Skip to main content

Advertisement

Log in

LncRNA ZNF883-Mediated NLRP3 Inflammasome Activation and Epilepsy Development Involve USP47 Upregulation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The goal of this study was to characterize the mechanisms of long noncoding RNA (lncRNA) ZNF883 regulating NOD-like receptor 3 (NLRP3) inflammasome activation in epilepsy (EP). Rat and cellular EP models were established using pilocarpine and magnesium-free extracellular fluid, respectively, to detect the differential expression of ZNF883, microRNA (miR)-138-5p, ubiquitin-specific peptidase 47 (USP47), and NLRP3. The pathology of the hippocampal neurons was examined by whole-cell patch clamping. The expression of ZNF883, miR-138-5p, and USP47 was modified in epileptic neurons, and the EP rats were injected with sh-ZNF883. Then, alterations in ZNF883, miR-138-5p, and USP47 levels were measured. The histopathology of the hippocampus was detected, along with the detection of IL-6, IL-1β, TNF-α, and NLRP3. Neuronal apoptosis in the rat and cellular EP models was determined. The relationship among ZNF883, miR-138-5p, and USP47 as well as the regulation of NLRP3 ubiquitination by USP47 was determined. ZNF883, USP47, and NLRP3 were increasingly expressed and miR-138-5p was downregulated in epileptic neurons and rats, concurrent with aggravated inflammation and apoptosis. ZNF883 overexpression in epileptic neurons elevated USP47 expression. ZNF883 targeted miR-138-5p and miR-138-5p negatively regulated USP47. In epileptic neurons, inhibiting miR-138-5p or overexpressing USP47 partially reversed the ZNF883 silencing-induced inhibition on NLRP3 inflammasome activation, neuronal apoptosis, and epileptiform activity. ZNF883 silencing in EP rats decreased USP47 and NLRP3, increased miR-138-5p, and inhibited inflammation and apoptosis. USP47 reversed the ubiquitination of NLRP3. ZNF883 inhibits NLRP3 ubiquitination and promotes EP through upregulating USP47 by sponging miR-138-5p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Vezzani A, Balosso S, Ravizza T (2019) Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 15(8):459–472. https://doi.org/10.1038/s41582-019-0217-x

    Article  CAS  PubMed  Google Scholar 

  2. Rana A, Musto AE (2018) The role of inflammation in the development of epilepsy. J Neuroinflammation 15(1):144. https://doi.org/10.1186/s12974-018-1192-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7(1):31–40. https://doi.org/10.1038/nrneurol.2010.178

    Article  CAS  PubMed  Google Scholar 

  4. Mazarati AM, Lewis ML, Pittman QJ (2017) Neurobehavioral comorbidities of epilepsy: role of inflammation. Epilepsia 58 Suppl 3:48–56. https://doi.org/10.1111/epi.13786

    Article  PubMed  Google Scholar 

  5. Shimada T, Takemiya T, Sugiura H, Yamagata K (2014) Role of inflammatory mediators in the pathogenesis of epilepsy. Mediators Inflamm 2014:901902. https://doi.org/10.1155/2014/901902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yue J, Wei YJ, Yang XL, Liu SY, Yang H, Zhang CQ (2020) NLRP3 inflammasome and endoplasmic reticulum stress in the epileptogenic zone in temporal lobe epilepsy: molecular insights into their interdependence. Neuropathol Appl Neurobiol 46(7):770–785. https://doi.org/10.1111/nan.12621

    Article  CAS  PubMed  Google Scholar 

  7. Liu R, Wu S, Guo C, Hu Z, Peng J, Guo K, Zhang X, Li J (2020) Ibuprofen exerts antiepileptic and neuroprotective effects in the rat model of pentylenetetrazol-induced epilepsy via the COX-2/NLRP3/IL-18 pathway. Neurochem Res 45(10):2516–2526. https://doi.org/10.1007/s11064-020-03109-9

