population. J Nutr 146:283–289. https://doi.org/10.3945/JN.115.220103

    Article  CAS  PubMed  Google Scholar 

  78. Chou RH, Chen CY, Chen IC et al (2019) Trimethylamine N-oxide, circulating endothelial progenitor cells, and endothelial function in patients with stable angina. Sci Rep 9(1):1–10. https://doi.org/10.1038/s41598-019-40638-y

    Article  CAS  Google Scholar 

  79. Hoyles L, Pontifex MG, Rodriguez-Ramiro I, et al (2021) Regulation of blood–brain barrier integrity and cognition by the microbiome-associated methylamines trimethylamine-N-oxide and trimethylamine. bioRxiv 2021.01.28.428430

  80. Cristante E, Mcarthur S, Mauro C, et al (2013) Identi fi cation of an essential endogenous regulator of blood – brain barrier integrity, and its pathological and therapeutic implications. 110: https://doi.org/10.1073/pnas.1209362110

  81. Vernetti L, Gough A, Baetz N et al (2017) Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle. Sci Rep 7:1–14. https://doi.org/10.1038/srep42296

    Article  CAS  Google Scholar 

  82. Brunt VE, LaRocca TJ, Bazzoni AE et al (2021) The gut microbiome–derived metabolite trimethylamine N-oxide modulates neuroinflammation and cognitive function with aging. GeroScience 43:377–394. https://doi.org/10.1007/s11357-020-00257-2

    Article  CAS  PubMed  Google Scholar 

  83. Tha KK, Okuma Y, Miyazaki H et al (2000) Changes in expressions of proinflammatory cytokines IL-1β, TNF-α and IL-6 in the brain of senescence accelerated mouse (SAM) P8. Brain Res 885:25–31. https://doi.org/10.1016/S0006-8993(00)02883-3

    Article  CAS  PubMed  Google Scholar 

  84. Godbout JP, Johnson RW (2004) Interleukin-6 in the aging brain. J Neuroimmunol 147:141–144. https://doi.org/10.1016/j.jneuroim.2003.10.031

    Article  CAS  PubMed  Google Scholar 

  85. Zhang Y, Zhang C, Li H, Hou J (2019) The presence of high levels of circulating trimethylamine N-oxide exacerbates central and peripheral inflammation and inflammatory hyperalgesia in rats following carrageenan injection. Inflammation 42:2257–2266. https://doi.org/10.1007/s10753-019-01090-2

    Article  CAS  PubMed  Google Scholar 

  86. Ke Y, Li D, Zhao M et al (2018) Gut flora-dependent metabolite Trimethylamine-N-oxide accelerates endothelial cell senescence and vascular aging through oxidative stress. Free Radical Biol Med 116:88–100. https://doi.org/10.1016/j.freeradbiomed.2018.01.007

    Article  CAS  Google Scholar 

  87. Csipo T, Lipecz A, Ashpole NM et al (2020) Astrocyte senescence contributes to cognitive decline. GeroScience 42:51–55. https://doi.org/10.1007/s11357-019-00140-9

    Article  PubMed  Google Scholar 

  88. Jack CR, Albert MS, Knopman DS et al (2011) Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & dement: J Alzheimer’s Assoc 7:257–262. https://doi.org/10.1016/J.JALZ.2011.03.004

    Article  Google Scholar 

  89. Thompson SM, Kallarackal AJ, Kvarta MD et al (2015) An excitatory synapse hypothesis of depression. Trends Neurosci 38:279–294. https://doi.org/10.1016/J.TINS.2015.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chidambaram SB, Rathipriya AG, Bolla SR et al (2019) Dendritic spines: revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 92:161–193. https://doi.org/10.1016/J.PNPBP.2019.01.005

    Article  CAS  PubMed  Google Scholar 

  91. Mucke L (2009) Neuroscience: Alzheimer’s disease. Nature 461:895–897. https://doi.org/10.1038/461895a

    Article  CAS  PubMed  Google Scholar 

  92. Tseng HC, Graves DJ (1998) Natural methylamine osmolytes, trimethylamine N-oxide and betaine, increase tau-induced polymerization of microtubules. Biochem Biophys Res Commun 250:726–730. https://doi.org/10.1006/bbrc.1998.9382

