Skip to main content

Advertisement

Log in

BmK DKK13, A Scorpion Toxin, Alleviates Pain Behavior in a Rat Model of Trigeminal Neuralgia by Modulating Voltage-Gated Sodium Channels and MAPKs/CREB Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

BmK DKK13 (DKK13) is a mutated recombinant peptide, which has a significant antinociception in a rat model of the inflammatory pain. The purpose of this study was to evaluate the antinociceptive effect of DKK13 on trigeminal neuralgia (TN) in rats. Male Sprague–Dawley (SD) rats were treated with the chronic constriction injury of the infraorbital nerve (IoN-CCI) model to induce stable symptoms of TN. DKK13 (1.0 mg/kg, 2.0 mg/kg and 4.0 mg/kg, i.v.) or morphine (4.0 mg/kg, i.v.) was administered by tail vein once on day 14 after IoN-CCI injury. Behavioral tests, electrophysiology and western blotting were performed to investigate the role and underlying mechanisms of DKK13 on IoN-CCI model. Behavioral test results showed that DKK13 could significantly increase the mechanical pain and thermal radiation pain thresholds of IoN-CCI rats and inhibit the asymmetric spontaneous pain scratching behavior. Electrophysiological results showed that DKK13 could significantly reduce the current density of Nav1.8 in the ipsilateral side of trigeminal ganglion (TG) neurons in IoN-CCI rats, and the steady-state activation and inactivation curves of Nav1.8 shifted, respectively, to the direction of hyperpolarization and depolarization. Western blotting results showed that DKK13 significantly reduced the expression of Nav1.8 and the phosphorylation levels of key proteins of MAPKs/CREB pathway in TG tissues of IoN-CCI rats. In brief, DKK13 has a significant antinociceptive effect on IoN-CCI rats, which may be achieved by changing the dynamic characteristics of Nav1.8 channel and regulating the protein phosphorylation in MAPKs/CREB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Freeman R, Edwards R, Baron R, Bruehl S, Cruccu G, Dworkin RH, Haroutounian S (2019) AAPT Diagnostic Criteria for Peripheral Neuropathic Pain: Focal and Segmental Disorders. J Pain 20:369–393. https://doi.org/10.1016/j.jpain.2018.10.002

    Article  PubMed  Google Scholar 

  2. Zakrzewska JM, Wu J, Mon-Williams M, Phillips N, Pavitt SH (2017) Evaluating the impact of trigeminal neuralgia. Pain 158:1166–1174. https://doi.org/10.1097/j.pain.0000000000000853

    Article  PubMed  Google Scholar 

  3. Brzegowy K, Pękala PA, Zarzecki MP, Pękala JR, Roy J, Aziz HM, Tubbs RS, Walocha JA, Tomaszewski KA, Mikos M (2020) Prevalence and Clinical Implications of the Primitive Trigeminal Artery and its Variants: A Meta-Analysis. World Neurosurg 133:e401–e411. https://doi.org/10.1016/j.wneu.2019.09.042

    Article  PubMed  Google Scholar 

  4. Araya EI, Claudino RF, Piovesan EJ, Chichorro JG (2020) Trigeminal Neuralgia: Basic and Clinical Aspects. Curr Neuropharmacol 18:109–119. https://doi.org/10.2174/1570159x17666191010094350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bendtsen L, Zakrzewska JM, Abbott J, Braschinsky M, Di Stefano G, Donnet A, Eide PK, Leal PRL, Maarbjerg S, May A, Nurmikko T, Obermann M, Jensen TS, Cruccu G (2019) European Academy of Neurology guideline on trigeminal neuralgia. Eur J Neurol 26:831–849. https://doi.org/10.1111/ene.13950

    Article  CAS  PubMed  Google Scholar 

  6. Burchiel KJ (1980) Abnormal impulse generation in focally demyelinated trigeminal roots. J Neurosurg 53:674–683. https://doi.org/10.3171/jns.1980.53.5.0674