    Article  CAS  PubMed  Google Scholar 

  8. Rong S, Wan D, Fan Y, Liu S, Sun K, Huo J, Zhang P, Li X, Xie X, Wang F, Sun T (2019) Amentoflavone affects epileptogenesis and exerts neuroprotective effects by inhibiting NLRP3 inflammasome. Front Pharmacol 10:856. https://doi.org/10.3389/fphar.2019.00856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shen K, Jiang W, Zhang C, Cai L, Wang Q, Yu H, Tang Z, Gu Z, Chen B (2020) Molecular mechanism of a Specific NLRP3 inhibitor to alleviate seizure severity induced by pentylenetetrazole. Curr Mol Pharmacol. https://doi.org/10.2174/1874467213666200810140749

    Article  PubMed  Google Scholar 

  10. Shen K, Mao Q, Yin X, Zhang C, Jin Y, Deng A, Gu Z, Chen B (2018) NLRP3 inflammasome activation leads to epileptic neuronal apoptosis. Curr Neurovasc Res 15(4):276–281. https://doi.org/10.2174/1567202616666181122165540

    Article  CAS  PubMed  Google Scholar 

  11. Ashton-Beaucage D, Lemieux C, Udell CM, Sahmi M, Rochette S, Therrien M (2016) The deubiquitinase USP47 stabilizes MAPK by counteracting the function of the N-end rule ligase POE/UBR4 in Drosophila. PLoS Biol 14(8):e1002539. https://doi.org/10.1371/journal.pbio.1002539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Palazon-Riquelme P, Worboys JD, Green J, Valera A, Martin-Sanchez F, Pellegrini C, Brough D, Lopez-Castejon G (2018) USP7 and USP47 deubiquitinases regulate NLRP3 inflammasome activation. EMBO Rep 19:10. https://doi.org/10.15252/embr.201744766

    Article  CAS  Google Scholar 

  13. Yang SW, Oh KH, Park E, Chang HM, Park JM, Seong MW, Ka SH, Song WK, Park DE, Baas PW, Jeon YJ, Chung CH (2013) USP47 and C terminus of Hsp70-interacting protein (CHIP) antagonistically regulate katanin-p60-mediated axonal growth. J Neurosci 33(31):12728–12738. https://doi.org/10.1523/JNEUROSCI.0698-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cai X, Long L, Zeng C, Ni G, Meng Y, Guo Q, Chen Z, Li Z (2020) LncRNA ILF3-AS1 mediated the occurrence of epilepsy through suppressing hippocampal miR-212 expression. Aging (Albany NY) 12(9):8413–8422. https://doi.org/10.18632/aging.103148

    Article  CAS  Google Scholar 

  15. Feng H, Gui Q, Zhu W, Wu G, Dong X, Shen M, Luo H, Xue S, Cheng Q (2020) Long-noncoding RNA Peg13 alleviates epilepsy progression in mice via the miR-490-3p/Psmd11 axis to inactivate the Wnt/beta-catenin pathway. Am J Transl Res 12(12):7968–7981

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu Q, Yi X (2018) Down-regulation of long noncoding RNA MALAT1 protects hippocampal neurons against excessive autophagy and apoptosis via the PI3K/Akt signaling pathway in rats with epilepsy. J Mol Neurosci 65(2):234–245. https://doi.org/10.1007/s12031-018-1093-3

    Article  CAS  PubMed  Google Scholar 

  17. Yan S, Yue Y, Wang J, Li W, Sun M, Gu C, Zeng L (2019) LINC00668 promotes tumorigenesis and progression through sponging miR-188–5p and regulating USP47 in colorectal cancer. Eur J Pharmacol 858:172464. https://doi.org/10.1016/j.ejphar.2019.172464

    Article  CAS  PubMed  Google Scholar 

  18. Yuan F, Lou Z, Zhou Z, Yan X (2021) Long noncoding RNA KCNQ1OT1 promotes nasopharyngeal carcinoma cell cisplatin resistance via the miR454/USP47 axis. Int J Mol Med 47(4). doi:https://doi.org/10.3892/ijmm.2021.4887

