Skip to main content

Advertisement

Log in

Targeting the TLR4/NF-κΒ Axis and NLRP1/3 Inflammasomes by Rosuvastatin: A Role in Impeding Ovariectomy-Induced Cognitive Decline Neuropathology in Rats

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Postmenopausal hormone-related cognitive decline has gained an immense interest to explore the underlying mechanisms and potential therapies. The current work aimed to study the possible beneficial effect of rosuvastatin (ROS) on the cognitive decline induced by ovariectomy in rats. Four groups were used as follows: control group, control + rosuvastatin, ovariectomy, and ovariectomy + rosuvastatin. After sham operation or ovariectomy, rats were given saline or oral dosages of ROS (2 mg/kg) every day for 30 days. The cognitive functions were assessed using the Morris water maze paradigm, Y-maze test, and new object recognition test. After rat killing, TLR4, caspase-8, and NLRP mRNA expression and protein levels of ASC, AIM2, caspase-1, NLRP1, and PKR were measured in hippocampus. This was complemented by the estimation of tissue content of NF-κΒ, IL-1β, and IL-18 and serum lipid profile quantification. Rosuvastatin showed a promising potential for halting the cognitive impairments induced by estrogen decline through interfering with the TLR4/NF-κΒ/NLRP1/3 axis and inflammasomes activation and the subsequent pyroptosis. This was complemented by the amendment in the deranged lipid profile. Rosuvastatin may exert a beneficial role in attenuating the inflammatory and apoptotic signaling mechanisms associated with postmenopausal cognitive decline. Further investigations are needed to unveil the relationship between deranged plasma lipids and cognitive function.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are not publicly available by the Cairo University policies but are available from the corresponding author on reasonable request.

Abbreviations

NLRs:

Nucleotide-binding oligomerization domain (NOD)-like receptors

ASC:

Apoptosis-associated speck-like protein containing a CARD

ALRs:

Absent-in-melanoma-2 (AIM2)-like receptors

OVX:

Ovariectomized

ROS:

Rosuvastatin

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

TLR4:

Toll-like receptor-4

NF- κB:

Nuclear factor kappa B

PKR:

Double-stranded RNA-dependent protein kinase

References

  1. Vearncombe KJ, Pachana NA (2009) Is cognitive functioning detrimentally affected after early, induced menopause? Menopause 16:188–198. https://doi.org/10.1097/GME.0B013E3181775EB4

    Article  PubMed  Google Scholar 

  2. Pike CJ, Carroll JC, Rosario ER, Barron AM (2009) Protective actions of sex steroid hormones in Alzheimer’s disease. Front Neuroendocrinol. 30:239–258. https://doi.org/10.1016/J.YFRNE.2009.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Imtiaz B, Tolppanen AM, Solomon A, Soininen H, Kivipelto M (2017) Estradiol and Cognition in the Cardiovascular Risk Factors, Aging and Dementia (CAIDE) Cohort Study. J Alzheimers Dis 56:453–458. https://doi.org/10.3233/JAD-160643

    Article  CAS  PubMed  Google Scholar 

  4. Duarte AC, Hrynchak MV, Gonçalves I, Quintela T, Santos CR (2016) Sex Hormone Decline and Amyloid β Synthesis, Transport and Clearance in the Brain. J Neuroendocrinol. 28. https://doi.org/10.1111/JNE.12432

  5. Yun J, Yeo IJ, Hwang CJ, Choi DY, Im HS, Kim JY, Choi WR, Jung MH, Han SB, Hong JT (2018) Estrogen deficiency exacerbates Aβ-induced memory impairment through enhancement of neuroinflammation, amyloidogenesis and NF-ĸB activation in ovariectomized mice. Brain Behav Immun. 73:282–293. https://doi.org/10.1016/J.BBI.2018.05.013

    Article  CAS  PubMed  Google Scholar 

  6. Jezierski MK, Sohrabji F (2000) Region- and peptide-specific regulation of the neurotrophins by estrogen. Mol Brain Res 85:77–84. https://doi.org/10.1016/S0169-328X(00)00244-8

    Article  CAS  PubMed  Google Scholar 

  7. Singh M, Meyer EM, Simpkins JW (1995) The effect of ovariectomy and estradiol replacement on brain-derived neurotrophic factor messenger ribonucleic acid expression in cortical and hippocampal brain regions of female Sprague-Dawley rats. Endocrinology 136:2320–2324. https://doi.org/10.1210/ENDO.136.5.7720680

