Abstract
Alzheimer’s disease (AD) is the most common cause of dementia and cognitive impairment; yet, there is currently no treatment. A buildup of Aβ, tau protein phosphorylation, oxidative stress, and inflammation in AD is pathogenic. The accumulation of amyloid-beta (Aβ) peptides in these neurocognitive areas is a significant characteristic of the disease. Therefore, inhibiting Aβ peptide aggregation has been proposed as the critical therapeutic approach for AD treatment. Resveratrol has been demonstrated in multiple studies to have a neuroprotective, anti-inflammatory, and antioxidant characteristic and the ability to minimize Aβ peptides aggregation and toxicity in the hippocampus of Alzheimer’s patients, stimulating neurogenesis and inhibiting hippocampal degeneration. Furthermore, resveratrol’s antioxidant effect promotes neuronal development by activating the silent information regulator-1 (SIRT1), which can protect against the detrimental effects of oxidative stress. Resveratrol-induced SIRT1 activation is becoming more crucial in developing novel therapeutic options for AD and other diseases that have neurodegenerative characteristics. This review highlighted a better knowledge of resveratrol’s mechanism of action and its promising therapeutic efficacy in treating AD. We also highlighted the therapeutic potential of resveratrol as an AD therapeutic agent, which is effective against neurodegenerative disorders.
Similar content being viewed by others
References
Zhao T, Zeng Y, Kermode AR (2012) A plant cell-based system that predicts aβ42 misfolding: potential as a drug discovery tool for Alzheimer’s disease. Mol Genet Metab 107:571–579
Rahman MH, Akter R, Bhattacharya T et al (2020) Resveratrol and neuroprotection: impact and its therapeutic potential in Alzheimer’s disease. Front Pharmacol 11:619024. https://doi.org/10.3389/fphar.2020.619024
Yan Y, Yang H, Xie Y et al (2020) Research progress on Alzheimer’s disease and resveratrol. Neurochem Res 45:989–1006
Uddin MS, Kabir MT, Rahman MH et al (2020) Exploring the multifunctional neuroprotective promise of rasagiline derivatives for multi-dysfunctional Alzheimer’s disease. Curr Pharm Des. https://doi.org/10.2174/1381612826666200406075044
Zhang B, Yin X, Sui S (2018) Resveratrol inhibited the progression of human hepatocellular carcinoma by inducing autophagy via regulating p53 and the phosphoinositide 3-kinase/protein kinase B pathway. Oncol Rep 40:2758–2765
Jiao Y, Li H, Liu Y et al (2015) Resveratrol inhibits the invasion of glioblastoma-initiating cells via down-regulation of the PI3K/Akt/NF-κB signaling pathway. Nutrients 7:4383–4402
Feng Y-L, Jiang X-T, Ma F-F et al (2018) Resveratrol prevents osteoporosis by upregulating FoxO1 transcriptional activity. Int J Mol Med 41:202–212
Rahman MH, Akter R, Kamal MA (2020) Prospective function of different antioxidant containing natural products in the treatment of neurodegenerative disease. CNS Neurol Disord - Drug Targets. https://doi.org/10.2174/1871527319666200722153611
Xu P, Zhang M, Sheng R, Ma Y (2017) Synthesis and biological evaluation of deferiprone-resveratrol hybrids as antioxidants, Aβ1–42 aggregation inhibitors and metal-chelating agents for Alzheimer’s disease. Eur J Med Chem 127:174–186
Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608. https://doi.org/10.15252/emmm.201606210
Cao J, Hou J, Ping J, Cai D (2018) Advances in developing novel therapeutic strategies for Alzheimer’s disease. Mol Neurodegener 13:1–20
Corriveau RA, Koroshetz WJ, Gladman JT et al (2017) Alzheimer’s disease–related dementias summit 2016: National research priorities. Neurology 89:2381–2391
Colin J, Allouche A, Chauveau F et al (2016) Improved neuroprotection provided by drug combination in neurons exposed to cell-derived soluble amyloid-β peptide. J Alzheimer’s Dis 52:975–987
Rao YL, Ganaraja B, Joy T et al (2020) Neuroprotective effects of resveratrol in Alzheimer’s disease. Front Biosci 12:130–149
Wightman EL (2017) Potential benefits of phytochemicals against Alzheimer’s disease. Proc Nutr Soc 76:106–112
Virmani A, Pinto L, Binienda Z, Ali S (2013) Food, nutrigenomics, and neurodegeneration—neuroprotection by what you eat! Mol Neurobiol 48:353–362
Bellozi PMQ, de Assis Lima IV, Dória JG et al (2016) Neuroprotective effects of the anticancer drug NVP-BEZ235 (dactolisib) on amyloid-β 1–42 induced neurotoxicity and memory impairment. Sci Rep 6:1–12
Wąsik A, Antkiewicz-Michaluk L (2017) The mechanism of neuroprotective action of natural compounds. Pharmacol Reports 69:851–860
Kaur D, Behl T, Sehgal A, et al (2021) Unravelling the potential neuroprotective facets of erythropoietin for the treatment of Alzheimer’s disease. Metab Brain Dis 1–16
Rahman MA, Hannan MA, Dash R, et al (2021) Phytochemicals as a complement to cancer chemotherapy: pharmacological modulation of the autophagy-apoptosis pathway. Front. Pharmacol. 12
Shah SAA, Ul Hassan SS, Bungau S, et al (2020) Chemically diverse and biologically active secondary metabolites from marine phylum chlorophyta. Mar. Drugs 18
Bagli E, Goussia A, Moschos MM et al (2016) Natural compounds and neuroprotection: mechanisms of action and novel delivery systems. In Vivo (Brooklyn) 30:535–547
Pohl F, Lin PKT (2018) The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: in vitro, in vivo and clinical trials. Molecules 23:3283. https://doi.org/10.3390/molecules23123283
Habtemariam S (2019) Natural products in Alzheimer’s disease therapy: would old therapeutic approaches fix the broken promise of modern medicines? Molecules 24:1519
Zhang H, Bai L, He J et al (2017) Recent advances in discovery and development of natural products as source for anti-Parkinson’s disease lead compounds. Eur J Med Chem 141:257–272
X Rong L Jiang M Qu et al 2020 Enhancing therapeutic efficacy of donepezil by combined therapy: a comprehensive review Curr Pharm Des 27. https://doi.org/10.2174/1381612826666201023144836
Beesley S, Olcese J, Saunders C, Bienkiewicz EA (2017) Combinatorial treatment effects in a cell culture model of Alzheimer’s disease. J Alzheimer’s Dis 55:1155–1166
Mancuso C, Bates TE, Butterfield DA et al (2007) Natural antioxidants in Alzheimer’s disease. Expert Opin Investig Drugs 16:1921–1931
Mattson MP, Son TG, Camandola S (2007) Mechanisms of action and therapeutic potential of neurohormetic phytochemicals. Dose-Response 5:dose-response