    Article  CAS  PubMed  Google Scholar 

  93. Scaramozzino F, Peterson DW, Farmer P, Gerig JT, Graves DJ, Lew J (2006) TMAO promotes fibrillization and microtubule assembly activity in the C-terminal repeat region of tau. Biochemistry 45(11):3684–3691. https://doi.org/10.1021/bi052167g

  94. MahmoudianDehkordi S, Arnold M, Nho K et al (2019) Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease-an emerging role for gut microbiome. Alzheimer’s Dement: J Alzheimer’s Assoc 15:76–92. https://doi.org/10.1016/J.JALZ.2018.07.217

    Article  Google Scholar 

  95. Marizzoni M, Cattaneo A, Mirabelli P et al (2020) Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer’s disease. J Alzheimer’s Dis: JAD 78:683–697. https://doi.org/10.3233/JAD-200306

    Article  CAS  PubMed  Google Scholar 

  96. Xu R, Wang QQ (2016) Towards understanding brain-gut-microbiome connections in Alzheimer’s disease. BMC Syst Biol 10: https://doi.org/10.1186/s12918-016-0307-y

  97. Harach T, Marungruang N, Duthilleul N, et al (2017) Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 7: https://doi.org/10.1038/srep41802

  98. Govindarajulu M, Pinky PD, Steinke I et al (2020) Gut metabolite TMAO induces synaptic plasticity deficits by promoting endoplasmic reticulum stress. Front Mol Neurosci 13:1–13. https://doi.org/10.3389/fnmol.2020.00138

    Article  CAS  Google Scholar 

  99. Carrasquillo MM, Belbin O, Hunter TA et al (2010) Replication of CLU, CR1, and PICALM associations with Alzheimer disease. Arch Neurol 67:961–964. https://doi.org/10.1001/archneurol.2010.147

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yu J, Ma X, Wang Y et al (2013) Neurobiology of aging genetic variation in clusterin gene and Alzheimer’s disease risk in Han Chinese. Neurobiol Aging 34:1921.e17-1921.e23. https://doi.org/10.1016/j.neurobiolaging.2013.01.010

    Article  CAS  Google Scholar 

  101. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909. https://doi.org/10.1016/S0896-6273(03)00568-3

    Article  CAS  PubMed  Google Scholar 

  102. Schneider SA, Alcalay RN (2017) Neuropathology of genetic synucleinopathies with parkinsonism: review of the literature. Mov Disord: Off J Mov Disord Soc 32:1504–1523. https://doi.org/10.1002/MDS.27193

    Article  Google Scholar 

  103. Sekar S, Mani S, Rajamani B et al (2018) Telmisartan ameliorates astroglial and dopaminergic functions in a mouse model of chronic parkinsonism. Neurotox Res 34:597–612. https://doi.org/10.1007/s12640-018-9921-3

    Article  CAS  PubMed  Google Scholar 

  104. Mani S, Sekar S, Barathidasan R et al (2018) Naringenin decreases α-synuclein expression and neuroinflammation in MPTP-induced Parkinson’s disease model in mice. Neurotox Res 33:656–670. https://doi.org/10.1007/s12640-018-9869-3

    Article  CAS  PubMed  Google Scholar 

  105. Ray B, Ramesh G, Verma SR et al (2021) Effects of telmisartan, an AT1 receptor antagonist, on mitochondria-specific genes expression in a mouse MPTP model of Parkinsonism. Front Biosci - Landmark 26:262–271. https://doi.org/10.52586/4942

    Article  CAS  Google Scholar 

  106. Sveinbjornsdottir S (2016) The clinical symptoms of Parkinson’s disease. J Neurochem 139:318–324. https://doi.org/10.1111/JNC.13691

    Article  CAS  PubMed  Google Scholar 

  107. Pellegrini C, Colucci R, Antonioli L et al (2016) Intestinal dysfunction in Parkinson’s disease: lessons learned from translational studies and experimental models. Neurogastroenterol Motil: Off J Eur Gastrointest Motil Soc 28:1781–1791. https://doi.org/10.1111/NMO.12933