    Article  CAS  PubMed  Google Scholar 

  8. Rh S (2007) The complex role of estrogens in inflammation. Endocr Rev 28:521–574. https://doi.org/10.1210/ER.2007-0001

    Article  Google Scholar 

  9. Altstiel LD, Sperber K (1991) Cytokines in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 15:481–495. https://doi.org/10.1016/0278-5846(91)90023-T

    Article  CAS  PubMed  Google Scholar 

  10. Breitner JCS (1996) Inflammatory processes and antiinflammatory drugs in Alzheimer’s disease: A current appraisal. Neurobiol Aging 17:789–794. https://doi.org/10.1016/0197-4580(96)00109-1

    Article  CAS  PubMed  Google Scholar 

  11. Takeuchi O, Akira S (2010) Pattern Recognition Receptors and Inflammation. Cell 140:805–820. https://doi.org/10.1016/J.CELL.2010.01.022

    Article  CAS  PubMed  Google Scholar 

  12. Iwasaki A, Medzhitov R (2010) Regulation of Adaptive Immunity by the Innate Immune System. Science 80-.(327):291–295. https://doi.org/10.1126/SCIENCE.1183021

    Article  Google Scholar 

  13. Rathinam VAK, Vanaja SK, Fitzgerald KA (2012) Regulation of inflammasome signaling. Nat Immunol. 2012 134 13:333–342. https://doi.org/10.1038/ni.2237

    Article  CAS  Google Scholar 

  14. Rathinam VAK, Fitzgerald KA (2016) Inflammasome Complexes: Emerging Mechanisms and Effector Functions. Cell 165:792–800. https://doi.org/10.1016/J.CELL.2016.03.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E (2018) Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov. 2018 178 17:588–606. https://doi.org/10.1038/nrd.2018.97

    Article  CAS  Google Scholar 

  16. Yi Y-S (2017) Caspase-11 non-canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses. Immunology 152:207–217. https://doi.org/10.1111/IMM.12787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ye JS, Chen L, Lu YY, Lei SQ, Peng M, Xia ZY (2019) Honokiol-mediated mitophagy ameliorates postoperative cognitive impairment induced by surgery/sevoflurane via inhibiting the activation of NLRP3 inflammasome in the hippocampus. Oxid Med Cell Longev. 2019. https://doi.org/10.1155/2019/8639618

  18. Cheon SY, Kim JM, Kam EH, Ho C-C, Kim EJ, Chung S, Jeong J-H, Lee DD-H, Lee S-W, Koo B-N (2017) Cell-penetrating interactomic inhibition of nuclear factor-kappa B in a mouse model of postoperative cognitive dysfunction. Sci Reports 2017 71 7:1–16. https://doi.org/10.1038/s41598-017-14027-2

    Article  CAS  Google Scholar 

  19. Xu Y, Sheng H, Bao Q, Wang Y, Lu J, Ni X (2016) NLRP3 inflammasome activation mediates estrogen deficiency-induced depression- and anxiety-like behavior and hippocampal inflammation in mice. Brain Behav Immun 56:175–186. https://doi.org/10.1016/J.BBI.2016.02.022

    Article  CAS  PubMed  Google Scholar 

  20. Postmus I, Trompet S, Deshmukh HA, Barnes MR, Li X, Warren HR, Chasman DI, Zhou K et al (2014) Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins. Nat Commun. 5. https://doi.org/10.1038/NCOMMS6068

  21. Jd S (2014) Statins and ischemic stroke. JAMA 312:749–750. https://doi.org/10.1001/JAMA.2014.8357

  22. McFarland AJ, Davey AK, Anoopkumar-Dukie S (2017) Statins Reduce Lipopolysaccharide-Induced Cytokine and Inflammatory Mediator Release in an In Vitro Model of Microglial-Like Cells. Mediators Inflamm. 2017. https://doi.org/10.1155/2017/2582745

  23. Hosaka A, Araki W, Oda A, Tomidokoro Y, Tamaoka A (2013) Statins reduce amyloid β-peptide production by modulating amyloid precursor protein maturation and phosphorylation through a cholesterol-independent mechanism in cultured neurons. Neurochem Res. 38:589–600. https://doi.org/10.1007/S11064-012-0956-1