D’Angelo S, Mele E, Di Filippo F et al (2021) Sirt1 activity in the brain: Simultaneous effects on energy homeostasis and reproduction. Int J Environ Res Public Health 18:1243
Zhou D-D, Luo M, Huang S-Y, et al (2021) Effects and mechanisms of resveratrol on aging and age-related diseases. Oxid Med Cell Longev 2021:
Li F, Gong Q, Dong H, Shi J (2012) Resveratrol, a neuroprotective supplement for Alzheimer’s disease. Curr Pharm Des 18:27–33
Huang Y, Lu J, Zhan L, et al (2021) Resveratrol-induced Sirt1 phosphorylation by LKB1 mediates mitochondrial metabolism. J Biol Chem 297:
Sanders HM, Jovcevski B, Marty MT, Pukala TL (2022) Structural and mechanistic insights into amyloid-β and α-synuclein fibril formation and polyphenol inhibitor efficacy in phospholipid bilayers. FEBS J 289:215–230
Kanazirska V, M, M Fuchs P, Chen L, et al (2012) Beneficial effects of lysosome-modulating and other pharmacological and nanocarrier agents on amyloid-beta-treated cells. Curr Pharm Biotechnol 13:2761–2767
Oomen CA, Farkas E, Roman V et al (2009) Resveratrol preserves cerebrovascular density and cognitive function in aging mice. Front Aging Neurosci 1:4
Holland N, Bolognesi C, Kirsch-Volders M et al (2008) The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: the HUMN project perspective on current status and knowledge gaps. Mutat Res Mutat Res 659:93–108
Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506
Yepes-Nuñez JJ, Urrútia G, Romero-García M, Alonso-Fernández S (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Rev Esp Cardiol 74:790–799. https://doi.org/10.1016/j.recesp.2021.06.016
Page MJ, McKenzie JE, Bossuyt PM et al (2021) Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement. J Clin Epidemiol 134:103–112. https://doi.org/10.1016/j.jclinepi.2021.02.003
Ahmed T, Javed S, Javed S et al (2017) Resveratrol and Alzheimer’s disease: mechanistic insights. Mol Neurobiol 54:2622–2635
Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177:143–155
Regev-Shoshani G, Shoseyov O, Bilkis I, Kerem Z (2003) Glycosylation of resveratrol protects it from enzymic oxidation. Biochem J 374:157–163
Gachon CMM, Langlois-Meurinne M, Saindrenan P (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 10:542–549
Zhang L, Cui L, Zhou G et al (2013) Pterostilbene, a natural small-molecular compound, promotes cytoprotective macroautophagy in vascular endothelial cells. J Nutr Biochem 24:903–911
Schmidlin L, Poutaraud A, Claudel P et al (2008) A stress-inducible resveratrol O-methyltransferase involved in the biosynthesis of pterostilbene in grapevine. Plant Physiol 148:1630–1639
Ball JM, Medina-Bolivar F, Defrates K, et al (2015) Investigation of stilbenoids as potential therapeutic agents for rotavirus gastroenteritis. Adv Virol 2015:
Keylor MH, Matsuura BS, Stephenson CRJ (2015) Chemistry and biology of resveratrol-derived natural products. Chem Rev 115:8976–9027
Vingtdeux V, Dreses-Werringloer U, Zhao H et al (2008) Therapeutic potential of resveratrol in Alzheimer’s disease. BMC Neurosci 9:1–5
Filardo S, Di Pietro M, Mastromarino P, Sessa R (2020) Therapeutic potential of resveratrol against emerging respiratory viral infections. Pharmacol Ther 214:107613
Briskey D, Rao A (2020) Trans-Resveratrol oral bioavailability in humans using LipiSperse™ Dispersion Technology. Pharmaceutics 12:1190
Landau D, Haghiac M, Minium J et al (2019) Activation of AMPK in human placental explants impairs mitochondrial function and cellular metabolism. Reprod Sci 26:487–495
Park S-J, Ahmad F, Philp A et al (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148:421–433
Price NL, Gomes AP, Ling AJY et al (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15:675–690
Kabir MT, Rahman MH, Akter R, et al (2021) Potential role of curcumin and its nanoformulations to treat various types of cancers. Biomolecules 11
Malhotra A, Bath S, Elbarbry F (2015) An organ system approach to explore the antioxidative, anti-inflammatory, and cytoprotective actions of resveratrol. Oxid Med Cell Longev 2015:803971. https://doi.org/10.1155/2015/803971
Frozza RL, Bernardi A, Paese K et al (2010) Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats. J Biomed Nanotechnol 6:694–703. https://doi.org/10.1166/jbn.2010.1161
AY Berman RA Motechin MY Wiesenfeld MK Holz 2017 The therapeutic potential of resveratrol: a review of clinical trials NPJ Precis Oncol 1. https://doi.org/10.1038/s41698-017-0038-6
Islam MR, Islam F, Nafady MH, et al Natural small molecules in breast cancer treatment: understandings from a therapeutic viewpoint. Molecules 27;27(7):2:
Mitra S, Anjum J, Muni M et al (2022) Exploring the journey of emodin as a potential neuroprotective agent: novel therapeutic insights with molecular mechanism of action. Biomed Pharmacother 149:112877
Puca AA, Carrizzo A, Villa F et al (2013) Vascular ageing: the role of oxidative stress. Int J Biochem Cell Biol 45:556–559. https://doi.org/10.1016/j.biocel.2012.12.024
Kuršvietienė L, Stanevičienė I, Mongirdienė A, Bernatonienė J (2016) Multiplicity of effects and health benefits of resveratrol. Medicina (Kaunas) 52:148–155. https://doi.org/10.1016/j.medici.2016.03.003
Islam F, Mitra S, Nafady MH, et al Neuropharmacological and antidiabetic potential of Lannea coromandelica (Houtt.) Merr. leaves extract: an experimental analysis. Evidence-Based Complement Altern Med
Feng Y-S, Tan Z-X, Wu L-Y et al (2021) The involvement of NLRP3 inflammasome in the treatment of neurodegenerative diseases. Biomed Pharmacother 138:111428. https://doi.org/10.1016/j.biopha.2021.111428
IS You S Sharma A Fadriquela et al 2021 Antioxidant properties of hydrogen gas attenuates oxidative stress in airway epithelial cells Molecules 26. https://doi.org/10.3390/molecules26216375
Kaushik D, Goel E, Verma R, et al (2021) An overview of recent patents and patented technology platforms based on co-processed excipients. Recent Adv. Drug Deliv. Formul. 15
Trinh TT, Fadriquela A, Lee KJ, et al (2021) Development of alkaline reduced water using high-temperature-roasted mineral salt and its antioxidative effect in raw 264.7 murine macrophage cell line. Processes 9:. https://doi.org/10.3390/pr9111928
Palacino JJ, Sagi D, Goldberg MS et al (2004) Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 279:18614–18622. https://doi.org/10.1074/jbc.M401135200
Wang H, Jiang T, Li W et al (2018) Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of Alzheimer’s disease. Toxicol Lett 282:100–108. https://doi.org/10.1016/j.toxlet.2017.10.021