    Article  CAS  PubMed  Google Scholar 

  7. Cruccu G, Pennisi EM, Antonini G, Biasiotta A, di Stefano G, La Cesa S, Leone C, Raffa S, Sommer C, Truini A (2014) Trigeminal isolated sensory neuropathy (TISN) and FOSMN syndrome: despite a dissimilar disease course do they share common pathophysiological mechanisms? BMC Neurol 14:248. https://doi.org/10.1186/s12883-014-0248-2

    Article  PubMed  PubMed Central  Google Scholar 

  8. Witty DR, Alvaro G, Derjean D, Giblin GMP, Gunn K, Large C, Macpherson DT, Morisset V, Owen D, Palmer J, Rugiero F, Tate S, Hinckley CA, Naik H (2020) Discovery of Vixotrigine: A Novel Use-Dependent Sodium Channel Blocker for the Treatment of Trigeminal Neuralgia. ACS Med Chem Lett 11:1678–1687. https://doi.org/10.1021/acsmedchemlett.0c00263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Montano N, Conforti G, Di Bonaventura R, Meglio M, Fernandez E, Papacci F (2015) Advances in diagnosis and treatment of trigeminal neuralgia. Ther Clin Risk Manag 11:289–299. https://doi.org/10.2147/tcrm.S37592

    Article  PubMed  PubMed Central  Google Scholar 

  10. Célèrier E, Rivat C, Jun Y, Laulin JP, Larcher A, Reynier P, Simonnet G (2000) Long-lasting hyperalgesia induced by fentanyl in rats: preventive effect of ketamine. Anesthesiology 92:465–472. https://doi.org/10.1097/00000542-200002000-00029

    Article  PubMed  Google Scholar 

  11. Chia YY, Liu K, Wang JJ, Kuo MC, Ho ST (1999) Intraoperative high dose fentanyl induces postoperative fentanyl tolerance. Can J Anaesth 46:872–877. https://doi.org/10.1007/bf03012978

    Article  CAS  PubMed  Google Scholar 

  12. Chen SR, Prunean A, Pan HM, Welker KL, Pan HL (2007) Resistance to morphine analgesic tolerance in rats with deleted transient receptor potential vanilloid type 1-expressing sensory neurons. Neuroscience 145:676–685. https://doi.org/10.1016/j.neuroscience.2006.12.016

    Article  CAS  PubMed  Google Scholar 

  13. Mao J, Price DD, Mayer DJ (1994) Thermal hyperalgesia in association with the development of morphine tolerance in rats: roles of excitatory amino acid receptors and protein kinase C. J Neurosci 14:2301–2312. https://doi.org/10.1523/jneurosci.14-04-02301.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Osteen JD, Herzig V, Gilchrist J, Emrick JJ, Zhang C, Wang X, Castro J, Garcia-Caraballo S, Grundy L, Rychkov GY, Weyer AD, Dekan Z, Undheim EA, Alewood P, Stucky CL, Brierley SM, Basbaum AI, Bosmans F, King GF, Julius D (2016) Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature 534:494–499. https://doi.org/10.1038/nature17976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deuis JR, Zimmermann K, Romanovsky AA, Possani LD, Cabot PJ, Lewis RJ, Vetter I (2013) An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways. Pain 154:1749–1757. https://doi.org/10.1016/j.pain.2013.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li CL, Liu XF, Li GX, Ban MQ, Chen JZ, Cui Y, Zhang JH, Wu CF (2016) Antinociceptive Effects of AGAP, a Recombinant Neurotoxic Polypeptide: Possible Involvement of the Tetrodotoxin-Resistant Sodium Channels in Small Dorsal Root Ganglia Neurons. Front Pharmacol 7:496. https://doi.org/10.3389/fphar.2016.00496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sangameswaran L, Delgado SG, Fish LM, Koch BD, Jakeman LB, Stewart GR, Sze P, Hunter JC, Eglen RM, Herman RC (1996) Structure and function of a novel voltage-gated, tetrodotoxin-resistant sodium channel specific to sensory neurons. J Biol Chem 271:5953–5956. https://doi.org/10.1074/jbc.271.11.5953

