Skip to main content

Advertisement

Log in

Context-dependent effects of inflammation on retina regeneration

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Inflammation is required for the proliferation of Müller glia (MG) into multipotent progenitors (MGPCs) in the injured fish and avian retinas. However, its function in retina regeneration has not been fully understood. Here we investigated the role of inflammation in three different retinal regeneration paradigms in zebrafish (stab-injury, NMDA-injury and insulin treatment). We first show that different types of immune cells and levels of inflammatory cytokines were found in the retinas of these paradigms. Though zymosan injection alone was insufficient to induce MG proliferation in the uninjured retina, immune suppression significantly inhibited MGPC formation in all three paradigms. Enhancing inflammation promoted MGPC formation after stab-injury, while exhibiting a context-dependent role in the NMDA or insulin models. We further show that proper levels of inflammation promoted MG reprogramming and cell cycle re-entry after stab- or NMDA-injury, but excessive inflammation also suppressed MG proliferation in the latter model. Finally, inflammation differentially affected neuronal regeneration in various injury paradigms. Our study reveals the complex and context-dependent role of inflammation during retinal repair in fish and suggests accurate inflammation management may be crucial for successful retina regeneration in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data supporting the results reported in the article are available upon request to the corresponding authors.

References

  1. Goldman D (2014) Muller glial cell reprogramming and retina regeneration. Nat Rev Neurosci 15(7):431–442

    Article  CAS  Google Scholar 

  2. Mensinger AF, Powers MK (1999) Visual function in regenerating teleost retina following cytotoxic lesioning. Vis Neurosci 16(2):241–251

    Article  CAS  Google Scholar 

  3. Fausett BV, Goldman D (2006) A role for alpha1 tubulin-expressing Muller glia in regeneration of the injured zebrafish retina. J Neurosci 26(23):6303–6313

    Article  CAS  Google Scholar 

  4. Nagashima M, Barthel LK, Raymond PA (2013) A self-renewing division of zebrafish Muller glial cells generates neuronal progenitors that require N-cadherin to regenerate retinal neurons. Development 140(22):4510–4521

    Article  CAS  Google Scholar 

  5. Lenkowski JR, Raymond PA (2014) Muller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish. Prog Retin Eye Res 40:94–123

    Article  Google Scholar 

  6. Hoang T et al (2020) Gene regulatory networks controlling vertebrate retinal regeneration. Science 370(6519):eabb8598

  7. Roska B, Sahel JA (2018) Restoring vision. Nature 557(7705):359–367

    Article  CAS  Google Scholar 

  8. Wilken MS, Reh TA (2016) Retinal regeneration in birds and mice. Curr Opin Genet Dev 40:57–64

    Article  CAS  Google Scholar 

  9. Zhou H et al (2020) Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice. Cell 181(3):590-603.e16

    Article  CAS  Google Scholar 

  10. Klein RS, Garber C, Howard N (2017) Infectious immunity in the central nervous system and brain function. Nat Immunol 18(2):132–141

    Article  CAS  Google Scholar 

  11. Finsen B, Owens T (2011) Innate immune responses in central nervous system inflammation. FEBS Lett 585(23):3806–3812

  12. Kyritsis N et al (2012) Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science 338(6112):1353–1356

    Article  CAS  Google Scholar 

  13. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318

    Article  CAS  Google Scholar 

  14. Borsini A et al (2015) The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci 38(3):145–157

    Article  CAS  Google Scholar 

  15. Kizil C, Kyritsis N, Brand M (2015) Effects of inflammation on stem cells: together they strive? EMBO Rep 16(4):416–426

    Article  CAS  Google Scholar 

  16. Stephenson J et al (2018) Inflammation in CNS neurodegenerative diseases. Immunology 154(2):204–219

    Article  CAS  Google Scholar 

  17. Furman D et al (2019) Chronic inflammation in the etiology of disease across the life span. Nat Med 25(12):1822–1832

    Article  CAS  Google Scholar 

  18. Fischer AJ et al (2014) Reactive microglia and macrophage facilitate the formation of Muller glia-derived retinal progenitors. Glia 62(10):1608–1628

    Article  Google Scholar 

  19. White DT et al (2017) Immunomodulation-accelerated neuronal regeneration following selective rod photoreceptor cell ablation in the zebrafish retina. Proc Natl Acad Sci U S A 114(18):E3719–E3728

    Article  CAS  Google Scholar 

  20. Zhang Z et al (2020) Inflammation-induced mammalian target of rapamycin signaling is essential for retina regeneration. Glia 68(1):111–127

    Article  Google Scholar 

  21. Conedera FM et al (2019) Retinal microglia signaling affects Müller cell behavior in the zebrafish following laser injury induction. Glia 67(6):1150–1166