Tabner BJ, El-Agnaf OMA, Turnbull S et al (2005) Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familial British dementia. J Biol Chem 280:35789–35792. https://doi.org/10.1074/jbc.C500238200
Lu C, Guo Y, Li J et al (2012) Design, synthesis, and evaluation of resveratrol derivatives as Aß(1-42) aggregation inhibitors, antioxidants, and neuroprotective agents. Bioorg Med Chem Lett 22:7683–7687. https://doi.org/10.1016/j.bmcl.2012.09.105
Reddy PH, Tripathi R, Troung Q et al (2012) Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer’s disease: implications to mitochondria-targeted antioxidant therapeutics. Biochim Biophys Acta 1822:639–649. https://doi.org/10.1016/j.bbadis.2011.10.011
Reddy PH, Tonk S, Kumar S et al (2017) A critical evaluation of neuroprotective and neurodegenerative MicroRNAs in Alzheimer’s disease. Biochem Biophys Res Commun 483:1156–1165. https://doi.org/10.1016/j.bbrc.2016.08.067
Espay AJ, Kalia LV, Gan-Or Z et al (2020) Disease modification and biomarker development in Parkinson disease: revision or reconstruction? Neurology 94:481–494. https://doi.org/10.1212/WNL.0000000000009107
Wu F, Mattson MP, Yao PJ (2010) Neuronal activity and the expression of clathrin-assembly protein AP180. Biochem Biophys Res Commun 402:297–300. https://doi.org/10.1016/j.bbrc.2010.10.018
Zhang F, Zhong R-J, Cheng C et al (2021) New therapeutics beyond amyloid-β and tau for the treatment of Alzheimer’s disease. Acta Pharmacol Sin 42:1382–1389. https://doi.org/10.1038/s41401-020-00565-5
T Bhattacharya PS Dey R Akter et al 2021 Effect of natural leaf extracts as phytomedicine in curing geriatrics Exp Gerontol 150. https://doi.org/10.1016/j.exger.2021.111352
Ge J-F, Qiao J-P, Qi C-C et al (2012) The binding of resveratrol to monomer and fibril amyloid beta. Neurochem Int 61:1192–1201. https://doi.org/10.1016/j.neuint.2012.08.012
Saleem U, Sabir S, Niazi SG et al (2020) Role of oxidative stress and antioxidant defense biomarkers in neurodegenerative diseases. Crit Rev Eukaryot Gene Expr 30:311–322. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2020029202
Hung CH-L, Ho Y-S, Chang RC-C (2010) Modulation of mitochondrial calcium as a pharmacological target for Alzheimer’s disease. Ageing Res Rev 9:447–456. https://doi.org/10.1016/j.arr.2010.05.003
Shi D, Yang J, Jiang Y et al (2020) The antioxidant activity and neuroprotective mechanism of isoliquiritigenin. Free Radic Biol Med 152:207–215. https://doi.org/10.1016/j.freeradbiomed.2020.03.016
Stanyon HF, Viles JH (2012) Human serum albumin can regulate amyloid-β peptide fiber growth in the brain interstitium: implications for Alzheimer disease. J Biol Chem 287:28163–28168. https://doi.org/10.1074/jbc.C112.360800
Kumar R, Chaterjee P, Sharma PK et al (2013) Sirtuin1: a promising serum protein marker for early detection of Alzheimer’s disease. PLoS ONE 8:e61560. https://doi.org/10.1371/journal.pone.0061560
Julien C, Tremblay C, Emond V et al (2009) Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol 68:48–58. https://doi.org/10.1097/NEN.0b013e3181922348
Koo J-H, Kang E-B, Oh Y-S et al (2017) Treadmill exercise decreases amyloid-β burden possibly via activation of SIRT-1 signaling in a mouse model of Alzheimer’s disease. Exp Neurol 288:142–152. https://doi.org/10.1016/j.expneurol.2016.11.014
Marwarha G, Raza S, Meiers C, Ghribi O (2014) Leptin attenuates BACE1 expression and amyloid-β genesis via the activation of SIRT1 signaling pathway. Biochim Biophys Acta 1842:1587–1595. https://doi.org/10.1016/j.bbadis.2014.05.015
Kumar R, Nigam L, Singh AP et al (2017) Design, synthesis of allosteric peptide activator for human SIRT1 and its biological evaluation in cellular model of Alzheimer’s disease. Eur J Med Chem 127:909–916. https://doi.org/10.1016/j.ejmech.2016.11.001
Guarente L (2013) Calorie restriction and sirtuins revisited. Genes Dev 27:2072–2085. https://doi.org/10.1101/gad.227439.113
Satoh A, Imai S (2014) Hypothalamic Sirt1 in aging. Aging (Albany. NY). 6:1–2
Michán S, Li Y, Chou MM-H et al (2010) SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 30:9695–9707. https://doi.org/10.1523/JNEUROSCI.0027-10.2010
Puig-Parnau I, Garcia-Brito S, Faghihi N et al (2020) Intracranial self-stimulation modulates levels of SIRT1 protein and neural plasticity-related microRNAs. Mol Neurobiol 57:2551–2562. https://doi.org/10.1007/s12035-020-01901-w
Li X, Feng Y, Wang X-X, et al (2020) The critical role of SIRT1 in Parkinson’s disease: mechanism and therapeutic considerations. Aging Dis 11:1608–1622. https://doi.org/10.14336/AD.2020.0216
Bernier M, Paul RK, Martin-Montalvo A et al (2011) Negative regulation of STAT3 protein-mediated cellular respiration by SIRT1 protein. J Biol Chem 286:19270–19279. https://doi.org/10.1074/jbc.M110.200311
Ramis MR, Esteban S, Miralles A et al (2015) Caloric restriction, resveratrol and melatonin: role of SIRT1 and implications for aging and related-diseases. Mech Ageing Dev 146–148:28–41. https://doi.org/10.1016/j.mad.2015.03.008
Karthika C, Hari B, Mano V, et al (2021) Curcumin as a great contributor for the treatment and mitigation of colorectal cancer. Exp. Gerontol. 152
Karthika C, Hari B, Rahman MH, et al (2021) Multiple strategies with the synergistic approach for addressing colorectal cancer. Biomed. Pharmacother. 140
Wang J, Fivecoat H, Ho L et al (2010) The role of Sirt1: at the crossroad between promotion of longevity and protection against Alzheimer’s disease neuropathology. Biochim Biophys Acta 1804:1690–1694. https://doi.org/10.1016/j.bbapap.2009.11.015
Li S-Y, Wang X-B, Kong L-Y (2014) Design, synthesis and biological evaluation of imine resveratrol derivatives as multi-targeted agents against Alzheimer’s disease. Eur J Med Chem 71:36–45. https://doi.org/10.1016/j.ejmech.2013.10.068
Gomes BAQ, Silva JPB, Romeiro CFR et al (2018) Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: role of SIRT1. Oxid Med Cell Longev 2018:8152373. https://doi.org/10.1155/2018/8152373
Yang Y, Jiang S, Dong Y et al (2015) Melatonin prevents cell death and mitochondrial dysfunction via a SIRT 1-dependent mechanism during ischemic-stroke in mice. J Pineal Res 58:61–70
Ding M, Feng NA, Tang D et al (2018) Melatonin prevents D rp1-mediated mitochondrial fission in diabetic hearts through SIRT 1-PGC 1α pathway. J Pineal Res 65:e12491
