Skip to main content

Advertisement

Log in

MSC Promotes the Secretion of Exosomal miR-34a-5p and Improve Intestinal Barrier Function Through METTL3-Mediated Pre-miR-34A m6A Modification

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Intestinal ischemia/reperfusion (I/R) injury (IIRI) is associated with high prevalence and mortality rate. Recently, mesenchymal stem cell (MSC) therapy attracted more attentions. However, the function and regulatory mechanism of MSC-derived exosomal miRNAs during IIRI remain largely uninvestigated. The in vitro and in vivo IIRI models were established. MSC were characterized by immunofluorescent staining and flow cytometry. Purified exosomes were characterized by transmission electron microscopy (TEM), flow cytometry, and western blot. The expression of key molecules was detected by western blot and qRT-PCR. CCK-8, TUNEL, and transepithelial electrical resistance (TER) assays were employed to assess cell viability, apoptosis, and intestinal integrity, respectively. Pre-miR-34A m6 modification was evaluated by methylated RNA immunoprecipitation (MeRIP)-qPCR. RNA pull-down and RIP were used to validate the direct association between pre-miR-34A and IGF2BP3. MSC-derived exosomal miR-34a-5p alleviated OGD/R-induced injury. In addition, MSC ameliorated OGD/R-induced injury through METTL3 pathway. Mechanistic study revealed that miR-34a-5p was modulated by METTL3/IGF2BP3-mediated m6A modification in MSC. The in vitro and in vivo functional experiments revealed that MSC secreted exosomal miR-34a-5p and ameliorated IIRI through METTL3/IGF2BP3-mediated m6A modification of pre-miR-34A. MSC promoted the secretion of exosomal miR-34a-5p and improved intestinal barrier function through METTL3/IGF2BP3-mediated pre-miR-34A m6A modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article. The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not Applicable.

Abbreviations

AMI:

Acute mesenteric ischemia

BMSC:

Bone derived mesenchymal stem cells

CM:

Conditioned media

DGCR8:

DiGeorge Critical Region 8

ELISA:

Enzyme-linked immunosorbent assay

H&E:

Hematoxylin and eosin

IBD:

Inflammatory bowel disease

IBS-D:

Diarrhea predominant irritable bowel syndrome

IECs:

Intestinal epithelial cells

IGF2BP3:

Insulin-like growth factor 2 mRNA binding protein 3

IF:

Immunofluorescence

I/R:

Ischemia/reperfusion

IIRI:

Intestinal ischemia reperfusion injury

m6A:

N6-methyladenosine

METTL3:

Methyltransferase-like 3

MeRIP:

Methylated RNA immunoprecipitation

miRNA:

MicroRNA

MSC:

mesenchymal stem cell

MSC-exo:

MSC-derived exosomes

ncRNAs:

non-coding RNAs

NEC:

necrotizing enterocolitis

OGD/R:

oxygen-glucose deprivation/reoxygenation

PFA:

paraformaldehyde

pre-miRNAs:

precursor miRNAs

pri-miRNAs:

primary microRNAs

RUNX2:

runt-related transcription factor 2

SRAMP:

sequence-based RNA adenosine methylation site predictor

TER:

transepithelial electrical resistance

TEM:

transmission electron microscopy

TJ:

tight junction

References

  1. Kinross J, Warren O, Basson S, Holmes E, Silk D, Darzi A, Nicholson JK (2009) Intestinal ischemia/reperfusion injury: defining the role of the gut microbiome. Biomark Med 3(2):175–192. https://doi.org/10.2217/bmm.09.11

    Article  PubMed  Google Scholar 

  2. Markel TA, Crafts TD, Jensen AR, Hunsberger EB, Yoder MC (2015) Human mesenchymal stromal cells decrease mortality after intestinal ischemia and reperfusion injury. J Surg Res 199(1):56–66. https://doi.org/10.1016/j.jss.2015.06.060

    Article  CAS  PubMed  Google Scholar 

  3. Doster DL, Jensen AR, Khaneki S, Markel TA (2016) Mesenchymal stromal cell therapy for the treatment of intestinal ischemia: Defining the optimal cell isolate for maximum therapeutic benefit. Cytotherapy 18(12):1457–1470. https://doi.org/10.1016/j.jcyt.2016.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  4. Perez-Chanona E, Muhlbauer M, Jobin C (2014) The microbiota protects against ischemia/reperfusion-induced intestinal injury through nucleotide-binding oligomerization domain-containing protein 2 (NOD2) signaling. Am J Pathol 184(11):2965–2975. https://doi.org/10.1016/j.ajpath.2014.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Garcia-Hernandez V, Quiros M, Nusrat A (2017) Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. Ann N Y Acad Sci 1397(1):66–79. https://doi.org/10.1111/nyas.13360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fasano A (2012) Intestinal permeability and its regulation by zonulin: diagnostic and therapeutic implications. Clin Gastroenterol Hepatol 10(10):1096–1100. https://doi.org/10.1016/j.cgh.2012.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fasano A (2011) Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 91(1):151–175. https://doi.org/10.1152/physrev.00003.2008

