Skip to main content

Advertisement

Log in

Functional Investigation of TUBB4A Variants Associated with Different Clinical Phenotypes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Dominant TUBB4A variants result in different phenotypes, including hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC), dystonia type 4 (DYT4), and isolated hypomyelination. Here, we report four new patients with a novel TUBB4A variant (p.K324T) and three new patients with previously reported variants (p.Q292K, p.V255I, p.E410K). The individual carrying the novel p.K324T variant exhibits epilepsy of infancy with migrating focal seizures (EIMFS), while the other three have isolated hypomyelination phenotype. We also present a study of the cellular effects of TUBB4A variants responsible for H-ABC (p.D249N), DYT4 (p.R2G), a severe combined phenotype with combination of hypomyelination and EIMFS (p.K324T), and isolated hypomyelination (p.Q292K and p.E410K) on microtubule stability and dynamics, neurite outgrowth, dendritic spine development, and kinesin binding. Cellular-based assays reveal that all variants except p.R2G increase microtubule stability, decrease microtubule polymerization rates, reduce axonal outgrowth, and alter the density and shape of dendritic spines. We also find that the p.K324T and p.E410K variants perturb the binding of TUBB4A to KIF1A, a neuron-specific kinesin required for transport of synaptic vesicle precursors. Taken together, our data suggest that impaired microtubule stability and dynamics, defected axonal growth, and dendritic spine development form the common molecular basis of TUBB4A-related leukodystrophy. Impairment of TUBB4A binding to KIF1A is more likely to be involved in the isolated hypomyelination phenotype, which suggests that alterations in kinesin binding may cause different phenotypes. In conclusion, our study extends the spectrum of TUBB4A mutations and related phenotypes and provides insight into why different TUBB4A variants cause distinct clinical phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Gierke S, Kumar P, Wittmann T (2010) Analysis of microtubule polymerization dynamics in live cells. Methods Cell Biol 97:15–33. https://doi.org/10.1016/S0091-679X(10)97002-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kapitein LC, Hoogenraad CC (2015) Building the neuronal microtubule cytoskeleton. Neuron 87(3):492–506. https://doi.org/10.1016/j.neuron.2015.05.046

    Article  CAS  PubMed  Google Scholar 

  3. Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10(10):682–696. https://doi.org/10.1038/nrm2774

    Article  CAS  PubMed  Google Scholar 

  4. Tischfield MA, Engle EC (2010) Distinct alpha- and beta-tubulin isotypes are required for the positioning, differentiation and survival of neurons: new support for the ‘multi-tubulin’ hypothesis. Biosci Rep 30(5):319–330. https://doi.org/10.1042/BSR20100025

    Article  CAS  PubMed  Google Scholar 

  5. Guerrini R, Dobyns WB (2014) Malformations of cortical development: clinical features and genetic causes. Lancet Neurol 13(7):710–726. https://doi.org/10.1016/S1474-4422(14)70040-7

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hirokawa N, Noda Y (2008) Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol Rev 88(3):1089–1118. https://doi.org/10.1152/physrev.00023.2007

    Article  CAS  PubMed  Google Scholar 

  7. Tischfield MA, Baris HN, Wu C, Rudolph G, Van Maldergem L, He W, Chan WM, Andrews C et al (2010) Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 140(1):74–87. https://doi.org/10.1016/j.cell.2009.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sferra A, Fattori F, Rizza T, Flex E, Bellacchio E, Bruselles A, Petrini S, Cecchetti S  et al (2018) Defective kinesin binding of TUBB2A causes progressive spastic ataxia syndrome resembling sacsinopathy. Hum Mol Genet 27(11):1892–1904. https://doi.org/10.1093/hmg/ddy096

    Article  CAS  PubMed  Google Scholar 

  9. Lo KY, Kuzmin A, Unger SM, Petersen JD, Silverman MA (2011) KIF1A is the primary anterograde motor protein required for the axonal transport of dense-core vesicles in cultured hippocampal neurons. Neurosci Lett 491(3):168–173. https://doi.org/10.1016/j.neulet.2011.01.018

    Article  CAS  PubMed  Google Scholar 

  10. Niwa S, Takahashi H, Hirokawa N (2013) Beta-tubulin mutations that cause severe neuropathies disrupt axonal transport. EMBO J 32(10):1352–1364. https://doi.org/10.1038/emboj.2013.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hersheson J, Mencacci NE, Davis M, MacDonald N, Trabzuni D, Ryten M, Pittman A, Paudel R et al (2013) Mutations in the autoregulatory domain of beta-tubulin 4a cause hereditary dystonia. Ann Neurol 73(4):546–553. https://doi.org/10.1002/ana.23832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pizzino A, Pierson TM, Guo Y, Helman G, Fortini S, Guerrero K, Saitta S, Murphy JL  et al (2014) TUBB4A de novo mutations cause isolated hypomyelination. Neurology 83(10):898–902. https://doi.org/10.1212/WNL.0000000000000754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miyatake S, Osaka H, Shiina M, Sasaki M, Takanashi J, Haginoya K, Wada T, Morimoto M et al (2014) Expanding the phenotypic spectrum of TUBB4A-associated hypomyelinating leukoencephalopathies. Neurology 82(24):2230–2237. https://doi.org/10.1212/WNL.0000000000000535