Supinski GS, Schroder EA, Callahan LA (2020) Mitochondria and critical illness. Chest 157:310–322
Yang X, Si P, Qin H, et al (2017) The neuroprotective effects of SIRT1 on NMDA-induced excitotoxicity. Oxid Med Cell Longev 2017:
Sadi G, Konat D (2016) Resveratrol regulates oxidative biomarkers and antioxidant enzymes in the brain of streptozotocin-induced diabetic rats. Pharm Biol 54:1156–1163. https://doi.org/10.3109/13880209.2015.1056311
Y Huo D Yang K Lai et al 2021 Antioxidant effects of resveratrol in intervertebral disk J Investig Surg Off J Acad Surg Res 1–10. https://doi.org/10.1080/08941939.2021.1988771
Yang X, Qiang X, Li Y et al (2017) Pyridoxine-resveratrol hybrids Mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer’s disease. Bioorg Chem 71:305–314. https://doi.org/10.1016/j.bioorg.2017.02.016
Schweiger S, Matthes F, Posey K et al (2017) Resveratrol induces dephosphorylation of Tau by interfering with the MID1-PP2A complex. Sci Rep 7:13753. https://doi.org/10.1038/s41598-017-12974-4
Rege SD, Geetha T, Broderick TL, Babu JR (2015) Resveratrol protects β amyloid-induced oxidative damage and memory associated proteins in H19–7 hippocampal neuronal cells. Curr Alzheimer Res 12:147–156. https://doi.org/10.2174/1567205012666150204130009
Wang X-Q, Zhou L-Y, Tan R-X et al (2021) Design, synthesis, and evaluation of chalcone derivatives as multifunctional agents against Alzheimer’s disease. Chem Biodivers 18:e2100341. https://doi.org/10.1002/cbdv.202100341
Villaflores OB, Chen Y-J, Chen C-P et al (2012) Curcuminoids and resveratrol as anti-Alzheimer agents. Taiwan J Obstet Gynecol 51:515–525. https://doi.org/10.1016/j.tjog.2012.09.005
Ma X, Sun Z, Han X et al (2019) Neuroprotective effect of resveratrol via activation of Sirt1 Signaling in a rat model of combined diabetes and Alzheimer’s disease. Front Neurosci 13:1400. https://doi.org/10.3389/fnins.2019.01400
Rahman M, Majumder S, Akter F, et al (2021) Pre-clinical investigation of analgesic, anti-diarrheal and CNS depressant effect of Pterocarpus indicus in Swiss albino mice. Jordan J Pharm Sci 14:
Chen J-Y, Zhu Q, Zhang S et al (2019) Resveratrol in experimental Alzheimer’s disease models: a systematic review of preclinical studies. Pharmacol Res 150:104476. https://doi.org/10.1016/j.phrs.2019.104476
Karuppagounder SS, Pinto JT, Xu H et al (2009) Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem Int 54:111–118
Vingtdeux V, Giliberto L, Zhao H et al (2010) AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism. J Biol Chem 285:9100–9113
Porquet D, Casadesús G, Bayod S et al (2013) Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. Age (Omaha) 35:1851–1865
Du L-L, Xie J-Z, Cheng X-S et al (2014) Activation of sirtuin 1 attenuates cerebral ventricular streptozotocin-induced tau hyperphosphorylation and cognitive injuries in rat hippocampi. Age (Omaha) 36:613–623
Gong Q-H, Li F, Jin F, Shi J-S (2010) Resveratrol attenuates neuroinflammation-mediated cognitive deficits in rats. J Heal Sci 56:655–663
Zhao H, Niu Q, Li X et al (2012) Long-term resveratrol consumption protects ovariectomized rats chronically treated with D-galactose from developing memory decline without effects on the uterus. Brain Res 1467:67–80
Wang G, Chen L, Pan X et al (2016) The effect of resveratrol on beta amyloid-induced memory impairment involves inhibition of phosphodiesterase-4 related signaling. Oncotarget 7:17380
Molina-Holgado F, Hider RC, Gaeta A et al (2007) Metals ions and neurodegeneration. Biometals 20:639–654
Bishop GM, Robinson SR, Liu Q et al (2002) Iron: a pathological mediator of Alzheimer disease? Dev Neurosci 24:184–187
Huang X, Atwood CS, Moir RD et al (1997) Zinc-induced Alzheimer’s Aβ1–40 aggregation is mediated by conformational factors. J Biol Chem 272:26464–26470
Rao KSJ, Rao RV, Shanmugavelu P, Menon RB (1999) Trace elements in Alzheimer’s disease brain: a new hypothesis. Alzheimers Rep 2:241–246
Kalia K, Flora SJS (2005) Strategies for safe and effective therapeutic measures for chronic arsenic and lead poisoning. J Occup Health 47:1–21
Andersen O (2004) Chemical and biological considerations in the treatment of metal intoxications by chelating agents. Mini Rev Med Chem 4:11–21
Knudtson ML, Wyse DG, Galbraith PD et al (2002) Chelation therapy for ischemic heart disease: a randomized controlled trial. JAMA 287:481–486
Clarke CN, Clarke NE, Mosher RE (1956) Treatment of angina pectoris with disodium ethylene diamine tetraacetic acid. Am J Med Sci 232:654–666
Fonseca-Santos B, Chorilli M (2020) The uses of resveratrol for neurological diseases treatment and insights for nanotechnology based-drug delivery systems. Int J Pharm 589:119832. https://doi.org/10.1016/j.ijpharm.2020.119832
de Vrij FMS, Fischer DF, van Leeuwen FW, Hol EM (2004) Protein quality control in Alzheimer’s disease by the ubiquitin proteasome system. Prog Neurobiol 74:249–270. https://doi.org/10.1016/j.pneurobio.2004.10.001
Song S, Kim S-Y, Hong Y-M et al (2003) Essential role of E2–25K/Hip-2 in mediating amyloid-beta neurotoxicity. Mol Cell 12:553–563. https://doi.org/10.1016/j.molcel.2003.08.005
Kriem B, Sponne I, Fifre A et al (2005) Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-beta peptide. FASEB J Off Publ Fed Am Soc Exp Biol 19:85–87. https://doi.org/10.1096/fj.04-1807fje
Chalimoniuk M, Głowacka J, Zabielna A et al (2006) Nitric oxide alters arachidonic acid turnover in brain cortex synaptoneurosomes. Neurochem Int 48:1–8. https://doi.org/10.1016/j.neuint.2005.08.011
Guedj A, Volman Y, Geiger-Maor A et al (2020) Gut microbiota shape “inflamm-ageing” cytokines and account for age-dependent decline in DNA damage repair. Gut 69:1064–1075. https://doi.org/10.1136/gutjnl-2019-318491
Patel P, Lockey RF, Kolliputi N (2015) Can inflammation regulate systemic aging? Exp Gerontol 67:1–2. https://doi.org/10.1016/j.exger.2015.04.011
Sierra A, Gottfried-Blackmore AC, Mcewen BS, Bulloch K (2007) Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 55:412–424. https://doi.org/10.1002/glia.20468
Cataldi R, Chia S, Pisani K et al (2021) A dopamine metabolite stabilizes neurotoxic amyloid-β oligomers. Commun Biol 4:19. https://doi.org/10.1038/s42003-020-01490-3
Walia V, Kaushik D, Mittal V, et al (2021) Delineation of neuroprotective effects and possible benefits of antioxidantstherapy for the treatment of Alzheimer’s diseases by targeting mitochondrial-derived reactive oxygen species: bench to bedside. Mol. Neurobiol.