    Article  CAS  PubMed  Google Scholar 

  24. Husain I, Akhtar M, Abdin MZ, Islamuddin M, Shaharyar M, Najmi AK (n.d.) Rosuvastatin ameliorates cognitive impairment in rats fed with high-salt and cholesterol diet via inhibiting acetylcholinesterase activity and amyloid beta peptide aggregation. https://doi.org/10.1177/0960327117705431

  25. Zheng L, Cai Y, Qiu B, Lan L, Lin J, Fan Y (2020) Rosuvastatin Improves Cognitive Function of Chronic Hypertensive Rats by Attenuating White Matter Lesions and Beta-Amyloid Deposits. Biomed Res Int. 2020. https://doi.org/10.1155/2020/4864017

  26. Liu CW, Yang F, Cheng SZ, Liu Y, Wan LH, Cong HL (2017) Rosuvastatin postconditioning protects isolated hearts against ischemia-reperfusion injury: The role of radical oxygen species, PI3K-Akt-GSK-3β pathway, and mitochondrial permeability transition pore. Cardiovasc Ther 35:3–9. https://doi.org/10.1111/1755-5922.12225

    Article  CAS  PubMed  Google Scholar 

  27. Li W, Li Y, Zhu S, Ji Q, Shu Y, Zhang L, Liu J (2015) Rosuvastatin attenuated the existing morphine tolerance in rats with L5 spinal nerve transection through inhibiting activation of astrocytes and phosphorylation of ERK42/44. Neurosci Lett 584:314–319. https://doi.org/10.1016/J.NEULET.2014.11.003

    Article  CAS  PubMed  Google Scholar 

  28. Evangelista FF, Costa-Ferreira W, Mantelo FM, Beletini LF, de Souza AH, de LaetSant’Ana P, de Lima KK, Crestani CC, Falavigna-Guilherme AL (2021) Rosuvastatin revert memory impairment and anxiogenic-like effect in mice infected with the chronic ME-49 strain of Toxoplasma gondii. PLoS One 16:e0250079. https://doi.org/10.1371/JOURNAL.PONE.0250079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zi L, Zhou W, Xu J, Li J, Li N, Xu J, You C, Wang C, Tian M (2021) Rosuvastatin Nanomicelles Target Neuroinflammation and Improve Neurological Deficit in a Mouse Model of Intracerebral Hemorrhage. https://doi.org/10.2147/IJN.S294916

  30. Cheon S (2017) Hippocampus-dependent Task Improves the Cognitive Function after Ovariectomy in Rats. Osong Public Heal Res Perspect 8:227–234. https://doi.org/10.24171/J.PHRP.2017.8.3.10

    Article  Google Scholar 

  31. Garg M, Khanna D, Kalra S, Balakumar P (2016) Chronic oral administration of low-dose combination of fenofibrate and rosuvastatin protects the rat heart against experimentally induced acute myocardial infarction. Fundam Clin Pharmacol 30:394–405. https://doi.org/10.1111/FCP.12204

    Article  CAS  PubMed  Google Scholar 

  32. Boldarine VT, Pedroso AP, Neto NIP, Dornellas APS, Nascimento CMO, Oyama LM, Ribeiro EB (2019) High-fat diet intake induces depressive-like behavior in ovariectomized rats. Sci Rep. 9. https://doi.org/10.1038/S41598-019-47152-1

  33. Wang P, Li H, Barde S, Zhang MD, Sun J, Wang T, Zhang P, Luo H, Wang Y, Yang Y, Wang C, Svenningsson P, Theodorsson E, Hökfelt TGM, Xu ZQD (2016) Depression-like behavior in rat: Involvement of galanin receptor subtype 1 in the ventral periaqueductal gray. Proc Natl Acad Sci U S A 113:E4726–E4735. https://doi.org/10.1073/PNAS.1609198113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60. https://doi.org/10.1016/0165-0270(84)90007-4

    Article  CAS  PubMed  Google Scholar 

  35. Karnam HB, Zhao Q, Shatskikh T, Holmes GL (2009) Effect of age on cognitive sequelae following early life seizures in rats. Epilepsy Res 85:221–230. https://doi.org/10.1016/J.EPLEPSYRES.2009.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jeltsch H, Bertrand F, Lazarus C, Cassel JC (2001) Cognitive performances and locomotor activity following dentate granule cell damage in rats: role of lesion extent and type of memory tested. Neurobiol Learn Mem 76:81–105. https://doi.org/10.1006/NLME.2000.3986