    Article  CAS  PubMed  Google Scholar 

  14. Hamilton EM, Polder E, Vanderver A, Naidu S, Schiffmann R, Fisher K, Raguz AB, Blumkin L et al (2014) Hypomyelination with atrophy of the basal ganglia and cerebellum: further delineation of the phenotype and genotype-phenotype correlation. Brain 137(Pt 7):1921–1930. https://doi.org/10.1093/brain/awu110

    Article  PubMed  PubMed Central  Google Scholar 

  15. Duncan ID, Bugiani M, Radcliff AB, Moran JJ, Lopez-Anido C, Duong P, August BK, Wolf NI et al (2017) A mutation in the Tubb4a gene leads to microtubule accumulation with hypomyelination and demyelination. Ann Neurol 81(5):690–702. https://doi.org/10.1002/ana.24930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Curiel J, Rodriguez BG, Takanohashi A, Bugiani M, Fu X, Wolf NI, Nmezi B, Schiffmann R et al (2017) TUBB4A mutations result in specific neuronal and oligodendrocytic defects that closely match clinically distinct phenotypes. Hum Mol Genet 26(22):4506–4518. https://doi.org/10.1093/hmg/ddx338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vulinovic F, Krajka V, Hausrat TJ, Seibler P, Alvarez-Fischer D, Madoev H, Park JS, Kumar KR et al (2018) Motor protein binding and mitochondrial transport are altered by pathogenic TUBB4A variants. Hum Mutat 39(12):1901–1915. https://doi.org/10.1002/humu.23602

    Article  CAS  PubMed  Google Scholar 

  18. Sharma N, Kosan ZA, Stallworth JE, Berbari NF, Yoder BK (2011) Soluble levels of cytosolic tubulin regulate ciliary length control. Mol Biol Cell 22(6):806–816. https://doi.org/10.1091/mbc.E10-03-0269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tian G, Jaglin XH, Keays DA, Francis F, Chelly J, Cowan NJ (2010) Disease-associated mutations in TUBA1A result in a spectrum of defects in the tubulin folding and heterodimer assembly pathway. Hum Mol Genet 19(18):3599–3613. https://doi.org/10.1093/hmg/ddq276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stepanova T, Slemmer J, Hoogenraad CC, Lansbergen G, Dortland B, De Zeeuw CI, Grosveld F, van Cappellen G et al (2003) Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein). J Neurosci 23(7):2655–2664

    Article  CAS  Google Scholar 

  21. van der Knaap MS, Linnankivi T, Paetau A, Feigenbaum A, Wakusawa K, Haginoya K, Kohler W, Henneke M et al (2007) Hypomyelination with atrophy of the basal ganglia and cerebellum: follow-up and pathology. Neurology 69(2):166–171. https://doi.org/10.1212/01.wnl.0000265592.74483.a6

    Article  PubMed  Google Scholar 

  22. Lohmann K, Wilcox RA, Winkler S, Ramirez A, Rakovic A, Park JS, Arns B, Lohnau T et al (2013) Whispering dysphonia (DYT4 dystonia) is caused by a mutation in the TUBB4 gene. Ann Neurol 73(4):537–545. https://doi.org/10.1002/ana.23829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ngo L, Haas M, Qu Z, Li SS, Zenker J, Teng KS, Gunnersen JM, Breuss M et al (2014) TUBB5 and its disease-associated mutations influence the terminal differentiation and dendritic spine densities of cerebral cortical neurons. Hum Mol Genet 23(19):5147–5158. https://doi.org/10.1093/hmg/ddu238

    Article  CAS  PubMed  Google Scholar 

  24. Gu J, Firestein BL, Zheng JQ (2008) Microtubules in dendritic spine development. J Neurosci 28(46):12120–12124. https://doi.org/10.1523/JNEUROSCI.2509-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu X, Viesselmann C, Nam S, Merriam E, Dent EW (2008) Activity-dependent dynamic microtubule invasion of dendritic spines. J Neurosci 28(49):13094–13105. https://doi.org/10.1523/JNEUROSCI.3074-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jaworski J, Kapitein LC, Gouveia SM, Dortland BR, Wulf PS, Grigoriev I, Camera P, Spangler SA et al (2009) Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 61(1):85–100. https://doi.org/10.1016/j.neuron.2008.11.013