J Bajgai K-J Lee MH Rahman et al 2020 Role of molecular hydrogen in skin diseases and its impact in beauty Curr Pharm Des 27https://doi.org/10.2174/1381612826666200925124235
T Tsukahara H Haniu T Uemura Y Matsuda 2020 Therapeutic potential of porcine liver decomposition product: new insights and perspectives for microglia-mediated neuroinflammation in neurodegenerative diseases Biomedicines 8https://doi.org/10.3390/biomedicines8110446
RAUF A, BAWAZEER S, RAZA M, et al (2021) Reversal of multidrug resistance and antitumor promoting activity of 3-oxo-6β-hydroxy- β-amyrin isolated from Pistacia integerrima. Biocell 45:. https://doi.org/10.32604/BIOCELL.2021.013277
Renaud J, Bournival J, Zottig X, Martinoli M-G (2014) Resveratrol protects DAergic PC12 cells from high glucose-induced oxidative stress and apoptosis: effect on p53 and GRP75 localization. Neurotox Res 25:110–123. https://doi.org/10.1007/s12640-013-9439-7
Yang Y, Hu L, Xia Y et al (2016) Resveratrol suppresses glial activation and alleviates trigeminal neuralgia via activation of AMPK. J Neuroinflammation 13:84. https://doi.org/10.1186/s12974-016-0550-6
Jang J-H, Surh Y-J (2003) Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death. Free Radic Biol Med 34:1100–1110. https://doi.org/10.1016/s0891-5849(03)00062-5
Csiszar A, Wang M, Lakatta EG, Ungvari Z (2008) Inflammation and endothelial dysfunction during aging: role of NF-kappaB. J Appl Physiol 105:1333–1341. https://doi.org/10.1152/japplphysiol.90470.2008
Helenius M, Kyrylenko S, Vehviläinen P, Salminen A (2001) Characterization of aging-associated up-regulation of constitutive nuclear factor-kappa B binding activity. Antioxid Redox Signal 3:147–156. https://doi.org/10.1089/152308601750100669
Capiralla H, Vingtdeux V, Zhao H et al (2012) Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J Neurochem 120:461–472. https://doi.org/10.1111/j.1471-4159.2011.07594.x
Zhong L-M, Zong Y, Sun L et al (2012) Resveratrol inhibits inflammatory responses via the mammalian target of rapamycin signaling pathway in cultured LPS-stimulated microglial cells. PLoS ONE 7:e32195. https://doi.org/10.1371/journal.pone.0032195
Jantan I, Haque MA, Arshad L et al (2021) Dietary polyphenols suppress chronic inflammation by modulation of multiple inflammation-associated cell signaling pathways. J Nutr Biochem 93:108634. https://doi.org/10.1016/j.jnutbio.2021.108634
Cianciulli A, Dragone T, Calvello R et al (2015) IL-10 plays a pivotal role in anti-inflammatory effects of resveratrol in activated microglia cells. Int Immunopharmacol 24:369–376. https://doi.org/10.1016/j.intimp.2014.12.035
Song J, Cheon SY, Jung W et al (2014) Resveratrol induces the expression of interleukin-10 and brain-derived neurotrophic factor in BV2 microglia under hypoxia. Int J Mol Sci 15:15512–15529. https://doi.org/10.3390/ijms150915512
Huang J, Huang N, Xu S et al (2021) Signaling mechanisms underlying inhibition of neuroinflammation by resveratrol in neurodegenerative diseases. J Nutr Biochem 88:108552
Talebi M, Talebi M, Kakouri E, et al (2021) Tantalizing role of p53 molecular pathways and its coherent medications in neurodegenerative diseases. Int J Biol Macromol
Donmez G (2012) The effects of SIRT1 on Alzheimer’s disease models. Int J Alzheimer’s Dis 2012:
Y Jia N Wang X Liu 2017 Resveratrol and amyloid-beta: mechanistic insights Nutrients 9. https://doi.org/10.3390/nu9101122
Li L, Qiu R, Lin Y et al (2018) Resveratrol suppresses human cervical carcinoma cell proliferation and elevates apoptosis via the mitochondrial and p53 signaling pathways. Oncol Lett 15:9845–9851
Dvorakova M, Landa P (2017) Anti-inflammatory activity of natural stilbenoids: a review. Pharmacol Res 124:126–145
Regitz C, Fitzenberger E, Mahn FL et al (2016) Resveratrol reduces amyloid-beta (Aβ1-42)-induced paralysis through targeting proteostasis in an Alzheimer model of Caenorhabditis elegans. Eur J Nutr 55:741–747. https://doi.org/10.1007/s00394-015-0894-1
Al-Edresi S, Alsalahat I, Freeman S et al (2020) Resveratrol-mediated cleavage of amyloid β(1–42) peptide: potential relevance to Alzheimer’s disease. Neurobiol Aging 94:24–33. https://doi.org/10.1016/j.neurobiolaging.2020.04.012
Al-Bishri WM, Hamza AH, Farran SK (2017) Resveratrol treatment attenuates amyloid beta, tau protein and markers of oxidative stress, and inflammation in Alzheimer’s disease rat model. Int J Pharm Res Allied Sci 6:
Song YM, Ha YM, Kim J-A et al (2012) Synthesis of novel azo-resveratrol, azo-oxyresveratrol and their derivatives as potent tyrosinase inhibitors. Bioorg Med Chem Lett 22:7451–7455
Williams LD, Burdock GA, Edwards JA et al (2009) Safety studies conducted on high-purity trans-resveratrol in experimental animals. Food Chem Toxicol 47:2170–2182
Markus MA, Morris BJ (2008) Resveratrol in prevention and treatment of common clinical conditions of aging. Clin Interv Aging 3:331
Boocock DJ, Faust GES, Patel KR et al (2007) Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol Prev Biomarkers 16:1246–1252
Akter A, Islam F, Bepary S, et al (2022) CNS depressant activities of Averrhoa carambola leaves extract in thiopental-sodium model of Swiss albino mice: implication for neuro-modulatory properties. Biologia (Bratisl) 1–10
Rahman MM, Islam F, Anwar Parvez MAK et al (2022) Citrus limon L. (lemon) seed extract shows neuro-modulatory activity in an in vivo thiopental-sodium sleep model by reducing the sleep onset and enhancing the sleep duration. J Integr Neurosci 21:1–9
Burkon A, Somoza V (2008) Quantification of free and protein-bound trans-resveratrol metabolites and identification of trans-resveratrol-C/O-conjugated diglucuronides–two novel resveratrol metabolites in human plasma. Mol Nutr Food Res 52:549–557
Chiang K, Koo EH (2014) Emerging therapeutics for Alzheimer’s disease. Annu Rev Pharmacol Toxicol 54:381–405. https://doi.org/10.1146/annurev-pharmtox-011613-135932
Folch J, Petrov D, Ettcheto M et al (2016) Current research therapeutic strategies for Alzheimer’s Disease treatment. Neural Plast 2016:8501693. https://doi.org/10.1155/2016/8501693
Dhingra AK, Rathi V, Chopra B (2021) Resveratrol. In: Naturally occurring chemicals against Alzheimer’s disease. Elsevier, pp 33–47
Skretas G, Meligova AK, Villalonga-Barber C et al (2007) Engineered chimeric enzymes as tools for drug discovery: generating reliable bacterial screens for the detection, discovery, and assessment of estrogen receptor modulators. J Am Chem Soc 129:8443–8457. https://doi.org/10.1021/ja067754j