    Article  CAS  PubMed  Google Scholar 

  18. Agarwal N, Offermanns S, Kuner R (2004) Conditional gene deletion in primary nociceptive neurons of trigeminal ganglia and dorsal root ganglia. Genesis 38:122–129. https://doi.org/10.1002/gene.20010

    Article  CAS  PubMed  Google Scholar 

  19. Djouhri L, Fang X, Okuse K, Wood JN, Berry CM, Lawson SN (2003) The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J Physiol 550:739–752. https://doi.org/10.1113/jphysiol.2003.042127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Padilla F, Couble ML, Coste B, Maingret F, Clerc N, Crest M, Ritter AM, Magloire H, Delmas P (2007) Expression and localization of the Nav1.9 sodium channel in enteric neurons and in trigeminal sensory endings: implication for intestinal reflex function and orofacial pain. Mol Cell Neurosci 35:138–152. https://doi.org/10.1016/j.mcn.2007.02.008

    Article  CAS  PubMed  Google Scholar 

  21. Renganathan M, Cummins TR, Waxman SG (2001) Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol 86:629–640. https://doi.org/10.1152/jn.2001.86.2.629

    Article  CAS  PubMed  Google Scholar 

  22. Abrahamsen B, Zhao J, Asante CO, Cendan CM, Marsh S, Martinez-Barbera JP, Nassar MA, Dickenson AH, Wood JN (2008) The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 321:702–705. https://doi.org/10.1126/science.1156916

    Article  CAS  PubMed  Google Scholar 

  23. Baker MD, Chandra SY, Ding Y, Waxman SG, Wood JN (2003) GTP-induced tetrodotoxin-resistant Na+ current regulates excitability in mouse and rat small diameter sensory neurones. J Physiol 548:373–382. https://doi.org/10.1113/jphysiol.2003.039131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Amaya F, Wang H, Costigan M, Allchorne AJ, Hatcher JP, Egerton J, Stean T, Morisset V, Grose D, Gunthorpe MJ, Chessell IP, Tate S, Green PJ, Woolf CJ (2006) The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. J Neurosci 26:12852–12860. https://doi.org/10.1523/jneurosci.4015-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leo S, D'Hooge R, Meert T (2010) Exploring the role of nociceptor-specific sodium channels in pain transmission using Nav1.8 and Nav1.9 knockout mice. Behav Brain Res 208:149–157. https://doi.org/10.1016/j.bbr.2009.11.023

    Article  CAS  PubMed  Google Scholar 

  26. Porreca F, Lai J, Bian D, Wegert S, Ossipov MH, Eglen RM, Kassotakis L, Novakovic S, Rabert DK, Sangameswaran L, Hunter JC (1999) A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/SNS and NaN/SNS2, in rat models of chronic pain. Proc Natl Acad Sci U S A 96:7640–7644. https://doi.org/10.1073/pnas.96.14.7640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hudmon A, Choi JS, Tyrrell L, Black JA, Rush AM, Waxman SG, Dib-Hajj SD (2008) Phosphorylation of sodium channel Na(v)1.8 by p38 mitogen-activated protein kinase increases current density in dorsal root ganglion neurons. J Neurosci 28:3190–3201. https://doi.org/10.1523/jneurosci.4403-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kawasaki Y, Zhang L, Cheng JK, Ji RR (2008) Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 28:5189–5194. https://doi.org/10.1523/jneurosci.3338-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dworkin S, Heath JK, deJong-Curtain TA, Hogan BM, Lieschke GJ, Malaterre J, Ramsay RG, Mantamadiotis T (2007) CREB activity modulates neural cell proliferation, midbrain-hindbrain organization and patterning in zebrafish. Dev Biol 307:127–141. https://doi.org/10.1016/j.ydbio.2007.04.026

    Article  CAS  PubMed  Google Scholar 

  30. Wang X, Liu Y, Zhang H, Jin J, Ma Y, Leng Y (2021) Sinomenine alleviates dorsal root ganglia inflammation to inhibit neuropathic pain via the p38 MAPK/CREB signalling pathway. Eur J Pharmacol 897:173945. https://doi.org/10.1016/j.ejphar.2021.173945