    Article  CAS  PubMed  Google Scholar 

  37. Salimi M, Tabasi F, Nazari M, Ghazvineh S, Salimi A, Jamaati H, Raoufy MR (2021) The olfactory bulb modulates entorhinal cortex oscillations during spatial working memory, J Physiol Sci. 71. https://doi.org/10.1186/S12576-021-00805-1

  38. Kim SA, Chai JH, Jang EH (2021) Prenatal Trimethyltin Exposure Induces Long-Term DNA Methylation Changes in the Male Mouse Hippocampus. Int J Mol Sci 22:8009. https://doi.org/10.3390/IJMS22158009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13:93–110. https://doi.org/10.1007/S10339-011-0430-Z

    Article  CAS  PubMed  Google Scholar 

  40. Stein EA, Adolph R, Rice V, Glueck CJ, Spitz HB (1986) Nonprogression of coronary artery atherosclerosis in homozygous familial hypercholesterolemia after 31 months of repetitive plasma exchange. Clin Cardiol 9:115–119. https://doi.org/10.1002/CLC.4960090306

    Article  CAS  PubMed  Google Scholar 

  41. Nägele U, Hägele EO, Sauer G, Wiedemann E, Lehmann P, Wahlefeld AW, Gruber W (1984) Reagent for the enzymatic determination of serum total triglycerides with improved lipolytic efficiency. J Clin Chem Clin Biochem 22:165–174. https://doi.org/10.1515/CCLM.1984.22.2.165

    Article  PubMed  Google Scholar 

  42. Friedewald WT, Levy R, Fredrickson DS (n.d.) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge - PubMed. https://pubmed.ncbi.nlm.nih.gov/4337382/ (accessed August 22, 2021)

  43. R. (Roger) Mead (1988) The design of experiments : statistical principles for practical applications. Cambridge University Press, Cambridge, pp 620

  44. Dixon WJ (1954) Power Under Normality of Several Nonparametric Tests. 25 610–614. https://doi.org/10.1214/AOMS/1177728732

  45. Agca C, Klakotskaia D, Stopa EG, Schachtman TR, Agca Y (2020) Ovariectomy Influences Cognition and Markers of Alzheimer’s Disease. J Alzheimers Dis 73:529–541. https://doi.org/10.3233/JAD-190935

    Article  CAS  PubMed  Google Scholar 

  46. Benedusi V, Meda C, Della Torre S, Monteleone G, Vegeto E, Maggi A (2012) A Lack of Ovarian Function Increases Neuroinflammation in Aged Mice. Endocrinology. 153:2777–2788. https://doi.org/10.1210/EN.2011-1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kalaitzidis D, Gilmore TD (2005) Transcription factor cross-talk: the estrogen receptor and NF-κB. Trends Endocrinol Metab 16:46–52. https://doi.org/10.1016/J.TEM.2005.01.004

    Article  CAS  PubMed  Google Scholar 

  48. Saied NM, Georgy GS, Hussien RM, Hassan WA (2021) Neuromodulatory effect of curcumin on catecholamine systems and inflammatory cytokines in ovariectomized female rats. Clin Exp Pharmacol Physiol 48:337–346. https://doi.org/10.1111/1440-1681.13427

    Article  CAS  PubMed  Google Scholar 

  49. Han J-H, Park J, Kang T-B, Lee K-H (2021) Regulation of Caspase-8 Activity at the Crossroads of Pro-Inflammation and Anti-Inflammation. Int J Mol Sci 22:3318. https://doi.org/10.3390/IJMS22073318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chi W, Li F, Chen H, Wang Y, Zhu Y, Yang X, Zhu J, Wu F et al (2014) Caspase-8 promotes NLRP1/NLRP3 inflammasome activation and IL-1β production in acute glaucoma. Proc Natl Acad Sci USA. 111:11181–11186. https://doi.org/10.1073/PNAS.1402819111

  51. Franchi L, Eigenbrod T, Núñez G (2009) Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol 183:792–796. https://doi.org/10.4049/JIMMUNOL.0900173

    Article  CAS  PubMed  Google Scholar 

  52. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J et al (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791. https://doi.org/10.4049/JIMMUNOL.0901363

    Article  CAS  PubMed  Google Scholar 

  53. Li H, Xu H, Sun B (2012) Lipopolysaccharide regulates MMP-9 expression through TLR4/NF-κB signaling in human arterial smooth muscle cells. Mol Med Rep 6:774–778. https://doi.org/10.3892/MMR.2012.1010