    Article  CAS  Google Scholar 

  108. Felice VD, Quigley EM, Sullivan AM et al (2016) Microbiota-gut-brain signalling in Parkinson’s disease: implications for non-motor symptoms. Parkinsonism Relat Disord 27:1–8. https://doi.org/10.1016/J.PARKRELDIS.2016.03.012

    Article  PubMed  Google Scholar 

  109. Uversky VN, Li J, Fink AL (2001) Trimethylamine-N-oxide-induced folding of α-synuclein. FEBS Lett 509:31–35. https://doi.org/10.1016/S0014-5793(01)03121-0

    Article  CAS  PubMed  Google Scholar 

  110. Hsu LJ, Sagara Y, Arroyo A et al (2000) Α-Synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157:401–410. https://doi.org/10.1016/S0002-9440(10)64553-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Scott DA, Tabarean I, Tang Y et al (2010) A pathologic cascade leading to synaptic dysfunction in α-synuclein-induced neurodegeneration. J Neurosci 30:8083–8095. https://doi.org/10.1523/JNEUROSCI.1091-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen ML, Zhu XH, Ran L, et al (2017) Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway. J Am Heart Assoc 6: https://doi.org/10.1161/JAHA.117.006347

  113. Sampson TR, Debelius JW, Thron T et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167:1469-1480.e12. https://doi.org/10.1016/j.cell.2016.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chung SJ, Rim JH, Ji D et al (2021) Gut microbiota-derived metabolite trimethylamine N-oxide as a biomarker in early Parkinson’s disease. Nutrition 83:111090. https://doi.org/10.1016/j.nut.2020.111090

    Article  CAS  PubMed  Google Scholar 

  115. Chen SJ, Kuo CH, Kuo HC et al (2020) The gut metabolite trimethylamine N-oxide is associated with Parkinson’s disease severity and progression. Mov Disord 35:2115–2116. https://doi.org/10.1002/mds.28246

    Article  CAS  PubMed  Google Scholar 

  116. Chu CQ, Yu LL, Chen W et al (2021) Dietary patterns affect Parkinson’s disease via the microbiota-gut-brain axis. Trends Food Sci Technol 116:90–101. https://doi.org/10.1016/J.TIFS.2021.07.004

    Article  CAS  Google Scholar 

  117. Brown RH, Al-Chalabi A (2017) Amyotrophic lateral sclerosis. 377:162–172. https://doi.org/10.1056/NEJMRA1603471

  118. Gordon PH (2011) Amyotrophic lateral sclerosis. CNS Drugs 25:1–15. https://doi.org/10.2165/11586000-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  119. Jeon GS, Shim YM, Lee DY et al (2019) Pathological modification of TDP-43 in amyotrophic lateral sclerosis with SOD1 mutations. Mol Neurobiol 56:2007–2021. https://doi.org/10.1007/S12035-018-1218-2/FIGURES/7

    Article  CAS  PubMed  Google Scholar 

  120. Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science (New York, NY) 319:1668–1672. https://doi.org/10.1126/SCIENCE.1154584

    Article  CAS  Google Scholar 

  121. Vance C, Rogelj B, Hortobágyi T et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science (New York, NY) 323:1208–1211. https://doi.org/10.1126/SCIENCE.1165942

    Article  CAS  Google Scholar 

  122. Longstreth WT, Meschke JS, Davidson SK et al (2005) Hypothesis: a motor neuron toxin produced by a clostridial species residing in gut causes ALS. Med Hypotheses 64:1153–1156. https://doi.org/10.1016/J.MEHY.2004.07.041

    Article  CAS  PubMed  Google Scholar 

  123. Kaneko K, Hachiya NS (2006) Hypothesis: gut as source of motor neuron toxin in the development of ALS. Med Hypotheses 66:438–439. https://doi.org/10.1016/J.MEHY.2005.09.012