X Kou N Chen 2017 Resveratrol as a natural autophagy regulator for prevention and treatment of Alzheimer’s disease Nutrients 9. https://doi.org/10.3390/nu9090927
Acx H, Serneels L, Radaelli E, et al (2017) Inactivation of γ-secretases leads to accumulation of substrates and non-Alzheimer neurodegeneration. EMBO Mol Med 9:1088–1099. https://doi.org/10.15252/emmm.201707561
Bhattacharjee A, Chakraborty R, Sen S (2021) Plant-based β-secretase (BACE-1) inhibitors: a mechanistic approach to encounter Alzheimer’s disorder. In: factor-kappa validation of traditional medicines. Springer, pp 163–175
Tamagno E, Bardini P, Guglielmotto M et al (2006) The various aggregation states of beta-amyloid 1–42 mediate different effects on oxidative stress, neurodegeneration, and BACE-1 expression. Free Radic Biol Med 41:202–212. https://doi.org/10.1016/j.freeradbiomed.2006.01.021
Ben HS, Mishra S, Raja KMP et al (2016) Specific inhibition of β-secretase processing of the Alzheimer disease amyloid precursor protein. Cell Rep 14:2127–2141
Oehlrich D, Prokopcova H, Gijsen HJM (2014) The evolution of amidine-based brain penetrant BACE1 inhibitors. Bioorg Med Chem Lett 24:2033–2045
Yuan J, Venkatraman S, Zheng Y et al (2013) Structure-based design of β-site APP cleaving enzyme 1 (BACE1) inhibitors for the treatment of Alzheimer’s disease. J Med Chem 56:4156–4180
Vassar R (2016) BACE1 inhibition as a therapeutic strategy for Alzheimer’s disease. J Sport Heal Sci 5:388
Ghosh AK, Osswald HL (2014) BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem Soc Rev 43:6765–6813
Brodney MA, Beck EM, Butler CR et al (2015) Utilizing structures of CYP2D6 and BACE1 complexes to reduce risk of drug–drug interactions with a novel series of centrally efficacious BACE1 inhibitors. J Med Chem 58:3223–3252
Barão S, Moechars D, Lichtenthaler SF, De Strooper B (2016) BACE1 physiological functions may limit its use as therapeutic target for Alzheimer’s disease. Trends Neurosci 39:158–169
Busche MA, Hyman BT (2020) Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci 23:1183–1193. https://doi.org/10.1038/s41593-020-0687-6
Trinh TT, Fadriquela A, Bajgai J, et al (2021) Anti-oxidative effect of weak alkaline reduced water in raw 264.7 murine macrophage cells. Processes 9:. https://doi.org/10.3390/pr9112062
Kesidou E, Lagoudaki R, Touloumi O et al (2013) Autophagy and neurodegenerative disorders. Neural Regen Res 8:2275–2283. https://doi.org/10.3969/j.issn.1673-5374.2013.24.007
M Grover T Behl M Sanduja et al 2021 Exploring the potential of Aromatherapy as an Adjuvant Therapy in Cancer and its Complications: A Comprehensive Update Anticancer Agents Med Chem 21https://doi.org/10.2174/1871520621666210204201937
Sindhu RK, Najda A, Kaur P, et al (2021) Potentiality of nanoenzymes for cancer treatment and other diseases: current status and future challenges. Materials (Basel). 14
He Q, Li Z, Wang Y et al (2017) Resveratrol alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy induction. Int Immunopharmacol 50:208–215. https://doi.org/10.1016/j.intimp.2017.06.029
Yang Y, Zhang L (2020) The effects of caloric restriction and its mimetics in Alzheimer’s disease through autophagy pathways. Food Funct 11:1211–1224. https://doi.org/10.1039/c9fo02611h
Deng H, Mi M-T (2016) Resveratrol attenuates Aβ25-35 caused neurotoxicity by inducing autophagy through the TyrRS-PARP1-SIRT1 signaling pathway. Neurochem Res 41:2367–2379. https://doi.org/10.1007/s11064-016-1950-9
Akter R, Najda A, Rahman MH, et al (2021) Potential role of natural products to combat radiotherapy and their future perspectives. Molecules 26
Jeong J-K, Moon M-H, Bae B-C et al (2012) Autophagy induced by resveratrol prevents human prion protein-mediated neurotoxicity. Neurosci Res 73:99–105. https://doi.org/10.1016/j.neures.2012.03.005
Akter R, Rahman MH, Kaushik D, et al (2021) Chemo-preventive action of resveratrol: Suppression of p53—a molecular targeting approach. Molecules 26
Pourhanifeh MH, Shafabakhsh R, Reiter RJ, Asemi Z (2019) The effect of resveratrol on neurodegenerative disorders: possible protective actions against autophagy, apoptosis, inflammation and oxidative stress. Curr Pharm Des 25:2178–2191. https://doi.org/10.2174/1381612825666190717110932
Rahman MA, Rahman MH, Hossain MS, et al (2020) Molecular insights into the multifunctional role of natural compounds: Autophagy modulation and cancer prevention. Biomedicines 8
Armour SM, Baur JA, Hsieh SN, et al (2009) Inhibition of mammalian S6 kinase by resveratrol suppresses autophagy. Aging (Albany NY) 1:515–528. https://doi.org/10.18632/aging.100056
Ahsan AU, Sharma VL, Wani A, Chopra M (2020) Naringenin upregulates AMPK-mediated autophagy to rescue neuronal cells from β-amyloid ((1–42)) evoked neurotoxicity. Mol Neurobiol 57:3589–3602. https://doi.org/10.1007/s12035-020-01969-4
Lu C, Xing H, Yang L et al (2021) Resveratrol ameliorates high-fat-diet-induced abnormalities in hepatic glucose metabolism in mice via the AMP-activated protein kinase pathway. Evid Based Complement Alternat Med 2021:6616906. https://doi.org/10.1155/2021/6616906
Wang S-F, Wu M-Y, Cai C-Z et al (2016) Autophagy modulators from traditional Chinese medicine: mechanisms and therapeutic potentials for cancer and neurodegenerative diseases. J Ethnopharmacol 194:861–876. https://doi.org/10.1016/j.jep.2016.10.069
Yang J-S, Lu C-C, Kuo S-C et al (2017) Autophagy and its link to type II diabetes mellitus. Biomedicine 7:8. https://doi.org/10.1051/bmdcn/2017070201
Bonkowski MS, Sinclair DA (2016) Slowing ageing by design: the rise of NAD(+) and sirtuin-activating compounds. Nat Rev Mol Cell Biol 17:679–690. https://doi.org/10.1038/nrm.2016.93
Sinclair DA, Guarente L (2014) Small-molecule allosteric activators of sirtuins. Annu Rev Pharmacol Toxicol 54:363–380. https://doi.org/10.1146/annurev-pharmtox-010611-134657
Tarantini S, Yabluchanskiy A, Csipo T et al (2019) Treatment with the poly(ADP-ribose) polymerase inhibitor PJ-34 improves cerebromicrovascular endothelial function, neurovascular coupling responses and cognitive performance in aged mice, supporting the NAD+ depletion hypothesis of neurovascular aging. GeroScience 41:533–542. https://doi.org/10.1007/s11357-019-00101-2
Sarubbo F, Esteban S, Miralles A, Moranta D (2018) Effects of resveratrol and other polyphenols on Sirt1: relevance to brain function during aging. Curr Neuropharmacol 16:126–136. https://doi.org/10.2174/1570159X15666170703113212