    Article  CAS  PubMed  Google Scholar 

  27. Wong M, Guo D (2013) Dendritic spine pathology in epilepsy: cause or consequence? Neuroscience 251:141–150. https://doi.org/10.1016/j.neuroscience.2012.03.048

    Article  CAS  PubMed  Google Scholar 

  28. Yen TJ, Machlin PS, Cleveland DW (1988) Autoregulated instability of beta-tubulin mRNAs by recognition of the nascent amino terminus of beta-tubulin. Nature 334(6183):580–585. https://doi.org/10.1038/334580a0

    Article  CAS  PubMed  Google Scholar 

  29. Wade RH (2009) On and around microtubules: an overview. Mol Biotechnol 43(2):177–191. https://doi.org/10.1007/s12033-009-9193-5

    Article  CAS  PubMed  Google Scholar 

  30. Okada Y, Yamazaki H, Sekine-Aizawa Y, Hirokawa N (1995) The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81(5):769–780. https://doi.org/10.1016/0092-8674(95)90538-3

    Article  CAS  PubMed  Google Scholar 

  31. Hotchkiss L, Donkervoort S, Leach ME, Mohassel P, Bharucha-Goebel DX, Bradley N, Nguyen D, Hu Y et al (2016) Novel de novo mutations in KIF1A as a cause of hereditary spastic paraplegia with progressive central nervous system involvement. J Child Neurol 31(9):1114–1119. https://doi.org/10.1177/0883073816639718

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lee JR, Srour M, Kim D, Hamdan FF, Lim SH, Brunel-Guitton C, Decarie JC, Rossignol E et al (2015) De novo mutations in the motor domain of KIF1A cause cognitive impairment, spastic paraparesis, axonal neuropathy, and cerebellar atrophy. Hum Mutat 36(1):69–78. https://doi.org/10.1002/humu.22709

    Article  CAS  PubMed  Google Scholar 

  33. Guo Y, Chen Y, Yang M, Xu X, Lin Z, Ma J, Chen H, Hu Y et al (2020) A rare KIF1A missense mutation enhances synaptic function and increases seizure activity. Front Genet 11:61. https://doi.org/10.3389/fgene.2020.00061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scala M, Bianchi A, Bisulli F, Coppola A, Elia M, Trivisano M, Pruna D, Pippucci T et al (2020) Advances in genetic testing and optimization of clinical management in children and adults with epilepsy. Expert Rev Neurother 20(3):251–269. https://doi.org/10.1080/14737175.2020.1713101

    Article  CAS  PubMed  Google Scholar 

  35. Brouhard GJ, Rice LM (2014) The contribution of alphabeta-tubulin curvature to microtubule dynamics. J Cell Biol 207(3):323–334. https://doi.org/10.1083/jcb.201407095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fourel G, Boscheron C (2020) Tubulin mutations in neurodevelopmental disorders as a tool to decipher microtubule function. FEBS Lett 594(21):3409–3438. https://doi.org/10.1002/1873-3468.13958

    Article  CAS  PubMed  Google Scholar 

  37. Nogales E, Whittaker M, Milligan RA, Downing KH (1999) High-resolution model of the microtubule. Cell 96(1):79–88. https://doi.org/10.1016/s0092-8674(00)80961-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients and their families for their participation in this study. We thank Prof. Jiada Li for providing cell lines and Meng Wu for technical assistance.

Funding

This work was supported by the National Natural Science Foundation of China (81771409 and 82071462 to J.P.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: H.X. and J.P.; investigation: H.X., F.Y., X.N., and T.W.; resources: J.P.; writing—original draft preparation: H.X.; writing—review and editing: H.H., F.L., and J.P.

Corresponding author

Correspondence to Jing Peng.

Ethics declarations

Ethics Approval and Consent to Participate

This study was approved by the Ethics Committee of Xiangya Hospital of Central South University, China (Human study/protocol #201603205) and performed in accordance with the ethical standards laid down in the Declaration of Helsinki. Written informed consent was obtained from the patients’ parents.

Consent for Publication

The authors affirm that written informed consent for publication was obtained from the patients’ parents.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1297 kb)

(AVI 38930 kb)

(AVI 52516 kb)

(AVI 29719 kb)

(AVI 55987 kb)

(AVI 56821 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, H., He, H., Wu, T. et al. Functional Investigation of TUBB4A Variants Associated with Different Clinical Phenotypes. Mol Neurobiol 59, 5056–5069 (2022). https://doi.org/10.1007/s12035-022-02900-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02900-9

Keywords

Navigation