    Article  Google Scholar 

  22. Silva NJ et al (2020) Inflammation and matrix metalloproteinase 9 (Mmp-9) regulate photoreceptor regeneration in adult zebrafish. Glia 68(7):1445–1465

    Article  Google Scholar 

  23. Renshaw SA et al (2006) A transgenic zebrafish model of neutrophilic inflammation. Blood 108(13):3976–3978

    Article  CAS  Google Scholar 

  24. Ellett F et al (2011) mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 117(4):e49-56

    Article  CAS  Google Scholar 

  25. Lahne M et al (2020) The Regenerating Adult Zebrafish Retina Recapitulates Developmental Fate Specification Programs. Front Cell Dev Biol 8:617923

    Article  Google Scholar 

  26. Wan J et al (2014) Retinal injury, growth factors, and cytokines converge on beta-catenin and pStat3 signaling to stimulate retina regeneration. Cell Rep 9(1):285–297

    Article  CAS  Google Scholar 

  27. Zhang S et al (2016) Antiviral Drug Ganciclovir Is a Potent Inhibitor of the Proliferation of Muller Glia-Derived Progenitors During Zebrafish Retinal Regeneration. Invest Ophthalmol Vis Sci 57(4):1991–2000

    Article  CAS  Google Scholar 

  28. Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33(3):256–266

    Article  CAS  Google Scholar 

  29. Mitchell DM, Lovel AG, Stenkamp DL (2018) Dynamic changes in microglial and macrophage characteristics during degeneration and regeneration of the zebrafish retina. J Neuroinflammation 15(1):163

    Article  Google Scholar 

  30. Castanheira FVS, Kubes P (2019) Neutrophils and NETs in modulating acute and chronic inflammation. Blood 133(20):2178–2185

    Article  CAS  Google Scholar 

  31. Peiseler M, Kubes P (2019) More friend than foe: the emerging role of neutrophils in tissue repair. J Clin Invest 129(7):2629–2639

    Article  Google Scholar 

  32. Sas AR et al (2020) A new neutrophil subset promotes CNS neuron survival and axon regeneration. Nat Immunol 21(12):1496–1505

    Article  Google Scholar 

  33. Ramachandran R, Fausett BV, Goldman D (2010) Ascl1a regulates Muller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nat Cell Biol 12(11):1101–1107

    Article  CAS  Google Scholar 

  34. Wan J, Ramachandran R, Goldman D (2012) HB-EGF is necessary and sufficient for Muller glia dedifferentiation and retina regeneration. Dev Cell 22(2):334–347

    Article  CAS  Google Scholar 

  35. Zhao XF et al (2014) Leptin and IL-6 family cytokines synergize to stimulate Muller glia reprogramming and retina regeneration. Cell Rep 9(1):272–284

    Article  CAS  Google Scholar 

  36. Iosif RE et al (2006) Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 26(38):9703–9712

    Article  CAS  Google Scholar 

  37. Ben-Hur T et al (2003) Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol Cell Neurosci 24(3):623–631

    Article  CAS  Google Scholar 

  38. Guadagno J et al (2015) Microglia-derived IL-1β triggers p53-mediated cell cycle arrest and apoptosis in neural precursor cells. Cell Death Dis 6(6):e1779

    Article  CAS  Google Scholar 

  39. Todd L et al (2020) Microglia Suppress Ascl1-Induced Retinal Regeneration in Mice. Cell Rep 33(11):108507

    Article  CAS  Google Scholar 

  40. Carpentier PA, Palmer TD (2009) Immune influence on adult neural stem cell regulation and function. Neuron 64(1):79–92

    Article  CAS  Google Scholar 

  41. Glass CK et al (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the China Zebrafish Resource Center (CZRC) for providing the Tg(mpx:GFP) transgenic zebrafish, and the Institute of Neuroscience, Chinese Academy of Science for sharing the Tg(mpeg1:EGFP) zebrafish.

Funding

National Natural Science Foundation of China (81970820, 31930068), National Key Research and Development Project of China (2017YFA0701304, 2017YFA0104100).

Author information

Authors and Affiliations

Authors

Contributions

CZ, XZ and YC performed the experiments; CZ, XZ, YC, ZL, SZ, ZZ, LC, HG, JL, and HX analyzed the data; HX designed the experiments and wrote the paper.

Corresponding authors

Correspondence to Jianfeng Lu or Hui Xu.

Ethics declarations

Ethics statement

All fish used in this study were treated in accordance with the Guidelines for Animal Use and Care at Nantong University.

Consent to participate

N/A

Consent for publication

N/A

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 867 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Zhang, X., Chen, Y. et al. Context-dependent effects of inflammation on retina regeneration. Mol Neurobiol 59, 4351–4367 (2022). https://doi.org/10.1007/s12035-022-02857-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02857-9

Keywords

Navigation