    Article  CAS  PubMed  Google Scholar 

  124. Wu S, Yi J, Zhang YG, et al (2015) Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol Rep 3: https://doi.org/10.14814/PHY2.12356

  125. Blacher E, Bashiardes S, Shapiro H et al (2019) Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 572:474–480. https://doi.org/10.1038/S41586-019-1443-5

    Article  CAS  PubMed  Google Scholar 

  126. Thrasher JD, Broughton A, Madison R (1990) Immune activation and autoantibodies in humans with long-term inhalation exposure to formaldehyde. Arch Environ Health: Int J 45:217–223. https://doi.org/10.1080/00039896.1990.9940805

    Article  CAS  Google Scholar 

  127. Kira Y, Nishikawa M, Ochi A et al (2006) L-Carnitine suppresses the onset of neuromuscular degeneration and increases the life span of mice with familial amyotrophic lateral sclerosis. Brain Res 1070:206–214. https://doi.org/10.1016/j.brainres.2005.11.052

    Article  CAS  PubMed  Google Scholar 

  128. Fang X, Wang X, Yang S et al (2016) Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing. Front Microbiol 7:1–7. https://doi.org/10.3389/fmicb.2016.01479

    Article  CAS  Google Scholar 

  129. Rowin J, Xia Y, Jung B, Sun J (2017) Gut inflammation and dysbiosis in human motor neuron disease. Physiol Rep 5:1–6. https://doi.org/10.14814/phy2.13443

    Article  CAS  Google Scholar 

  130. Lee A, Arachchige BJ, Reed S et al (2020) Plasma from some patients with amyotrophic lateral sclerosis exhibits elevated formaldehyde levels. J Neurol Sci 409:116589. https://doi.org/10.1016/j.jns.2019.116589

    Article  CAS  PubMed  Google Scholar 

  131. Chen L, Chen Y, Zhao M et al (2020) Changes in the concentrations of trimethylamine N-oxide (TMAO) and its precursors in patients with amyotrophic lateral sclerosis. Sci Rep 10:1–8. https://doi.org/10.1038/s41598-020-72184-3

    Article  Google Scholar 

  132. Getter T, Zaks I, Barhum Y et al (2015) A chemical chaperone-based drug candidate is effective in a mouse model of amyotrophic lateral sclerosis (ALS). ChemMedChem 10:850–861. https://doi.org/10.1002/cmdc.201500045

    Article  CAS  PubMed  Google Scholar 

  133. Beghi E, Pupillo E, Bonito V et al (2013) Randomized double-blind placebo-controlled trial of acetyl-L-carnitine for ALS. Amyotroph Lateral Scler Frontotemporal Degener 14:397–405. https://doi.org/10.3109/21678421.2013.764568

    Article  CAS  PubMed  Google Scholar 

  134. Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98. https://doi.org/10.1016/S1474-4422(10)70245-3

    Article  CAS  PubMed  Google Scholar 

  135. Saravana Babu C, Mahadevan M, Srinivasa Rao B et al (2018) Management of Huntington’s disease: Perspectives from the Siddha system of medicine. Food Huntington’s Dis 159–180

  136. MacDonald ME, Ambrose CM, Duyao MP et al (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983. https://doi.org/10.1016/0092-8674(93)90585-E

    Article  Google Scholar 

  137. Rubinsztein DC, Leggo J, Coles R, et al (1996) Phenotypic characterization of individuals with 30-40 cag repeats in the huntington disease ( HD ) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 Repeats 16–22

  138. Wasser CI, Mercieca E-C, Kong G et al (2020) Gut dysbiosis in Huntington’s disease: associations among gut microbiota, cognitive performance and clinical outcomes. Brain Commun 2:1–13. https://doi.org/10.1093/braincomms/fcaa110

    Article  CAS  Google Scholar 

  139. Andrich JE, Wobben M, Klotz P et al (2009) Upper gastrointestinal findings in Huntington’s disease: patients suffer but do not complain. J Neural Transm 116(12):1607–1611. https://doi.org/10.1007/S00702-009-0310-1