Cummings J, Fox N, Vellas B, et al (2018) Biomarker and clinical trial design support for disease-modifying therapies: report of a survey of the EU/US: Alzheimer’s disease Task Force. J Prev Alzheimer’s Dis 5:103–109. https://doi.org/10.14283/jpad.2018.13
Wang Z, Guo W, Yi F et al (2021) The regulatory effect of SIRT1 on extracellular microenvironment remodeling. Int J Biol Sci 17:89–96. https://doi.org/10.7150/ijbs.52619
Heinonen T, Ciarlo E, Rigoni E et al (2019) Dual deletion of the sirtuins SIRT2 and SIRT3 impacts on metabolism and inflammatory responses of macrophages and protects from endotoxemia. Front Immunol 10:2713. https://doi.org/10.3389/fimmu.2019.02713
Zhou F, Zhang L, Zhu K et al (2021) SIRT2 ablation inhibits glucose-stimulated insulin secretion through decreasing glycolytic flux. Theranostics 11:4825–4838. https://doi.org/10.7150/thno.55330
Lan F, Lin Y, Gao Z, et al (2020) Activation of LKB1 rescues 3T3-L1 adipocytes from senescence induced by Sirt1 knock-down: a pivotal role of LKB1 in cellular aging. Aging (Albany NY) 12:18942–18956. https://doi.org/10.18632/aging.104052
Qadir MI, Anwar S (2017) Sirtuins in brain aging and neurological disorders. Crit Rev Eukaryot Gene Expr 27:321–329. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2017019532
Chandramowlishwaran P, Vijay A, Abraham D et al (2020) Role of sirtuins in modulating neurodegeneration of the enteric nervous system and central nervous system. Front Neurosci 14:614331. https://doi.org/10.3389/fnins.2020.614331
Rizzi L, Roriz-Cruz M (2018) Sirtuin 1 and Alzheimer’s disease: an up-to-date review. Neuropeptides 71:54–60. https://doi.org/10.1016/j.npep.2018.07.001
Mayo S, Benito-León J, Peña-Bautista C et al (2021) Recent evidence in epigenomics and proteomics biomarkers for early and minimally invasive diagnosis of Alzheimer’s and Parkinson’s diseases. Curr Neuropharmacol 19:1273–1303. https://doi.org/10.2174/1570159X19666201223154009
Mahady L, Nadeem M, Malek-Ahmadi M et al (2018) Frontal cortex epigenetic dysregulation during the progression of Alzheimer’s disease. J Alzheimers Dis 62:115–131. https://doi.org/10.3233/JAD-171032
Myers RW, Guan H-P, Ehrhart J et al (2017) Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science 357:507–511. https://doi.org/10.1126/science.aah5582
Y-T Lin Y-C Wu G-C Sun et al 2018 Effect of resveratrol on reactive oxygen species-induced cognitive impairment in rats with angiotensin II-induced early Alzheimer’s disease (†) J Clin Med 7https://doi.org/10.3390/jcm7100329
Yeh T-C, Shin C-S, Chen H-H et al (2018) Resveratrol regulates blood pressure by enhancing AMPK signaling to downregulate a Rac1-derived NADPH oxidase in the central nervous system. J Appl Physiol 125:40–48. https://doi.org/10.1152/japplphysiol.00686.2017
Yeh Y-C, Li C-W, Kuo Y-T et al (2018) Association between altered neurochemical metabolites and apathy in patients with Alzheimer’s disease. Int psychogeriatrics 30:761–768. https://doi.org/10.1017/S1041610217002381
Yang H, Huang F, Tao Y et al (2017) Simvastatin ameliorates ionizing radiation-induced apoptosis in the thymus by activating the AKT/sirtuin 1 pathway in mice. Int J Mol Med 40:762–770. https://doi.org/10.3892/ijmm.2017.3047
Lin C-C, Wang H-Y, Liaw S-F et al (2019) Effect of oral appliance on circulating leukocyte telomere length and SIRT1 in obstructive sleep apnea. Clin Oral Investig 23:1397–1405. https://doi.org/10.1007/s00784-018-2560-5
Udomruk S, Kaewmool C, Phitak T et al (2020) Sesamin promotes neurite outgrowth under insufficient nerve growth factor condition in PC12 cells through ERK1/2 pathway and SIRT1 modulation. Evid Based Complement Alternat Med 2020:9145458. https://doi.org/10.1155/2020/9145458
Zahedi H, Hedayati M (2018) The effect of 14 weeks aerobic exercise on resveratrol supplementation on protein UCP-1, SIRT1, PGC-1α in liver tissue, subcutaneous and visceral fat tissue in male wistar rats. J Sport Biosci 10:39–58
Li X, Yang S, Wang L et al (2019) Resveratrol inhibits paclitaxel-induced neuropathic pain by the activation of PI3K/Akt and SIRT1/PGC1α pathway. J Pain Res 12:879–890. https://doi.org/10.2147/JPR.S185873
Hatsukano T, Kurisu J, Fukumitsu K et al (2017) Thyroid hormone induces PGC-1α during dendritic outgrowth in mouse cerebellar Purkinje cells. Front Cell Neurosci 11:133. https://doi.org/10.3389/fncel.2017.00133
Li C, Wang F, Miao P et al (2020) miR-138 increases depressive-like behaviors by targeting SIRT1 in hippocampus. Neuropsychiatr Dis Treat 16:949–957. https://doi.org/10.2147/NDT.S237558
Sethi S (2018) The developmental neurotoxicity of 3, 3&vprime;-dichlorobiphenyl (PCB 11)
Fujita Y, Yamashita T (2018) Sirtuins in neuroendocrine regulation and neurological diseases. Front Neurosci 12:778. https://doi.org/10.3389/fnins.2018.00778
Kuno A, Hosoda R, Sebori R et al (2018) Resveratrol ameliorates mitophagy disturbance and improves cardiac pathophysiology of dystrophin-deficient mdx mice. Sci Rep 8:15555. https://doi.org/10.1038/s41598-018-33930-w
T Konno EP Melo JE Chambers E Avezov 2021 Intracellular Sources of ROS/H(2)O(2) in Health and neurodegeneration: spotlight on endoplasmic reticulum Cells 10https://doi.org/10.3390/cells10020233
Freyssin A, Page G, Fauconneau B, Rioux Bilan A (2020) Natural stilbenes effects in animal models of Alzheimer’s disease. Neural Regen Res 15:843–849. https://doi.org/10.4103/1673-5374.268970
Vion E, Page G, Bourdeaud E et al (2018) Trans ε-viniferin is an amyloid-β disaggregating and anti-inflammatory drug in a mouse primary cellular model of Alzheimer’s disease. Mol Cell Neurosci 88:1–6. https://doi.org/10.1016/j.mcn.2017.12.003
Cicero AFG, Ruscica M, Banach M (2019) Resveratrol and cognitive decline: a clinician perspective. Arch Med Sci 15:936–943. https://doi.org/10.5114/aoms.2019.85463
Chan EWC, Wong CW, Tan YH et al (2019) Resveratrol and pterostilbene: a comparative overview of their chemistry, biosynthesis, plant sources and pharmacological properties. J Appl Pharm Sci 9:124–129
SC Baraban 2021 A zebrafish-centric approach to antiepileptic drug development Dis Model Mech 14. https://doi.org/10.1242/dmm.049080
Lin H-S, Yue B-D, Ho PC (2009) Determination of pterostilbene in rat plasma by a simple HPLC-UV method and its application in pre-clinical pharmacokinetic study. Biomed Chromatogr 23:1308–1315. https://doi.org/10.1002/bmc.1254