    Article  CAS  PubMed  Google Scholar 

  31. Yu LN, Sun LH, Wang M, Wang LJ, Wu Y, Yu J, Wang WN, Zhang FJ, Li X, Yan M (2017) EphrinB-EphB Signaling Induces Hyperalgesia through ERK5/CREB Pathway in Rats. Pain Physician 20:E563–e574

    PubMed  Google Scholar 

  32. Ruan JP, Mao QH, Lu WG, Cai XT, Chen J, Li Q, Fu Q, Yan HJ, Cao JL, Cao P (2018) Inhibition of spinal MAPKs by scorpion venom peptide BmK AGAP produces a sensory-specific analgesic effect. Mol Pain 14:1744806918761238. https://doi.org/10.1177/1744806918761238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maatoug R, Jebali J, Guieu R, De Waard M, Kharrat R (2018) BotAF, a new Buthus occitanus tunetanus scorpion toxin, produces potent analgesia in rodents. Toxicon 149:72–85. https://doi.org/10.1016/j.toxicon.2018.01.003

    Article  CAS  PubMed  Google Scholar 

  34. Xu J, Jiang Y, Wan L, Wang Q, Huang Z, Liu Y, Wu Y, Chen Z, Liu X (2017) Feeding recombinant E. coli with GST-mBmKTX fusion protein increases the fecundity and lifespan of Caenorhabditis elegans. Peptides 89:1–8. https://doi.org/10.1016/j.peptides.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  35. Webb B, Sali A (2016) Comparative Protein Structure Modeling Using MODELLER. Curr Protoc Bioinformatics 54:5.6.1–5.6.37. https://doi.org/10.1002/cpbi.3

    Article  Google Scholar 

  36. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486. https://doi.org/10.1007/bf00228148

    Article  CAS  PubMed  Google Scholar 

  37. Hooft R, Vriend G, Sander C, Abola E (1996) Errors in protein structures. Nature 381:272–272

    Article  CAS  Google Scholar 

  38. Rong C, Li L and Weng Z (2013) PROTEINS: Structure, Function, and Genetics 52:80–87 (2003) ZDOCK: An Initial-Stage Protein-Docking Algorithm.

  39. Li L, Rong C, Weng Z (2003) RDOCK: refinement of Rigid-body Protein Docking Predictions. Proteins: Struct Funct Genet 53:693–707

    Article  CAS  Google Scholar 

  40. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107. https://doi.org/10.1016/0304-3959(88)90209-6

    Article  PubMed  Google Scholar 

  41. Fu J, Mu G, Qiu L, Zhao J, Ou C (2020) c-Abl-p38alpha signaling pathway mediates dopamine neuron loss in trigeminal neuralgia. Mol Pain 16:1744806920930855. https://doi.org/10.1177/1744806920930855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vos BP, Strassman AM, Maciewicz RJ (1994) Behavioral evidence of trigeminal neuropathic pain following chronic constriction injury to the rat's infraorbital nerve. J Neurosci 14:2708–2723. https://doi.org/10.1523/jneurosci.14-05-02708.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pei L, Lin CY, Dai JP, Yin GF (2007) Facial pain induces the alteration of transient receptor potential vanilloid receptor 1 expression in rat trigeminal ganglion. Neurosci Bull 23:92–100. https://doi.org/10.1007/s12264-007-0013-2

    Article  CAS  PubMed  Google Scholar 

  44. Luo DS, Zhang T, Zuo CX, Zuo ZF, Li H, Wu SX, Wang W, Li YQ (2012) An animal model for trigeminal neuralgia by compression of the trigeminal nerve root. Pain Physician 15:187–196

    PubMed  Google Scholar 

  45. von Hehn CA, Baron R, Woolf CJ (2012) Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 73:638–652. https://doi.org/10.1016/j.neuron.2012.02.008