  19. Zhang S, Ding L, Gao F, Fan H (2020) Long non-coding RNA DSCAM-AS1 upregulates USP47 expression through sponging miR-101-3p to accelerate osteosarcoma progression. Biochem Cell Biol 98(5):600–611. https://doi.org/10.1139/bcb-2020-0031

    Article  CAS  PubMed  Google Scholar 

  20. Gong L, Yang P, Hu L, Zhang C (2020) MiR-181b suppresses the progression of epilepsy by regulation of lncRNA ZNF883. Am J Transl Res 12(6):2769–2780

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Burja B, Kuret T, Janko T, Topalovic D, Zivkovic L, Mrak-Poljsak K, Spremo-Potparevic B, Zigon P, Distler O, Cucnik S, Sodin-Semrl S, Lakota K, Frank-Bertoncelj M (2019) Olive leaf extract attenuates inflammatory activation and DNA damage in human arterial endothelial cells. Front Cardiovasc Med 6:56. https://doi.org/10.3389/fcvm.2019.00056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Srivastava A, Dixit AB, Banerjee J, Tripathi M, Sarat Chandra P (2016) Role of inflammation and its miRNA based regulation in epilepsy: implications for therapy. Clin Chim Acta 452:1–9. https://doi.org/10.1016/j.cca.2015.10.023

    Article  CAS  PubMed  Google Scholar 

  23. Meng XF, Tan L, Tan MS, Jiang T, Tan CC, Li MM, Wang HF, Yu JT (2014) Inhibition of the NLRP3 inflammasome provides neuroprotection in rats following amygdala kindling-induced status epilepticus. J Neuroinflammation 11:212. https://doi.org/10.1186/s12974-014-0212-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wan Y, Yang ZQ (2020) LncRNA NEAT1 affects inflammatory response by targeting miR-129-5p and regulating Notch signaling pathway in epilepsy. Cell Cycle 19(4):419–431. https://doi.org/10.1080/15384101.2020.1711578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang M, Yang H, Chen Z, Hu X, Wu T, Liu W (2021) Long noncoding RNA X-inactive-specific transcript promotes the secretion of inflammatory cytokines in LPS stimulated astrocyte cell via sponging miR-29c-3p and regulating nuclear factor of activated T cell 5 expression. Front Endocrinol (Lausanne) 12:573143. https://doi.org/10.3389/fendo.2021.573143

    Article  Google Scholar 

  26. Hu C, Wang S, Liu L (2021) Long non-coding RNA small nucleolar RNA host gene 1 alleviates the progression of epilepsy by regulating the miR-181a/BCL-2 axis in vitro. Life Sci 267:118935. https://doi.org/10.1016/j.lfs.2020.118935

    Article  CAS  PubMed  Google Scholar 

  27. Yu Q, Zhao MW, Yang P (2020) LncRNA UCA1 Suppresses the inflammation via modulating miR-203-mediated regulation of MEF2C/NF-kappaB signaling pathway in epilepsy. Neurochem Res 45(4):783–795. https://doi.org/10.1007/s11064-019-02952-9

    Article  CAS  PubMed  Google Scholar 

  28. Engel T, Martinez-Villarreal J, Henke C, Jimenez-Mateos EM, Sanz-Rodriguez A, Alves M, Hernandez-Santana Y, Brennan GP, Kenny A, Campbell A, Lucas JJ, Henshall DC (2017) Spatiotemporal progression of ubiquitin-proteasome system inhibition after status epilepticus suggests protective adaptation against hippocampal injury. Mol Neurodegener 12(1):21. https://doi.org/10.1186/s13024-017-0163-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Okerlund ND, Schneider K, Leal-Ortiz S, Montenegro-Venegas C, Kim SA, Garner LC, Waites CL, Gundelfinger ED, Reimer RJ, Garner CC (2017) Bassoon controls presynaptic autophagy through Atg5. Neuron 93(4):897-913 e897. https://doi.org/10.1016/j.neuron.2017.01.026