    Article  PubMed  Google Scholar 

  140. Van der Burg JMM, Winqvist A, Aziz NA et al (2011) Gastrointestinal dysfunction contributes to weight loss in Huntington’s disease mice. Neurobiol Dis 44:1–8. https://doi.org/10.1016/J.NBD.2011.05.006

    Article  PubMed  Google Scholar 

  141. Beal MF, Matson WR, Swartz KJ et al (1990) Kynurenine pathway measurements in Huntington’s disease striatum: evidence for reduced formation of kynurenic acid. J Neurochem 55:1327–1339. https://doi.org/10.1111/J.1471-4159.1990.TB03143.X

    Article  CAS  PubMed  Google Scholar 

  142. Verwaest KA, Vu TN, Laukens K et al (2011) 1H NMR based metabolomics of CSF and blood serum: a metabolic profile for a transgenic rat model of Huntington disease. Biochimica et Biophysica Acta (BBA) - Mol Basis Dis 1812:1371–1379. https://doi.org/10.1016/J.BBADIS.2011.08.001

    Article  CAS  Google Scholar 

  143. Kong G, Cao KAL, Judd LM, et al (2020) Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington’s disease. Neurobiology of Disease 135:#pagerange#. https://doi.org/10.1016/j.nbd.2018.09.001

  144. Borwankar T, Röthlein C, Zhang G et al (2011) Natural osmolytes remodel the aggregation pathway of mutant huntingtin exon 1. Biochemistry 50:2048–2060. https://doi.org/10.1021/bi1018368

    Article  CAS  PubMed  Google Scholar 

  145. Frischer JM, Bramow S, Dal-bianco A, et al (2009) neurodegeneration in multiple sclerosis brains. https://doi.org/10.1093/brain/awp070

  146. Correale J, Marrodan M, Ysrraelit MC (2019) Mechanisms of neurodegeneration and axonal dysfunction in progressive multiple sclerosis. Biomedicines 7:14. https://doi.org/10.3390/BIOMEDICINES7010014

    Article  CAS  PubMed Central  Google Scholar 

  147. Vasileiadis GK, Dardiotis E, Mavropoulos A, et al (2018) Regulatory B and T lymphocytes in multiple sclerosis: friends or foes? Auto- immunity highlights 9: https://doi.org/10.1007/S13317-018-0109-X

  148. Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164:1079–1106. https://doi.org/10.1111/J.1476-5381.2011.01302.X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. https://doi.org/10.1038/nri3871

  150. Scher JU, Sczesnak A, Longman RS, et al (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. 1–20. https://doi.org/10.7554/eLife.01202

  151. Kostic AD, Xavier RJ, Gevers D (2014) The microbiome in inflammatory bowel disease : current status. Gastroenterology 146:1489–1499. https://doi.org/10.1053/j.gastro.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  152. Berer K, Mues M, Koutrolos M et al (2011) cooperate to trigger autoimmune demyelination. Nature 479:538–541. https://doi.org/10.1038/nature10554

    Article  CAS  PubMed  Google Scholar 

  153. Rumah KR, Linden J, Fischetti VA, Vartanian T (2013) Isolation of Clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease. 8: https://doi.org/10.1371/journal.pone.0076359

  154. Yadav SK, Mindur JE, Ito K, Dhib-jalbut S (2015) Advances in the immunopathogenesis of multiple sclerosis. 1–14. https://doi.org/10.1097/WCO.0000000000000205

  155. Jangi S, Gandhi R, Cox LM, et al (2016) in multiple sclerosis. https://doi.org/10.1038/ncomms12015

  156. Zhao J, Bi W, Xiao S et al (2019) Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-42286-8

    Article  CAS  Google Scholar 

  157. Miyake S, Kim S, Suda W, Oshima K (2015) Dysbiosis in the gut microbiota of patients with multiple sclerosis , with a striking depletion of species belonging to Clostridia XIVa and IV clusters. 1–16. https://doi.org/10.1371/journal.pone.0137429

  158. Joossens M, Huys G, Cnockaert M et al (2011) Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 60:631–637. https://doi.org/10.1136/gut.2010.223263