    Article  CAS  Google Scholar 

  46. Ding W, You Z, Shen S, Yang J, Lim G, Doheny JT, Chen L, Zhu S, Mao J (2017) An Improved Rodent Model of Trigeminal Neuropathic Pain by Unilateral Chronic Constriction Injury of Distal Infraorbital Nerve. J Pain 18:899–907. https://doi.org/10.1016/j.jpain.2017.02.427

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rowe AH, Rowe MP (2008) Physiological resistance of grasshopper mice (Onychomys spp.) to Arizona bark scorpion (Centruroides exilicauda) venom. Toxicon 52:597–605. https://doi.org/10.1016/j.toxicon.2008.07.004

    Article  CAS  PubMed  Google Scholar 

  48. Rowe AH, Xiao Y, Rowe MP, Cummins TR, Zakon HH (2013) Voltage-gated sodium channel in grasshopper mice defends against bark scorpion toxin. Science 342:441–446. https://doi.org/10.1126/science.1236451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cummins TR, Dib-Hajj SD, Black JA, Akopian AN, Wood JN, Waxman SG (1999) A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J Neurosci 19:Rc43. https://doi.org/10.1523/JNEUROSCI.19-24-j0001.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Decosterd I, Ji RR, Abdi S, Tate S, Woolf CJ (2002) The pattern of expression of the voltage-gated sodium channels Na(v)1.8 and Na(v)1.9 does not change in uninjured primary sensory neurons in experimental neuropathic pain models. Pain 96:269–277. https://doi.org/10.1016/s0304-3959(01)00456-0

    Article  CAS  PubMed  Google Scholar 

  51. Dib-Hajj S, Black JA, Felts P, Waxman SG (1996) Down-regulation of transcripts for Na channel alpha-SNS in spinal sensory neurons following axotomy. Proc Natl Acad Sci U S A 93:14950–14954. https://doi.org/10.1073/pnas.93.25.14950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Okuse K, Chaplan SR, McMahon SB, Luo ZD, Calcutt NA, Scott BP, Akopian AN, Wood JN (1997) Regulation of expression of the sensory neuron-specific sodium channel SNS in inflammatory and neuropathic pain. Mol Cell Neurosci 10:196–207. https://doi.org/10.1006/mcne.1997.0657

    Article  CAS  PubMed  Google Scholar 

  53. Sleeper AA, Cummins TR, Dib-Hajj SD, Hormuzdiar W, Tyrrell L, Waxman SG, Black JA (2000) Changes in expression of two tetrodotoxin-resistant sodium channels and their currents in dorsal root ganglion neurons after sciatic nerve injury but not rhizotomy. J Neurosci 20:7279–7289. https://doi.org/10.1523/jneurosci.20-19-07279.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sanna MD, Ghelardini C, Galeotti N (2016) Blockade of the spinal BDNF-activated JNK pathway prevents the development of antiretroviral-induced neuropathic pain. Neuropharmacology 105:543–552. https://doi.org/10.1016/j.neuropharm.2016.02.016

    Article  CAS  PubMed  Google Scholar 

  55. Kong F, Sun K, Zhu J, Li F, Lin F, Sun X, Luo X, Ren C, Lu L, Zhao S, Sun J, Wang Y, Shi J (2021) PD-L1 Improves Motor Function and Alleviates Neuropathic Pain in Male Mice After Spinal Cord Injury by Inhibiting MAPK Pathway. Front Immunol 12:670646. https://doi.org/10.3389/fimmu.2021.670646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang T, Zhang R, Xu B, Zhang M, Zhang Q, Li N, Qiu Y, Chen D, Xu K, Xiao J, Zhang N, Fang Q (2021) Spinal endomorphins attenuate burn-injury pain in male mice by inhibiting p38 MAPK signaling pathway through the mu-opioid receptor. Eur J Pharmacol 903:174139. https://doi.org/10.1016/j.ejphar.2021.174139

    Article  CAS  PubMed  Google Scholar 

  57. Sundström E, Mo LL (2002) Mechanisms of glutamate release in the rat spinal cord slices during metabolic inhibition. J Neurotrauma 19:257–266. https://doi.org/10.1089/08977150252806992

