Skip to main content

Advertisement

Log in

Pon1 Deficiency Promotes Trem2 Pathway–Mediated Microglial Phagocytosis and Inhibits Pro-inflammatory Cytokines Release In Vitro and In Vivo

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Paraoxonase 1 (PON1) plays an anti-inflammatory role in the cardiovascular system. Levels of serum PON1 and polymorphisms in this gene were linked to Alzheimer’s disease (AD) and Parkinson disease (PD), but its function in the neuroimmune system and AD is not clear. To address this issue, we used Pon1 knockout rats previously generated by our lab to investigate the role of Pon1 in microglia. Knockout of Pon1 in rat brain tissues protected against LPS-induced microglia activation. Pon1 deficiency in rat primary microglia increased Trem2 (triggering receptor expressed in myeloid cells 2) expression, phagocytosis, and IL-10 (M2-phenotype marker) release, but decreased production of pro-inflammatory cytokines such as IL-1β, IL-6, and IL-18 especially TNF-α (M1-phenotype markers) induced by LPS. Pon1 deficiency in rat primary microglia activated Trem2 pathway but decreased LPS-induced ERK activation. The phagocytosis-promoting effect of Pon1 knockout could be reversed by administration of recombinant PON1 protein. The interaction between PON1 and TREM2 was verified by co-immunoprecipitation (co-IP) using rat brain tissues or over-expressed BV2 cell lysates, which might be involved in lysosomal localization of TREM2. Furthermore, Pon1 knockout also enhanced microglial phagocytosis and clearance of exogenous Aβ by an intrahippocampal injection and decrease the transcription of cytokines such as IL-1β, IL-6, and TNF-α in vivo. These results suggest that Pon1 knockout facilitates microglial phagocytosis and inhibits the production of proinflammatory cytokines both in vivo and in vitro, in which the interaction between Pon1 and Trem2 may be involved. These findings provide novel insights into the role of PON1 in neuroinflammation and highlight TREM2 as a potential target for Alzheimer’s disease therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

Aβ:

Amyloid β

PON1:

Paraoxonase 1

TREM2:

Triggering receptor expressed in myeloid cells 2

LPS:

Lipopolysaccharide

APOE:

Apolipoprotein E

TNF-α:

Tumor necrosis factor-α

IL-1β:

Interleukin-1 β

IL-6:

Interleukin-6

IL-12:

Interleukin-12

IL-18:

Interleukin-18

IL-10:

Interleukin-10

iNOS:

Inducible nitric oxide synthase

co-IP:

Co-immunoprecipitation

KO:

Knockout

SDS-PAGE:

Dodecyl sulfate, sodium salt -polyacrylamide gel electrophoresis

HRP:

Horseradish peroxidase

RT-PCR:

Reverse transcription-polymerase chain reaction

DSS:

Disuccinimidyl suberate

References

  1. Primo-Parmo SL, Sorenson RC, Teiber J, La Du BN (1996) The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family. Genomics 33:498–507

    Article  CAS  Google Scholar 

  2. Draganov DI, Teiber JF, Speelman A, Osawa Y, Sunahara R, La Du BN (2005) Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res 46:1239–1247. https://doi.org/10.1194/jlr.M400511-JLR200

    Article  CAS  PubMed  Google Scholar 

  3. Costa LG, Giordano G, Cole TB, Marsillach J, Furlong CE (2013) Paraoxonase 1 (PON1) as a genetic determinant of susceptibility to organophosphate toxicity. Toxicology 307:115–122. https://doi.org/10.1016/j.tox.2012.07.011

    Article  CAS  PubMed  Google Scholar 

  4. Rajkovic MG, Rumora L, Barisic K (2011) The paraoxonase 1, 2 and 3 in humans. Biochem Med (Zagreb) 21:122–130

    Article  CAS  Google Scholar 

  5. Mahrooz A (2016) Pharmacological interactions of paraoxonase 1 (PON1): a HDL-bound antiatherogenic enzyme. Curr Clin Pharmacol 11:259–264

    Article  CAS  Google Scholar 

  6. Schrader C, Rimbach G (2011) Determinants of paraoxonase 1 status: genes, drugs and nutrition. Curr Med Chem 18:5624–5643