Lange KW, Li S (2018) Resveratrol, pterostilbene, and dementia. BioFactors 44:83–90. https://doi.org/10.1002/biof.1396
Cichocki M, Paluszczak J, Szaefer H et al (2008) Pterostilbene is equally potent as resveratrol in inhibiting 12-O-tetradecanoylphorbol-13-acetate activated NFkappaB, AP-1, COX-2, and iNOS in mouse epidermis. Mol Nutr Food Res 52(Suppl 1):S62-70. https://doi.org/10.1002/mnfr.200700466
Wang P, Sang S (2018) Metabolism and pharmacokinetics of resveratrol and pterostilbene. BioFactors 44:16–25. https://doi.org/10.1002/biof.1410
Song Z, Han S, Pan X et al (2015) Pterostilbene mediates neuroprotection against oxidative toxicity via oestrogen receptor α signalling pathways. J Pharm Pharmacol 67:720–730. https://doi.org/10.1111/jphp.12360
Yang Y, Fan C, Wang B et al (2017) Pterostilbene attenuates high glucose-induced oxidative injury in hippocampal neuronal cells by activating nuclear factor erythroid 2-related factor 2. Biochim Biophys acta Mol basis Dis 1863:827–837. https://doi.org/10.1016/j.bbadis.2017.01.005
Li Q, Chen L, Liu X et al (2018) Pterostilbene inhibits amyloid-β-induced neuroinflammation in a microglia cell line by inactivating the NLRP3/caspase-1 inflammasome pathway. J Cell Biochem 119:7053–7062. https://doi.org/10.1002/jcb.27023
Tagde P, Tagde P, Islam F et al (2021) The multifaceted role of curcumin in advanced nanocurcumin form in the treatment and management of chronic disorders. Molecules 26:7109
Rahman M, Islam F, Afsana Mim S, et al (2022) Multifunctional therapeutic approach of nanomedicines against inflammation in cancer and aging. J Nanomater 2022:
Chopra H, Bibi S, Islam F, et al (2022) Emerging trends in the delivery of resveratrol by nanostructures: applications of nanotechnology in life sciences. J Nanomater 2022:
Chang J, Rimando A, Pallas M et al (2012) Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer’s disease. Neurobiol Aging 33:2062–2071. https://doi.org/10.1016/j.neurobiolaging.2011.08.015
Hou Y, Xie G, Miao F et al (2014) Pterostilbene attenuates lipopolysaccharide-induced learning and memory impairment possibly via inhibiting microglia activation and protecting neuronal injury in mice. Prog Neuropsychopharmacol Biol Psychiatry 54:92–102. https://doi.org/10.1016/j.pnpbp.2014.03.015
Puksasook T, Kimura S, Tadtong S et al (2017) Semisynthesis and biological evaluation of prenylated resveratrol derivatives as multi-targeted agents for Alzheimer’s disease. J Nat Med 71:665–682. https://doi.org/10.1007/s11418-017-1097-2
Oberdorff T, Dias MS, Jézéquel C, et al (2019) Unexpected fish diversity gradients in the Amazon basin. Sci Adv 5:eaav8681. https://doi.org/10.1126/sciadv.aav8681
Zhang Y, Zhang L-H, Chen X et al (2018) Piceatannol attenuates behavioral disorder and neurological deficits in aging mice via activating the Nrf2 pathway. Food Funct 9:371–378. https://doi.org/10.1039/c7fo01511a
Son Y, Byun SJ, Pae H-O (2013) Involvement of heme oxygenase-1 expression in neuroprotection by piceatannol, a natural analog and a metabolite of resveratrol, against glutamate-mediated oxidative injury in HT22 neuronal cells. Amino Acids 45:393–401. https://doi.org/10.1007/s00726-013-1518-9
Manjula R, Anuja K, Alcain FJ (2020) SIRT1 and SIRT2 activity control in neurodegenerative diseases. Front Pharmacol 11:585821. https://doi.org/10.3389/fphar.2020.585821
Peñalver P, Belmonte-Reche E, Adán N et al (2018) Alkylated resveratrol prodrugs and metabolites as potential therapeutics for neurodegenerative diseases. Eur J Med Chem 146:123–138
Tang Y-W, Shi C-J, Yang H-L et al (2019) Synthesis and evaluation of isoprenylation-resveratrol dimer derivatives against Alzheimer’s disease. Eur J Med Chem 163:307–319
Di Mauro TM (2010) Curcumin-resveratrol hybrid molecule. US7745670
Van Der Beek EM, De Wilde MC, Groenendijk M, Kamphuis PJGH (2010) Use of resveratrol or another hydroxylated stilbene for preserving cognitive functioning
Pezzuto JM, Kondratyuk TP, Ogas T (2013) Resveratrol derivatives: a patent review (2009–2012). Expert Opin Ther Pat 23:1529–1546
Vercauteren J (2010) Compositions comprising stilbene polyphenol derivatives and use thereof for combating the ageing of living organisms and diseases affecting same
Lephart ED, Andrus MB (2013) Methods for providing enhanced resveratrol activity using 4-acetoxy-resveratrol
Sinclair DA, Tsai L-H, Fischer A (2016) Cognitive performance with sirtuin activators
Walle T (2011) Bioavailability of resveratrol. Ann N Y Acad Sci 1215:9–15. https://doi.org/10.1111/j.1749-6632.2010.05842.x
Cottart C-H, Nivet-Antoine V, Laguillier-Morizot C, Beaudeux J-L (2010) Resveratrol bioavailability and toxicity in humans. Mol Nutr Food Res 54:7–16. https://doi.org/10.1002/mnfr.200900437
Nunes T, Almeida L, Rocha J-F et al (2009) Pharmacokinetics of trans-resveratrol following repeated administration in healthy elderly and young subjects. J Clin Pharmacol 49:1477–1482. https://doi.org/10.1177/0091270009339191
Amiot MJ, Romier B, Dao T-MA et al (2013) Optimization of trans-resveratrol bioavailability for human therapy. Biochimie 95:1233–1238. https://doi.org/10.1016/j.biochi.2013.01.008
Mecocci P, Polidori MC (2012) Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease. Biochim Biophys Acta 1822:631–638. https://doi.org/10.1016/j.bbadis.2011.10.006
Funding
This publication was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdelaziz University, Al-Kharj, Saudi Arabia as well as the authors are sincerely grateful to Egyptian Russian University, Badr, Egypt for its support.
Author information
Authors and Affiliations
Contributions
Fahadul Islam: conceptualization, writing—review and editing, writing original draft, Mohamed H. Nafady, Md. Rezaul Islam, Susmita Saha, Salma Rashid, Aklima Akter, Md. Harun-Or-Rashid, Muhammad Furqan Akhtar, writing—review, and editing, Md. Habibur Rahman and Ghulam Md. Ashraf: writing—review and editing, and supervision. Sherouk Hussein Sweilam, conceptualization, review and editing, and supervision.
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Islam, F., Nafady, M.H., Islam, M. et al. Resveratrol and neuroprotection: an insight into prospective therapeutic approaches against Alzheimer’s disease from bench to bedside. Mol Neurobiol 59, 4384–4404 (2022). https://doi.org/10.1007/s12035-022-02859-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12035-022-02859-7