    Article  PubMed  Google Scholar 

  58. Zahn PK, Sluka KA, Brennan TJ (2002) Excitatory amino acid release in the spinal cord caused by plantar incision in the rat. Pain 100:65–76. https://doi.org/10.1016/s0304-3959(02)00241-5

    Article  CAS  PubMed  Google Scholar 

  59. Lohr C, Deitmer JW (2006) Calcium signaling in invertebrate glial cells. Glia 54:642–649. https://doi.org/10.1002/glia.20368

    Article  PubMed  Google Scholar 

  60. Huang CT, Chen SH, Lin SC, Chen WT, Lue JH, Tsai YJ (2018) Erythropoietin reduces nerve demyelination, neuropathic pain behavior and microglial MAPKs activation through erythropoietin receptors on Schwann cells in a rat model of peripheral neuropathy. Glia 66:2299–2315. https://doi.org/10.1002/glia.23461

    Article  PubMed  Google Scholar 

  61. Liu X, Li C, Chen J, Du J, Zhang J, Li G, Jin X, Wu C (2014) AGAP, a new recombinant neurotoxic polypeptide, targets the voltage-gated calcium channels in rat small diameter DRG neurons. Biochem Biophys Res Commun 452:60–65. https://doi.org/10.1016/j.bbrc.2014.08.051

    Article  CAS  PubMed  Google Scholar 

  62. Cestèle S, Qu Y, Rogers JC, Rochat H, Scheuer T, Catterall WA (1998) Voltage sensor-trapping: enhanced activation of sodium channels by beta-scorpion toxin bound to the S3-S4 loop in domain II. Neuron 21:919–931. https://doi.org/10.1016/s0896-6273(00)80606-6

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (grant number: 81073081, 81973227), Scientific Research Foundation of the Education Department of Liaoning Province (2021), Scientific Research Staring Foundation for the Returned Overseas Scholars, Shenyang Pharmaceutical University (grant number: GGJJ2021101), and National Science and Technology Major Project of the Ministry of Science and Technology of China (grant number: 2018ZX09735005).

Funding

This research was funded by the National Natural Science Foundation of China (grant number: 81073081, 81973227), Scientific Research Foundation of the Education Department of Liaoning Province (2021), Scientific Research Staring Foundation for the Returned Overseas Scholars, Shenyang Pharmaceutical University (grant number: GGJJ2021101), and National Science and Technology Major Project of the Ministry of Science and Technology of China (grant number: 2018ZX09735005).

Author information

Authors and Affiliations

Authors

Contributions

Chun-li Li did conceptualization, supervision and funding acquisition; Hai-peng Wang, Chun-yun Chen and Bai Fei performed methodology; Ran Yang and Hai-peng Wang done formal analysis, visualization and data curation; Yong-bo Song did resources; Ran Yang contributed to writing—original draft preparation; Chun-li Li and Ran Yang performed writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Chunli Li.

Ethics declarations

Research Involving Human and Animal Participants

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Animal Ethics Committee of Shenyang Pharmaceutical University, China (SCXK (Liao) 2020-0001).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12035_2022_2855_MOESM1_ESM.docx

Supplementary file1 Supplementary Materials Fig. S1 (a1-f1) Homology modeling structure of BmK ANGP and its mutants. (a2-f2) Interaction model of BmK ANGP and its mutants with Nav1.8. Tab. S1. Results of acetic acid writhing test of BmK ANGP and its mutants. (DOCX 1417 kb)

Supplementary file2 (XLSX 9461 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Song, Y., Wang, H. et al. BmK DKK13, A Scorpion Toxin, Alleviates Pain Behavior in a Rat Model of Trigeminal Neuralgia by Modulating Voltage-Gated Sodium Channels and MAPKs/CREB Pathway. Mol Neurobiol 59, 4535–4549 (2022). https://doi.org/10.1007/s12035-022-02855-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02855-x

Keywords

Navigation