    Article  CAS  Google Scholar 

  7. Costa LG, Vitalone A, Cole TB, Furlong CE (2005) Modulation of paraoxonase (PON1) activity. Biochem Pharmacol 69:541–550. https://doi.org/10.1016/j.bcp.2004.08.027

    Article  CAS  PubMed  Google Scholar 

  8. Leviev I, Negro F, James RW (1997) Two alleles of the human paraoxonase gene produce different amounts of mRNA. An explanation for differences in serum concentrations of paraoxonase associated with the (Leu-Met54) polymorphism. Arterioscler Thromb Vasc Biol 17:2935–2939

    Article  CAS  Google Scholar 

  9. Leviev I, James RW (2000) Promoter polymorphisms of human paraoxonase PON1 gene and serum paraoxonase activities and concentrations. Arterioscler Thromb Vasc Biol 20:516–521

    Article  CAS  Google Scholar 

  10. Kim DS, Burt AA, Ranchalis JE, Richter RJ, Marshall JK, Eintracht JF, Rosenthal EA, Furlong CE et al (2012) Additional common polymorphisms in the PON gene cluster predict PON1 activity but not vascular disease. J Lipids 2012:476316. https://doi.org/10.1155/2012/476316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Soran H, Schofield JD, Liu Y, Durrington PN (2015) How HDL protects LDL against atherogenic modification: paraoxonase 1 and other dramatis personae. Curr Opin Lipidol 26:247–256. https://doi.org/10.1097/MOL.0000000000000194

    Article  CAS  PubMed  Google Scholar 

  12. Kowalska K, Socha E, Milnerowicz H (2015) Review: the role of paraoxonase in cardiovascular diseases. Ann Clin Lab Sci 45:226–233

    CAS  PubMed  Google Scholar 

  13. Eren E, Yilmaz N, Aydin O (2013) Functionally defective high-density lipoprotein and paraoxonase: a couple for endothelial dysfunction in atherosclerosis. Cholesterol 2013:792090. https://doi.org/10.1155/2013/792090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dahabreh IJ, Kitsios GD, Kent DM, Trikalinos TA (2010) Paraoxonase 1 polymorphisms and ischemic stroke risk: a systematic review and meta-analysis. Genet Med 12:606–615. https://doi.org/10.1097/GIM.0b013e3181ee81c6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leduc V, Legault V, Dea D, Poirier J (2011) Normalization of gene expression using SYBR green qPCR: a case for paraoxonase 1 and 2 in Alzheimer’s disease brains. J Neurosci Methods 200:14–19. https://doi.org/10.1016/j.jneumeth.2011.05.026

    Article  CAS  PubMed  Google Scholar 

  16. Marsillach J, Mackness B, Mackness M, Riu F, Beltran R, Joven J, Camps J (2008) Immunohistochemical analysis of paraoxonases-1, 2, and 3 expression in normal mouse tissues. Free Radic Biol Med 45:146–157. https://doi.org/10.1016/j.freeradbiomed.2008.03.023

    Article  CAS  PubMed  Google Scholar 

  17. Almutairi MM, Alanazi WA, Alshammari MA, Alotaibi MR, Alhoshani AR, Al-Rejaie SS, Hafez MM, Al-Shabanah OA (2017) Neuro-protective effect of rutin against Cisplatin-induced neurotoxic rat model. BMC Complement Altern Med 17:472. https://doi.org/10.1186/s12906-017-1976-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carmine A, Buervenich S, Sydow O, Anvret M, Olson L (2002) Further evidence for an association of the paraoxonase 1 (PON1) Met-54 allele with Parkinson’s disease. Mov Disord 17:764–766. https://doi.org/10.1002/mds.10172

    Article  PubMed  Google Scholar 

  19. Zintzaras E, Hadjigeorgiou GM (2004) Association of paraoxonase 1 gene polymorphisms with risk of Parkinson’s disease: a meta-analysis. J Hum Genet 49:474–481. https://doi.org/10.1007/s10038-004-0176-x

    Article  PubMed  Google Scholar 

  20. Leduc V, Poirier J (2008) Polymorphisms at the paraoxonase 1 L55M and Q192R loci affect the pathophysiology of Alzheimer’s disease: emphasis on the cholinergic system and beta-amyloid levels. Neurodegener Dis 5:225–227. https://doi.org/10.1159/000113709