    Article  CAS  PubMed  Google Scholar 

  30. Saavedra A, Ballesteros JJ, Tyebji S, Martinez-Torres S, Blazquez G, Lopez-Hidalgo R, Azkona G, Alberch J, Martin ED, Perez-Navarro E (2019) Proteolytic degradation of hippocampal STEP61 in LTP and learning. Mol Neurobiol 56(2):1475–1487. https://doi.org/10.1007/s12035-018-1170-1

    Article  CAS  PubMed  Google Scholar 

  31. Sun J, Liu Y, Jia Y, Hao X, Lin WJ, Tran J, Lynch G, Baudry M, Bi X (2018) UBE3A-mediated p18/LAMTOR1 ubiquitination and degradation regulate mTORC1 activity and synaptic plasticity. Elife 7. doi:https://doi.org/10.7554/eLife.37993

  32. Yu L, Dong L, Wang Y, Liu L, Long H, Li H, Li J, Yang X, Liu Z, Duan G, Dai X, Lin Z (2019) Reversible regulation of SATB1 ubiquitination by USP47 and SMURF2 mediates colon cancer cell proliferation and tumor progression. Cancer Lett 448:40–51. https://doi.org/10.1016/j.canlet.2019.01.039

    Article  CAS  PubMed  Google Scholar 

  33. Villa C, Lavitrano M, Combi R (2019) Long non-coding RNAs and related molecular pathways in the pathogenesis of epilepsy. Int J Mol Sci 20(19). doi:https://doi.org/10.3390/ijms20194898

  34. Zhang D, Liu X, Zhang Q, Chen X (2020) miR-138–5p inhibits the malignant progression of prostate cancer by targeting FOXC1. Cancer Cell Int 20:297. https://doi.org/10.1186/s12935-020-01386-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang W, Liao K, Liu D (2020) MiR-138–5p inhibits the proliferation of gastric cancer cells by targeting DEK. Cancer Manag Res 12:8137–8147. https://doi.org/10.2147/CMAR.S253777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xie Y, Wang M, Shao Y, Deng X, Chen Y (2019) Long non-coding RNA KCNQ1OT1 contributes to antiepileptic drug resistance through the miR-138–5p/ABCB1 axis in vitro. Front Neurosci 13:1358. https://doi.org/10.3389/fnins.2019.01358

    Article  PubMed  PubMed Central  Google Scholar 

  37. Feng X, Hu J, Zhan F, Luo D, Hua F, Xu G (2021) MicroRNA-138–5p regulates hippocampal neuroinflammation and cognitive impairment by NLRP3/Caspase-1 signaling pathway in rats. J Inflamm Res 14:1125–1143. https://doi.org/10.2147/JIR.S304461

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

This study received grants from the Youth Science Foundation of the National Natural Science Foundation of China (No. 81901329) and the General Program of the National Natural Science Foundation of Hunan Province (No. 2021JJ30990).

Author information

Authors and Affiliations

Authors

Contributions

Lina Gong conceived the ideas. Chen Zhang designed the experiments. Lina Gong performed the experiments. Yaru Han analyzed the data. Ru Chen and Pu Yang provided critical materials. Lina Gong and Yaru Han wrote the manuscript. Chen Zhang supervised the study. All the authors have read and approved the final version for publication.

Corresponding author

Correspondence to Chen Zhang.

Ethics declarations

Ethnics Approval

The animal experiments were granted by the ethical committee of the Third Xiangya Hospital of Central South University and in line with the Guide for Animal Care and Use issued by National Institution of Health.

Consent to Participate

Not applicable to this study.

Consent for Publication

Not applicable to this study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1

The transfection rate was verified by fluorescence microscopy. (PNG 3955 kb)

High Resolution (TIF 38372 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, L., Han, Y., Chen, R. et al. LncRNA ZNF883-Mediated NLRP3 Inflammasome Activation and Epilepsy Development Involve USP47 Upregulation. Mol Neurobiol 59, 5207–5221 (2022). https://doi.org/10.1007/s12035-022-02902-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02902-7

Keywords

Navigation