    Article  CAS  PubMed  Google Scholar 

  54. Zhou Q, Zhu L, Zhang D, Li N, Li Q, Dai P, Mao Y, Li X et al (2016) Oxidative Stress-Related Biomarkers in Postmenopausal Osteoporosis: A Systematic Review and Meta-Analyses. Dis Markers. 2016. https://doi.org/10.1155/2016/7067984

  55. Lj M (2000) Oxyradicals and DNA damage. Carcinogenesis 21:361–370. https://doi.org/10.1093/CARCIN/21.3.361

    Article  Google Scholar 

  56. García MA, Gil J, Ventoso I, Guerra S, Domingo E, Rivas C, Esteban M (2006) Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 70:1032–1060. https://doi.org/10.1128/MMBR.00027-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lu B, Nakamura T, Inouye K, Li J, Tang Y, Lundbäck P, Valdes-Ferrer SI, Olofsson PS et al (2012) Novel role of PKR in inflammasome activation and HMGB1 release. Nature 488:670–674. https://doi.org/10.1038/NATURE11290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lagunas N, Calmarza-Font I, Diz-Chaves Y, Garcia-Segura LM (2010) Long-term ovariectomy enhances anxiety and depressive-like behaviors in mice submitted to chronic unpredictable stress. Horm Behav 58:786–791. https://doi.org/10.1016/J.YHBEH.2010.07.014

    Article  CAS  PubMed  Google Scholar 

  59. MacDowell KS, Martín-Hernández D, Ulecia-Morón C, Bris ÁG, Madrigal JLM, García-Bueno B, Caso JR (2021) Paliperidone attenuates chronic stress-induced changes in the expression of inflammasomes-related protein in the frontal cortex of male rats. Int Immunopharmacol. 90. https://doi.org/10.1016/J.INTIMP.2020.107217

  60. Man SM, Kanneganti TD (2015) Regulation of inflammasome activation. Immunol. Rev 265:6–21. https://doi.org/10.1111/IMR.12296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hara H, Tsuchiya K, Kawamura I, Fang R, Hernandez-Cuellar E, Shen Y, Mizuguchi J, Schweighoffer E et al (2013) Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity. Nat Immunol 14:1247–1255. https://doi.org/10.1038/NI.2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rodgers MA, Bowman JW, Fujita H, Orazio N, Shi M, Liang Q, Amatya R, Kelly TJ et al (2014) The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation. J Exp Med 211:1333–1347. https://doi.org/10.1084/JEM.20132486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ainslie DA, Morris MJ, Wittert G, Turnbull H, Proietto J, Thorburn AW (2001) Estrogen deficiency causes central leptin insensitivity and increased hypothalamic neuropeptide Y. Int J Obes Relat Metab Disord. 25:1680–1688. https://doi.org/10.1038/SJ.IJO.0801806

    Article  CAS  PubMed  Google Scholar 

  64. Jm G, Mr G (1984) Effect of estrogen on lipoprotein lipase activity and cytoplasmic progestin binding sites in lean and obese Zucker rats. Proc Soc Exp Biol Med 175:374–379. https://doi.org/10.3181/00379727-175-41809

    Article  Google Scholar 

  65. Increased binding of low density lipoprotein to liver membranes from rats treated with 17 alpha-ethinyl estradiol - PubMed, (n.d.). https://pubmed.ncbi.nlm.nih.gov/227868/ (accessed August 29, 2021).

  66. Ej S, Dm F, La Z, Ft L, Hb B, Ri L (1983) The effects of estrogen administration on plasma lipoprotein metabolism in premenopausal females. J Clin Endocrinol Metab 57:262–267. https://doi.org/10.1210/JCEM-57-2-262

    Article  Google Scholar 

  67. Farr SA, Yamada KA, Butterfield DA, Abdul HM, Xu L, Miller NE, Banks WA, Morley JE (2008) Obesity and hypertriglyceridemia produce cognitive impairment. Endocrinology 149:2628–2636. https://doi.org/10.1210/EN.2007-1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Banks WA, Farr SA, Salameh TS, Niehoff ML, Rhea EM, Morley JE, Hanson AJ, Hansen KM, Craft S (2017) Triglycerides cross the blood–brain barrier and induce central leptin and insulin receptor resistance. Int J Obes. 2018 423 42:391–397. https://doi.org/10.1038/ijo.2017.231