    Article  CAS  PubMed  Google Scholar 

  21. Paragh G, Balla P, Katona E, Seres I, Egerhazi A, Degrell I (2002) Serum paraoxonase activity changes in patients with Alzheimer’s disease and vascular dementia. Eur Arch Psychiatry Clin Neurosci 252:63–67. https://doi.org/10.1007/s004060200013

    Article  PubMed  Google Scholar 

  22. Wehr H, Bednarska-Makaruk M, Graban A, Lipczynska-Lojkowska W, Rodo M, Bochynska A, Ryglewicz D (2009) Paraoxonase activity and dementia. J Neurol Sci 283:107–108. https://doi.org/10.1016/j.jns.2009.02.317

    Article  CAS  PubMed  Google Scholar 

  23. Pi Y, Zhang L, Chang K, Li B, Guo L, Fang C, Gao C, Wang J et al (2012) Lack of an association between Paraoxonase 1 gene polymorphisms (Q192R, L55M) and Alzheimer’s disease: a meta-analysis. Neurosci Lett 523:174–179. https://doi.org/10.1016/j.neulet.2012.06.071

    Article  CAS  PubMed  Google Scholar 

  24. Wingo TS, Rosen A, Cutler DJ, Lah JJ, Levey AI (2012) Paraoxonase-1 polymorphisms in Alzheimer’s disease, Parkinson’s disease, and AD-PD spectrum diseases. Neurobiol Aging 33(204):e13–e15. https://doi.org/10.1016/j.neurobiolaging.2010.08.010

    Article  CAS  Google Scholar 

  25. Bai L, Shi G, Ma Y, Zhang L, Guan F, Zhang X, Xu Y, Chen H et al (2018) Paraoxonase 1 knockout rats have impaired T cell development at the CD4/CD8 double-negative to double-positive transition stage. Sci Rep 8:14457. https://doi.org/10.1038/s41598-018-32780-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wolf SA, Boddeke HW, Kettenmann H (2017) Microglia in physiology and disease. Annu Rev Physiol 79:619–643. https://doi.org/10.1146/annurev-physiol-022516-034406

    Article  CAS  PubMed  Google Scholar 

  27. Sasaki A (2017) Microglia and brain macrophages: an update. Neuropathology 37:452–464. https://doi.org/10.1111/neup.12354

    Article  CAS  PubMed  Google Scholar 

  28. Zhang L, Sun C, Jin Y, Gao K, Shi X, Qiu W, Ma C, Zhang L (2017) Dickkopf 3 (Dkk3) Improves amyloid-beta pathology, cognitive dysfunction, and cerebral glucose metabolism in a transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis 60:733–746. https://doi.org/10.3233/JAD-161254

    Article  CAS  PubMed  Google Scholar 

  29. Young K, Morrison H (2018) Quantifying microglia morphology from photomicrographs of immunohistochemistry prepared tissue using ImageJ. J Vis Exp. https://doi.org/10.3791/57648

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tamashiro TT, Dalgard CL, Byrnes KR (2012) Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue. J Vis Exp e3814. https://doi.org/10.3791/3814

  31. Chernyavskiy I, Veeranki S, Sen U, Tyagi SC (2016) Atherogenesis: hyperhomocysteinemia interactions with LDL, macrophage function, paraoxonase 1, and exercise. Ann N Y Acad Sci 1363:138–154. https://doi.org/10.1111/nyas.13009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Galanos C, Freudenberg MA, Reutter W (1979) Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci USA 76:5939–5943. https://doi.org/10.1073/pnas.76.11.5939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Endo Y, Shibazaki M, Yamaguchi K, Kai K, Sugawara S, Takada H, Kikuchi H, Kumagai K (1999) Enhancement by galactosamine of lipopolysaccharide(LPS)-induced tumour necrosis factor production and lethality: its suppression by LPS pretreatment. Br J Pharmacol 128:5–12. https://doi.org/10.1038/sj.bjp.0702747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Van Oosten M, Rensen PC, Van Amersfoort ES, Van Eck M, Van Dam AM, Breve JJ, Vogel T, Panet A et al (2001) Apolipoprotein E protects against bacterial lipopolysaccharide-induced lethality. A new therapeutic approach to treat gram-negative sepsis. J Biol Chem 276:8820–8824. https://doi.org/10.1074/jbc.M009915200