    Article  CAS  PubMed  Google Scholar 

  8. Jiang H, Qu L, Li Y, Gu L, Shi Y, Zhang J, Zhu W, Li J (2011) Bone marrow mesenchymal stem cells reduce intestinal ischemia/reperfusion injuries in rats. J Surg Res 168(1):127–134. https://doi.org/10.1016/j.jss.2009.07.035

    Article  PubMed  Google Scholar 

  9. Shen ZY, Zhang J, Song HL, Zheng WP (2013) Bone-marrow mesenchymal stem cells reduce rat intestinal ischemia-reperfusion injury, ZO-1 downregulation and tight junction disruption via a TNF-alpha-regulated mechanism. World J Gastroenterol 19(23):3583–3595. https://doi.org/10.3748/wjg.v19.i23.3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Inan M, Bakar E, Cerkezkayabekir A, Sanal F, Ulucam E, Subasi C, Karaoz E (2017) Mesenchymal stem cells increase antioxidant capacity in intestinal ischemia/reperfusion damage. J Pediatr Surg 52(7):1196–1206. https://doi.org/10.1016/j.jpedsurg.2016.12.024

    Article  CAS  PubMed  Google Scholar 

  11. Li YY, Xu QW, Xu PY, Li WM (2020) MSC-derived exosomal miR-34a/c-5p and miR-29b-3p improve intestinal barrier function by targeting the Snail/Claudins signaling pathway. Life Sci 257:118017. https://doi.org/10.1016/j.lfs.2020.118017

    Article  CAS  PubMed  Google Scholar 

  12. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K et al (2015) N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161(6):1388–1399. https://doi.org/10.1016/j.cell.2015.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yue Y, Liu J, He C (2015) RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev 29(13):1343–1355. https://doi.org/10.1101/gad.262766.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cao G, Li HB, Yin Z, Flavell RA (2016) Recent advances in dynamic m6A RNA modification. Open Biol 6(4):160003. https://doi.org/10.1098/rsob.160003

    Article  PubMed  PubMed Central  Google Scholar 

  15. Alarcon CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF (2015) N6-methyladenosine marks primary microRNAs for processing. Nature 519(7544):482–485. https://doi.org/10.1038/nature14281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A et al (2018) Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 20(3):285–295. https://doi.org/10.1038/s41556-018-0045-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen T, Hao YJ, Zhang Y, Li MM, Wang M, Han W, Wu Y, Lv Y et al (2015) m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell 16(3):289–301. https://doi.org/10.1016/j.stem.2015.01.016

    Article  CAS  PubMed  Google Scholar 

  18. Deng X, Su R, Weng H, Huang H, Li Z, Chen J (2018) RNA N(6)-methyladenosine modification in cancers: current status and perspectives. Cell Res 28(5):507–517. https://doi.org/10.1038/s41422-018-0034-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yan G, Yuan Y, He M, Gong R, Lei H, Zhou H, Wang W, Du W et al (2020) m(6)A methylation of precursor-miR-320/RUNX2 controls osteogenic potential of bone marrow-derived mesenchymal stem cells. Mol Ther Nucleic Acids 19:421–436. https://doi.org/10.1016/j.omtn.2019.12.001

    Article  CAS  PubMed  Google Scholar 

  20. Meirelles Lda S, Nardi NB (2003) Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br J Haematol 123(4):702–711. https://doi.org/10.1046/j.1365-2141.2003.04669.x

    Article  PubMed  Google Scholar 

  21. Gubernatorova EO, Perez-Chanona E, Koroleva EP, Jobin C, Tumanov AV (2016) Murine model of intestinal ischemia-reperfusion injury. J Vis Exp (111). https://doi.org/10.3791/53881

  22. Chiu CJ, McArdle AH, Brown R, Scott HJ, Gurd FN (1970) Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg 101(4):478–483. https://doi.org/10.1001/archsurg.1970.01340280030009

    Article  CAS  PubMed  Google Scholar 

  23. Zeringer E, Li M, Barta T, Schageman J, Pedersen KW, Neurauter A, Magdaleno S, Setterquist R et al (2013) Methods for the extraction and RNA profiling of exosomes. World J Methodol 3(1):11–18. https://doi.org/10.5662/wjm.v3.i1.11

    Article  PubMed  PubMed Central  Google Scholar 

  24. Moyes SM, Morris JF, Carr KE (2010) Culture conditions and treatments affect Caco-2 characteristics and particle uptake. Int J Pharm 387(1–2):7–18. https://doi.org/10.1016/j.ijpharm.2009.11.027