    Article  CAS  Google Scholar 

  69. Atzmon G, Gabriely I, Greiner W, Davidson D, Schechter C, Barzilai N (2002) Plasma HDL levels highly correlate with cognitive function in exceptional longevity. J Gerontol A Biol Sci Med Sci. 57. https://doi.org/10.1093/GERONA/57.11.M712

  70. Barzilai N, Atzmon G, Derby CA, Bauman JM, Lipton RB (2006) A genotype of exceptional longevity is associated with preservation of cognitive function. Neurology. 67:2170–2175. https://doi.org/10.1212/01.WNL.0000249116.50854.65

    Article  CAS  PubMed  Google Scholar 

  71. Influence of apolipoprotein E genotype on the transmission of Alzheimer disease in a community-based sample - PubMed, (n.d.). https://pubmed.ncbi.nlm.nih.gov/8554056/ (accessed August 29, 2021).

  72. Hoyer S (2000) Brain glucose and energy metabolism abnormalities in sporadic Alzheimer disease. Causes and consequences: an update. Exp Gerontol 35:1363–1372. https://doi.org/10.1016/S0531-5565(00)00156-X

    Article  CAS  PubMed  Google Scholar 

  73. Sun Y, Ishibashi M, Seimon T, Lee M, Sharma SM, Fitzgerald KA, Samokhin AO, Wang Y, Sayers S, Aikawa M, Jerome WG, Ostrowski MC, Bromme D, Libby P, Tabas IA, Welch CL, Tall AR (2009) Free cholesterol accumulation in macrophage membranes activates Toll-like receptors and p38 mitogen-activated protein kinase and induces cathepsin K. Circ Res 104:455–465. https://doi.org/10.1161/CIRCRESAHA.108.182568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Es N, Oa E-K (2019) Targeting HMGB1/TLR4 axis and miR-21 by rosuvastatin: role in alleviating cholestatic liver injury in a rat model of bile duct ligation, Naunyn. Schmiedebergs. Arch Pharmacol 392:37–43. https://doi.org/10.1007/S00210-018-1560-Y

    Article  Google Scholar 

  75. McGuire TR, Kalil AC, Dobesh PP, Klepser DG, Olsen KM (2014) Anti-inflammatory effects of rosuvastatin in healthy subjects: a prospective longitudinal study. Curr Pharm Des 20:1156–1160. https://doi.org/10.2174/1381612820666140127163313

    Article  CAS  PubMed  Google Scholar 

  76. Ren G, Zhou Q, Lu M, Wang H (2021) Rosuvastatin corrects oxidative stress and inflammation induced by LPS to attenuate cardiac injury by inhibiting the NLRP3/TLR4 pathway. Can J Physiol Pharmacol. 99:1–10. https://doi.org/10.1139/CJPP-2020-0321

    Article  Google Scholar 

  77. Schupp N, Schmid U, Heidland A, Stopper H (2008) Rosuvastatin protects against oxidative stress and DNA damage in vitro via upregulation of glutathione synthesis. Atherosclerosis. 199:278–287. https://doi.org/10.1016/J.ATHEROSCLEROSIS.2007.11.016

    Article  CAS  PubMed  Google Scholar 

  78. Feng X, Valdearcos M, Uchida Y, Lutrin D, Maze M, Koliwad SK (2017) Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice. JCI Insight 2:e91229. https://doi.org/10.1172/JCI.INSIGHT.91229

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors appreciate Taif University Researchers Supporting Project number (TURSP-2020/29), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

M.A.S, H.H.A, and M.Y.S conceived the study and jointly designed and performed the experiments; M.A.S performed the statistical analysis; M.A.S, H.H.A, and M.Y.S interpreted the data and wrote the article; and H.H.A. and M.Y.A. provided technical support and reviewed the manuscript.

Corresponding author

Correspondence to Muhammad Y. Al-Shorbagy.

Ethics declarations

Ethics Approval

The Ethics Research Committee of Faculty of Pharmacy authorized the study protocol [Approval number: PT-3078]. The study protocol also follows the US National Institute of Health's Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85–23, revised 1996).

Consent to Participate

Not Applicable.

Consent to Publish

Not Applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, M.A., Al-Shorbagy, M.Y. & Arab, H.H. Targeting the TLR4/NF-κΒ Axis and NLRP1/3 Inflammasomes by Rosuvastatin: A Role in Impeding Ovariectomy-Induced Cognitive Decline Neuropathology in Rats. Mol Neurobiol 59, 4562–4577 (2022). https://doi.org/10.1007/s12035-022-02852-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02852-0

Keywords

Navigation