    Article  PubMed  Google Scholar 

  35. Rosenblat M, Volkova N, Ward J, Aviram M (2011) Paraoxonase 1 (PON1) inhibits monocyte-to-macrophage differentiation. Atherosclerosis 219:49–56. https://doi.org/10.1016/j.atherosclerosis.2011.06.054

    Article  CAS  PubMed  Google Scholar 

  36. Lively S, Schlichter LC (2018) Microglia responses to pro-inflammatory stimuli (LPS, IFNgamma+TNFalpha) and reprogramming by resolving cytokines (IL-4, IL-10). Front Cell Neurosci 12:215. https://doi.org/10.3389/fncel.2018.00215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lam D, Lively S, Schlichter LC (2017) Responses of rat and mouse primary microglia to pro- and anti-inflammatory stimuli: molecular profiles, K(+) channels and migration. J Neuroinflammation 14:166. https://doi.org/10.1186/s12974-017-0941-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Uto T, Suangkaew N, Morinaga O, Kariyazono H, Oiso S, Shoyama Y (2010) Eriobotryae folium extract suppresses LPS-induced iNOS and COX-2 expression by inhibition of NF-kappaB and MAPK activation in murine macrophages. Am J Chin Med 38:985–994. https://doi.org/10.1142/S0192415X10008408

    Article  PubMed  Google Scholar 

  39. Bhat NR, Feinstein DL, Shen Q, Bhat AN (2002) p38 MAPK-mediated transcriptional activation of inducible nitric-oxide synthase in glial cells. Roles of nuclear factors, nuclear factor kappa B, cAMP response element-binding protein, CCAAT/enhancer-binding protein-beta, and activating transcription factor-2. J Biol Chem 277:29584–29592. https://doi.org/10.1074/jbc.M204994200

    Article  CAS  PubMed  Google Scholar 

  40. Kim SH, Smith CJ, Van Eldik LJ (2004) Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol Aging 25:431–439. https://doi.org/10.1016/S0197-4580(03)00126-X

    Article  CAS  PubMed  Google Scholar 

  41. Paresce DM, Ghosh RN, Maxfield FR (1996) Microglial cells internalize aggregates of the Alzheimer’s disease amyloid beta-protein via a scavenger receptor. Neuron 17:553–565. https://doi.org/10.1016/s0896-6273(00)80187-7

    Article  CAS  PubMed  Google Scholar 

  42. Atagi Y, Liu CC, Painter MM, Chen XF, Verbeeck C, Zheng H, Li X, Rademakers R et al (2015) Apolipoprotein E is a ligand for triggering receptor expressed on myeloid cells 2 (TREM2). J Biol Chem 290:26043–26050. https://doi.org/10.1074/jbc.M115.679043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rodrigo L, Hernandez AF, Lopez-Caballero JJ, Gil F, Pla A (2001) Immunohistochemical evidence for the expression and induction of paraoxonase in rat liver, kidney, lung and brain tissue. Implications for its physiological role. Chem Biol Interact 137:123–137. https://doi.org/10.1016/s0009-2797(01)00225-3

    Article  CAS  PubMed  Google Scholar 

  44. Mackness B, Beltran-Debon R, Aragones G, Joven J, Camps J, Mackness M (2010) Human tissue distribution of paraoxonases 1 and 2 mRNA. IUBMB Life 62:480–482. https://doi.org/10.1002/iub.347

    Article  CAS  PubMed  Google Scholar 

  45. Zhai Q, Li F, Chen X, Jia J, Sun S, Zhou D, Ma L, Jiang T et al (2017) Triggering receptor expressed on myeloid cells 2, a novel regulator of immunocyte phenotypes, confers neuroprotection by relieving neuroinflammation. Anesthesiology 127:98–110. https://doi.org/10.1097/ALN.0000000000001628