    Article  CAS  PubMed  Google Scholar 

  25. Wells CL, van de Westerlo EM, Jechorek RP, Haines HM, Erlandsen SL (1998) Cytochalasin-induced actin disruption of polarized enterocytes can augment internalization of bacteria. Infect Immun 66(6):2410–2419. https://doi.org/10.1128/IAI.66.6.2410-2419.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang L, Cheng J, Fan XM (2014) MicroRNAs: new therapeutic targets for intestinal barrier dysfunction. World J Gastroenterol 20(19):5818–5825. https://doi.org/10.3748/wjg.v20.i19.5818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee J, Park EJ, Yuki Y, Ahmad S, Mizuguchi K, Ishii KJ, Shimaoka M, Kiyono H (2015) Profiles of microRNA networks in intestinal epithelial cells in a mouse model of colitis. Sci Rep 5:18174. https://doi.org/10.1038/srep18174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martinez C, Rodino-Janeiro BK, Lobo B, Stanifer ML, Klaus B, Granzow M, Gonzalez-Castro AM, Salvo-Romero E et al (2017) miR-16 and miR-125b are involved in barrier function dysregulation through the modulation of claudin-2 and cingulin expression in the jejunum in IBS with diarrhoea. Gut 66(9):1537–1538. https://doi.org/10.1136/gutjnl-2016-311477

    Article  CAS  PubMed  Google Scholar 

  29. Ocansey DKW, Zhang L, Wang Y, Yan Y, Qian H, Zhang X, Xu W, Mao F (2020) Exosome-mediated effects and applications in inflammatory bowel disease. Biol Rev Camb Philos Soc 95(5):1287–1307. https://doi.org/10.1111/brv.12608

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mao F, Kang JJ, Cai X, Ding NF, Wu YB, Yan YM, Qian H, Zhang X et al (2017) Crosstalk between mesenchymal stem cells and macrophages in inflammatory bowel disease and associated colorectal cancer. Contemp Oncol (Pozn) 21(2):91–97. https://doi.org/10.5114/wo.2017.68616

    Article  CAS  Google Scholar 

  31. Yang S, Liang X, Song J, Li C, Liu A, Luo Y, Ma H, Tan Y et al (2021) A novel therapeutic approach for inflammatory bowel disease by exosomes derived from human umbilical cord mesenchymal stem cells to repair intestinal barrier via TSG-6. Stem Cell Res Ther 12(1):315. https://doi.org/10.1186/s13287-021-02404-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659. https://doi.org/10.1038/ncb1596

    Article  CAS  PubMed  Google Scholar 

  33. Li M, Zhao J, Cao M, Liu R, Chen G, Li S, Xie Y, Xie J et al (2020) Mast cells-derived MiR-223 destroys intestinal barrier function by inhibition of CLDN8 expression in intestinal epithelial cells. Biol Res 53(1):12. https://doi.org/10.1186/s40659-020-00279-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chelakkot C, Ghim J, Ryu SH (2018) Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med 50(8):1–9. https://doi.org/10.1038/s12276-018-0126-x

    Article  CAS  PubMed  Google Scholar 

  35. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18(24):3016–3027. https://doi.org/10.1101/gad.1262504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834–838. https://doi.org/10.1126/science.1062961

    Article  CAS  PubMed  Google Scholar 

  37. Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10(2):185–191. https://doi.org/10.1261/rna.5167604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li T, Hu PS, Zuo Z, Lin JF, Li X, Wu QN, Chen ZH, Zeng ZL et al (2019) METTL3 facilitates tumor progression via an m(6)A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer 18(1):112. https://doi.org/10.1186/s12943-019-1038-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to give our sincere gratitude to the reviewers for their constructive comments. This work was supported by Yunnan Health Training Project of High-level Talents (No. D2017037), and Joint Project fund of Yunnan Provincial Science and Technology Department and Basic Research of Kunming Medical University (No. 202001AY070001-064). We would like to give our sincere gratitude to the reviewers for their constructive comments.

Funding

This work was supported by Yunnan Health Training Project of High-level Talents (No. D2017037), and Joint Project fund of Yunnan Provincial Science and Technology Department and Basic Research of Kunming Medical University (No. 202001AY070001-064).

Author information

Authors and Affiliations

Authors

Contributions

YJL: conceptualization; writing-original draft; methodology; formal analysis;

QWX: conceptualization; writing—original draft; methodology; formal analysis;

CHX: data curation; resources; investigation; software;

WML: funding acquisition; project administration; visualization; Writing—review and editing.

All authors have read and approved the final version of this manuscript to be published.

Corresponding author

Correspondence to Wei-Ming Li.

Ethics declarations

Ethics Approval

All animal studies were approved by the ethics committee of Kunming Medical University.

Consent to Participate

The informed consent was obtained from the ethics committee of the Kunming Medical University.

Consent for Publication

Not Applicable. This article does not contain any studies with human participants performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yi-Jun Li, Qing-Wen Xu and Wei-Ming Li are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YJ., Xu, QW., Xu, CH. et al. MSC Promotes the Secretion of Exosomal miR-34a-5p and Improve Intestinal Barrier Function Through METTL3-Mediated Pre-miR-34A m6A Modification. Mol Neurobiol 59, 5222–5235 (2022). https://doi.org/10.1007/s12035-022-02833-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02833-3

Keywords

Navigation