    Article  PubMed  Google Scholar 

  159. Shahi SK, Freedman SN, Mangalam AK (2017) Gut microbiome in multiple sclerosis : the players involved and the roles they play. 0976: https://doi.org/10.1080/19490976.2017.1349041

  160. Saravana C, Ramanathan M (2011) International Journal of Developmental Neuroscience Post-ischemic administration of nimodipine following focal cerebral ischemic-reperfusion injury in rats alleviated excitotoxicity, neurobehavioural alterations and partially the bioenergetics. Int J Dev Neurosci 29:93–105. https://doi.org/10.1016/j.ijdevneu.2010.08.001

    Article  CAS  Google Scholar 

  161. Babu CS, Ramanathan M (2009) Pharmacology, Biochemistry and Behavior Pre-ischemic treatment with memantine reversed the neurochemical and behavioural parameters but not energy metabolites in middle cerebral artery occluded rats. Pharmacol Biochem Behav 92:424–432. https://doi.org/10.1016/j.pbb.2009.01.010

    Article  CAS  PubMed  Google Scholar 

  162. Kim YD, Jung H (2016) Traditional Risk Factors for Stroke in East Asia 18:273–285. https://doi.org/10.5853/jos.2016.00885

  163. Zhu W, Romano KA, Li L et al (2021) Gut microbes impact stroke severity via the trimethylamine N-oxide pathway. Cell Host Microbe 29:1199-1208.e5. https://doi.org/10.1016/j.chom.2021.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Chidambaram SB, Rathipriya AG, Mahalakshmi AM et al (2022) The influence of gut dysbiosis in the pathogenesis and management of ischemic stroke. Cells 11:1239. https://doi.org/10.3390/CELLS11071239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhu W, Gregory JC, Org E et al (2016) Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165:111–124. https://doi.org/10.1016/j.cell.2016.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Nie J, Xie L, Zhao BX et al (2018) Serum trimethylamine N-oxide concentration is positively associated with first stroke in hypertensive patients. Stroke 49:2021–2028. https://doi.org/10.1161/STROKEAHA.118.021997

    Article  CAS  PubMed  Google Scholar 

  167. Wu C, Xue F, Lian Y et al (2020) Relationship between elevated plasma trimethylamine N-oxide levels and increased stroke injury. Neurology 94:e667–e677. https://doi.org/10.1212/WNL.0000000000008862

    Article  CAS  PubMed  Google Scholar 

  168. Li XS, Obeid S, Klingenberg R et al (2017) Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J 38:814–824. https://doi.org/10.1093/EURHEARTJ/EHW582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wang Z, Tang WHW, Buffa JA et al (2014) Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 35:904–910. https://doi.org/10.1093/EURHEARTJ/EHU002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Rexidamu M, Li H, Jin H, Huang J (2019) Serum levels of trimethylamine-N-oxide in patients with ischemic stroke. Biosci Rep 39:1–10. https://doi.org/10.1042/BSR20190515

    Article  Google Scholar 

  171. Haghikia A, Li XS, Liman TG et al (2018) Gut microbiota-dependent trimethylamine N-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler Thromb Vasc Biol 38:2225–2235. https://doi.org/10.1161/ATVBAHA.118.311023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wu C, Li C, Zhao W et al (2018) Elevated trimethylamine N-oxide related to ischemic brain lesions after carotid artery stenting. Neurology 90:e1283–e1290. https://doi.org/10.1212/WNL.0000000000005298

    Article  CAS  PubMed  Google Scholar 

  173. Farhangi MA, Vajdi M, Asghari-Jafarabadi M (2020) Gut microbiota-associated metabolite trimethylamine N-oxide and the risk of stroke: a systematic review and dose-response meta-Analysis. Nutr J 19: https://doi.org/10.1186/s12937-020-00592-2

  174. Smith RP, Easson C, Lyle SM et al (2019) Gut microbiome diversity is associated with sleep physiology in humans. PLoS One 14:e0222394. https://doi.org/10.1371/JOURNAL.PONE.0222394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Neroni B, Evangelisti M, Radocchia G et al (2021) Relationship between sleep disorders and gut dysbiosis: what affects what? Sleep Med 87:1–7. https://doi.org/10.1016/J.SLEEP.2021.08.003