    Article  CAS  PubMed  Google Scholar 

  46. Lee CYD, Daggett A, Gu X, Jiang LL, Langfelder P, Li X, Wang N, Zhao Y et al (2018) Elevated TREM2 gene dosage reprograms microglia responsivity and ameliorates pathological phenotypes in Alzheimer’s disease models. Neuron 97:1032-1048.e5. https://doi.org/10.1016/j.neuron.2018.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wolfe CM, Fitz NF, Nam KN, Lefterov I, Koldamova R (2018) The role of APOE and TREM2 in Alzheimer’s disease-current understanding and perspectives. Int J Mol Sci 20. https://doi.org/10.3390/ijms20010081

  48. Gaidukov L, Viji RI, Yacobson S, Rosenblat M, Aviram M, Tawfik DS (2010) ApoE induces serum paraoxonase PON1 activity and stability similar to ApoA-I. Biochemistry 49:532–538. https://doi.org/10.1021/bi9013227

    Article  CAS  PubMed  Google Scholar 

  49. Vitali C, Wellington CL, Calabresi L (2014) HDL and cholesterol handling in the brain. Cardiovasc Res 103:405–413. https://doi.org/10.1093/cvr/cvu148

    Article  CAS  PubMed  Google Scholar 

  50. Dullaart RP, Kwakernaak AJ, Dallinga-Thie GM (2013) The positive relationship of serum paraoxonase-1 activity with apolipoprotein E is abrogated in metabolic syndrome. Atherosclerosis 230:6–11. https://doi.org/10.1016/j.atherosclerosis.2013.06.019

    Article  CAS  PubMed  Google Scholar 

  51. Kappelle PJ, Bijzet J, Hazenberg BP, Dullaart RP (2011) Lower serum paraoxonase-1 activity is related to higher serum amyloid a levels in metabolic syndrome. Arch Med Res 42:219–225. https://doi.org/10.1016/j.arcmed.2011.05.002

    Article  CAS  PubMed  Google Scholar 

  52. Painter MM, Atagi Y, Liu CC, Rademakers R, Xu H, Fryer JD, Bu G (2015) TREM2 in CNS homeostasis and neurodegenerative disease. Mol Neurodegener 10:43. https://doi.org/10.1186/s13024-015-0040-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhong L, Chen XF, Zhang ZL, Wang Z, Shi XZ, Xu K, Zhang YW, Xu H et al (2015) DAP12 stabilizes the C-terminal fragment of the triggering receptor expressed on myeloid cells-2 (TREM2) and protects against LPS-induced pro-inflammatory response. J Biol Chem 290:15866–15877. https://doi.org/10.1074/jbc.M115.645986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jiang T, Tan L, Zhu XC, Zhang QQ, Cao L, Tan MS, Gu LZ, Wang HF et al (2014) Upregulation of TREM2 ameliorates neuropathology and rescues spatial cognitive impairment in a transgenic mouse model of Alzheimer’s disease. Neuropsychopharmacology 39:2949–2962. https://doi.org/10.1038/npp.2014.164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jay TR, von Saucken VE, Landreth GE (2017) TREM2 in neurodegenerative diseases. Mol Neurodegener 12:56. https://doi.org/10.1186/s13024-017-0197-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kobayashi Y, Inagawa H, Kohchi C, Okazaki K, Zhang R, Kobara H, Masaki T, Soma GI (2017) Lipopolysaccharides derived from Pantoea agglomerans can promote the phagocytic activity of amyloid beta in mouse microglial cells. Anticancer Res 37:3917–3920. https://doi.org/10.21873/anticanres.11774

    Article  CAS  PubMed  Google Scholar 

  57. Inagawa H, Kobayashi Y, Kohchi C, Zhang R, Shibasaki Y, Soma G (2016) Primed activation of macrophages by oral administration of lipopolysaccharide derived from Pantoea agglomerans. In Vivo 30:205–211

    CAS  PubMed  Google Scholar 

  58. Fricker M, Oliva-Martin MJ, Brown GC (2012) Primary phagocytosis of viable neurons by microglia activated with LPS or Abeta is dependent on calreticulin/LRP phagocytic signalling. J Neuroinflammation 9:196. https://doi.org/10.1186/1742-2094-9-196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee JW, Nam H, Kim LE, Jeon Y, Min H, Ha S, Lee Y, Kim SY et al (2019) TLR4 (toll-like receptor 4) activation suppresses autophagy through inhibition of FOXO3 and impairs phagocytic capacity of microglia. Autophagy 15:753–770. https://doi.org/10.1080/15548627.2018.1556946

    Article  CAS  PubMed  Google Scholar 

  60. Feng X, Deng T, Zhang Y, Su S, Wei C, Han D (2011) Lipopolysaccharide inhibits macrophage phagocytosis of apoptotic neutrophils by regulating the production of tumour necrosis factor alpha and growth arrest-specific gene 6. Immunology 132:287–295. https://doi.org/10.1111/j.1365-2567.2010.03364.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li X, Darby J, Lyons AB, Woods GM, Korner H (2019) TNF may negatively regulate phagocytosis of devil facial tumour disease cells by activated macrophages. Immunol Invest 48:691–703. https://doi.org/10.1080/08820139.2018.1515222

    Article  CAS  PubMed  Google Scholar 

  62. Zhong L, Zhang ZL, Li X, Liao C, Mou P, Wang T, Wang Z, Wang Z et al (2017) TREM2/DAP12 complex regulates inflammatory responses in microglia via the JNK signaling pathway. Front Aging Neurosci 9:204. https://doi.org/10.3389/fnagi.2017.00204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li L, Wan T, Wan M, Liu B, Cheng R, Zhang R (2015) The effect of the size of fluorescent dextran on its endocytic pathway. Cell Biol Int 39:531–539. https://doi.org/10.1002/cbin.10424

    Article  CAS  PubMed  Google Scholar 

  64. Paolicelli RC, Jawaid A, Henstridge CM, Valeri A, Merlini M, Robinson JL, Lee EB, Rose J et al (2017) TDP-43 Depletion in microglia promotes amyloid clearance but also induces synapse loss. Neuron 95(297–308):e6. https://doi.org/10.1016/j.neuron.2017.05.037

    Article  CAS  Google Scholar 

  65. Bataille F, Troppmann S, Klebl F, Rogler G, Stoelcker B, Hofstadter F, Bosserhoff AK, Rummele P (2006) Multiparameter immunofluorescence on paraffin-embedded tissue sections. Appl Immunohistochem Mol Morphol 14:225–228. https://doi.org/10.1097/01.pai.0000162009.31931.10

    Article  PubMed  Google Scholar 

  66. McFarland KN, Ceballos C, Rosario A, Ladd T, Moore B, Golde G, Wang X, Allen M, et al (2021) Microglia show differential transcriptomic response to Abeta peptide aggregates ex vivo and in vivo. Life Sci Alliance 4. https://doi.org/10.26508/lsa.202101108

Download references

Funding

The present work was supported by the National Science Foundation of China (31900380, 31970508), CAMS Innovation Fund for Medical Sciences (CIFMS, 2021-I2M-1–034), and Beijing Municipal Natural Science Foundation (7172135).

Author information

Authors and Affiliations

Authors

Contributions

LFZ and LZ designed the study and wrote the paper, LZ, WD, YWM, LB, CXS, XZ, and JWL performed the experiments. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Lianfeng Zhang.

Ethics declarations

Ethics Approval

The experimental protocol was approved by the Animal Care and Use Committees of the Institute of Laboratory Animal Science of Peking Union Medical College.

Consent to Participate

Not applicable.

Consent for Publication

All authors read and approved the final manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12035_2022_2827_MOESM1_ESM.pdf