    Article  PubMed  Google Scholar 

  176. Coutinho-Wolino KS, Ludmila LFM, de Oliveira LV et al (2021) Can diet modulate trimethylamine N-oxide (TMAO) production? What do we know so far? Eur J Nutr 60:3567–3584. https://doi.org/10.1007/S00394-021-02491-6

    Article  CAS  PubMed  Google Scholar 

  177. Giskeødegård GF, Davies SK, Revell VL, et al (2015) Diurnal rhythms in the human urine metabolome during sleep and total sleep deprivation. Sci Rep 5: https://doi.org/10.1038/SREP14843

  178. Fei N, Choo-Kang C, Reutrakul S et al (2021) Gut microbiota alterations in response to sleep length among African-origin adults. PLoS One 16:1–20. https://doi.org/10.1371/journal.pone.0255323

    Article  CAS  Google Scholar 

  179. Mashaqi S, Gozal D (2019) Obstructive sleep apnea and systemic hypertension: Gut dysbiosis as the mediator? J Clin Sleep Med 15:1517–1527. https://doi.org/10.5664/jcsm.7990

    Article  PubMed  PubMed Central  Google Scholar 

  180. Badran M, Mashaqi S, Gozal D (2020) The gut microbiome as a target for adjuvant therapy in obstructive sleep apnea. Expert Opin Ther Targets 24:1263–1282. https://doi.org/10.1080/14728222.2020.1841749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Liu J, Li T, Wu H, et al (2019) Lactobacillus rhamnosus GG strain mitigated the development of obstructive sleep apnea-induced hypertension in a high salt diet via regulating TMAO level and CD4 + T cell induced-type I inflammation. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 112: https://doi.org/10.1016/J.BIOPHA.2019.01.041

  182. Pak VM, Dai F, Keenan BT et al (2018) Lower plasma choline levels are associated with sleepiness symptoms. Sleep Med 44:89–96. https://doi.org/10.1016/j.sleep.2017.10.004

    Article  PubMed  Google Scholar 

  183. Moreno-Indias I, Torres M, Montserrat JM et al (2015) Intermittent hypoxia alters gut microbiota diversity in a mouse model of sleep apnoea. Eur Respir J 45:1055–1065. https://doi.org/10.1183/09031936.00184314

    Article  PubMed  Google Scholar 

  184. Durgan DJ, Ganesh BP, Cope JL et al (2016) Role of the gut microbiome in obstructive sleep apnea-induced hypertension. Hypertension (Dallas, Tex : 1979) 67:469–474. https://doi.org/10.1161/HYPERTENSIONAHA.115.06672

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank their respective institutions for providing the facilities during the manuscript preparation. Figures are drawn using Adobe Photoshop and a few components used in the figures have been adapted and modified from Biorender.com (free trial version).

Funding

This work is supported by the “Public Health and Nutrition Division,” Department of Biotechnology, Ministry of Science and Technology, Govt of India. (BT/PR38038/PFN/20/1528/2020).

Author information

Authors and Affiliations

Authors

Contributions

S.S.P., S.S., N.K., H.A.T., C.V., M.K., P.V.K., K.A.C., S.P., A.M.M., J.Y., S.R.P., M.K.S., and S.B.C. made a significant contribution to the work reported, whether that is in the conception, study design, execution, or the acquisition, analysis, or interpretation of data, or all these areas; took part in drafting, revising, or critically reviewing the article; and gave final approval of the version to be published. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Meena Kishore Sakharkar or Saravana Babu Chidambaram.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All authors have consented to publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveenraj, S.S., Sonali, S., Anand, N. et al. The Role of a Gut Microbial-Derived Metabolite, Trimethylamine N-Oxide (TMAO), in Neurological Disorders. Mol Neurobiol 59, 6684–6700 (2022). https://doi.org/10.1007/s12035-022-02990-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02990-5

Keywords

Navigation