Supplementary file1 (PDF 2970 KB) Figure S1. Expression of PON1 protein in microglial cell lines. The expression of PON1 protein in human microglia HM1900, mouse microglia BV2 and rat primary microglia was determined by western blot. GAPDH was used as loading control. MG, microglia. Figure S2. The identification of rat primary microglia cells. Staining of Iba1 (red) and Cd11b (green) was performed and immunofluorescence was observed by confocal microscopy (magnification ×630, scale bar = 50 μm). Figure S3. Cytokines regulated by Pon1 knockout in primary rat microglia. For IL-7 (A), IL-12 (B), MCP-1 (C), VEGF (D) and G-CSF (E), there was no significant difference between WT and Pon1-/- or between WT LPS and Pon1-/- LPS groups, (n = 3 per group), although all the five cytokines were significantly increased with LPS treatment. * p<0.05, ** p <0.01, *** p<0.001 indicate significance; NS, no significance. Figure S4. Effects of Pon1 KO on p38 and JNK signaling pathways. (A) Total protein lysates of WT, Pon1-/-, WT LPS and Pon1-/- LPS microglia were prepared and the levels of p-p38, p-JNK, t-p38 and t-JNK were determined by western blot (n = 3 per group). The relative protein expression of p-p38 (B) and p-JNK(C) were normalized to t-p38 and t-JNK. Values are expressed as mean ± S.D. NS indicate no significance. Figure S5. RNA sequencing and nervous system development enriched differentially expressed genes in rat primary microglia. Nervous system development (GO:0007399) enriched differentially expressed genes (fold change >2, p < 0.05) between WT and Pon1-/- microglia (A) or between WT LPS and Pon1-/-LPS microglia (B) were highlighted. * p<0.05 and ** p<0.01 indicate significance. GO enrichment analysis of differentially expressed genes was implemented by the cluster Profiler R package and GO terms with corrected P value less than 0.05 were considered significantly. Figure S6. RNA sequencing and GO enrichment analysis in rat primary microglia. Differentially expressed genes were classified into four categories using the SOTA function in the clValid package. Among them, two categories of genes were significantly up-regulated (A and B) and two categories were significantly down-regulated (C and D) in LPS-treated WT and Pon1-/- microglia compared to controls. The top Gene Ontology (GO) terms, corresponding to enrichment p values and gene numbers are shown on the right side. Figure S7. Effect of PON1 KO on LPS/TLR4/NFκB signaling pathway. (A) Total protein lysates of WT, Pon1-/-, WT LPS and Pon1-/- LPS microglia were prepared and the level of TLR4 was determined by western blot. The nuclear and cytoplasmic proteins of WT, Pon1-/-, WT LPS and Pon1-/- LPS microglia were extracted and the level of P65 was detected by western blot (n = 3 per group). Nucleolin and GAPDH were used as the markers of nucleus and cytosol, respectively. The relative protein expression of TLR4 (B), nucleus (C) and cytosol P65 (D) were normalized GAPDH, nucleolin and GAPDH, respectively. Values are expressed as mean ± S.D. NS indicate no significance. *** p<0.001 indicate significance. Figure S8. The microglia cells and phagocytosis 24h post-injection. Representative images (A) of Aβ oligomers (red) and quantitation analysis of microglia cells (B) at the injection sites of WT and Pon1-/- rat brains (n= 5 WT, n= 4 KO) 24h post-injection. DAPI (blue) stained the nucleus. Scale bar, 750 or 250 or 50 μm; A yellow circles indicate microglia hyperplastic focus. Representative confocal images of microglia cells labelled with Iba1 (green) merged with Aβ (red) at the injection sites of WT and Pon1-/- rats 24h post-injection (C). (WT, ①-⑧; KO, ①’-⑧’ ). Scale bar=25μm. * p<0.05 indicate significance. ① indicates resting microglia cells with long branches, ②’ indicates phagocytizing microglia cells with open mouth, others were microglia cells with uptake of Aβ. Figure S9. Aβ injection and Trem2 expression. The transcription of TREM2 mRNA in the hippocampus from WT and Pon1-/- rats 0-, 1- and 3- day post-injection was detected using real time PCR (A). n= 5 for WT and Pon1-/- rats 0-day post-injection; n= 4 for WT and Pon1-/- rats 1-day and 3-day post-injection. * p<0.05 indicate significance, WT versus Pon1-/-rats 3-day post-injection. The expression of TREM2 proteins in the hippocampus from WT and Pon1-/- rats 14- day post-injection was detected using western blot (B). n=3- 4 for WT and Pon1-/- rats 14-day post-injection. Figure S10. A preliminary model of the proposed mechanism of PON1 action in microglia.

Supplementary file2 (PDF 324 KB)

Supplementary file3 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Dong, W., Ma, Y. et al. Pon1 Deficiency Promotes Trem2 Pathway–Mediated Microglial Phagocytosis and Inhibits Pro-inflammatory Cytokines Release In Vitro and In Vivo. Mol Neurobiol 59, 4612–4629 (2022). https://doi.org/10.1007/s12035-022-02827-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02827-1

Keywords

Navigation