Skip to main content

Advertisement

Log in

Potential Role of MANF, an ER Stress Responsive Neurotrophic Factor, in Protecting Against Alcohol Neurotoxicity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alcohol exposure during pregnancy is harmful to the fetus and causes a wide range of long-lasting physiological and neurocognitive impairments, collectively referred to as fetal alcohol spectrum disorders (FASD). The neurobehavioral deficits observed in FASD result from structural and functional damages in the brain, with neurodegeneration being the most destructive consequence. Currently, there are no therapies for FASD. It is exigent to delineate the underlying mechanisms of alcohol neurotoxicity and develop an effective strategy of treatment. ER stress, caused by the accumulation of unfolded/misfolded proteins in the ER, is the hallmark of many neurodegenerative diseases, including alcohol-induced neurodegeneration. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a newly discovered endoplasmic reticulum (ER) stress responsive neurotrophic factor that regulates diverse neuronal functions. This review summarizes the recent findings revealing the effects of MANF on the CNS and its protective role against neurodegeneration. Particularly, we focus the role of MANF on alcohol-induced ER stress and neurodegeneration and discuss the therapeutic potential of MANF in treating alcohol neurotoxicity such as FASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Abbreviations

FASD:

Fetal alcohol spectrum disorders

FAS:

Fetal alcohol syndrome

PAE:

Prenatal alcohol exposure

ER:

Endoplasmic reticulum

SER:

Smooth endoplasmic reticulum

CNS:

Central nervous system

MANF:

Mesencephalic astrocyte-derived neurotrophic factor

CDNF:

Cerebral dopamine neurotrophic factor

NTFs:

Neurotrophic factors

BDNF:

Brain-derived neurotrophic factor

GFLs:

Glial cell line-derived neurotrophic factor family of ligands

GDNF:

Glial cell line-derived neurotrophic factor

CNTF:

Ciliary neurotrophic factor

IL-6:

Interleukin 6

ROS:

Reactive oxygen species

UPR:

Unfolded protein response

PERK:

Pancreatic ER kinase-like ER kinase

IRE1α:

Inositol-requiring enzyme 1 α

ATF6:

Activating transcription factor 6

XBP1s:

X-box binding protein 1

GRP78:

Glucose-regulated protein 78 kDa

ERAD:

ER-associated protein degradation

PD:

Parkinson’s disease

AD:

Alzheimer’s disease

ARP:

Arginine-rich protein

UTR:

Untranslated region

SAPLIP:

Saposin-like protein

PDIs:

Protein disulfide isomerases

SCG:

Superior cervical ganglion

KDELRs:

KDEL receptors

TH:

Tyrosine hydroxylase

KO:

Knock-out

NSCs:

Neural stem cells

MCAO:

Middle cerebral artery occlusion

ERSE:

ER stress response element

AAV:

Adeno-associated virus

BMSC:

Bone marrow mesenchymal stem cells

6-OHDA:

6-Hydroxydopamine

HSP70:

Heat shock protein 70

Aβ:

Amyloid β-peptide

APP/PS1:

Amyloid precursor protein/presenilin 1

ITGC:

Inferior temporal gyrus of the cortex

SCA17:

Spinocerebellar ataxia 17

TBP:

TATA box binding protein

RP:

Retinitis pigmentosa

sI/R:

Simulated ischemia/reperfusion

MRI:

Magnetic resonance imaging

GD:

Gestation days

PD:

Postnatal days

ADH:

Alcohol dehydrogenase

CYP2E1:

Cytochrome P450 2E1

ALDH:

Aldehyde dehydrogenase

BAC:

Blood alcohol concentration

BBB:

Blood-brain barrier

4-PBA:

4-Phenylbutyric acid

MEFs:

Mouse embryonic fibroblasts

Bcl2:

Bcl2 apoptosis regulator

Bcl2l1:

Bcl2 like 1

Bax:

Bcl2 associated X apoptosis regulator

Bak1:

Bcl2 antagonist/killer 1

Bad:

Bcl2 associated agonist of cell death

Bid:

BH3 interacting domain death agonist

Bnip3:

Bcl2 interacting protein 3

cHAP:

Crossed high alcohol preferring

SERCA:

Sarco/endoplasmic reticulum Ca2+

ATP:

Adenosine tri-phosphate

ADP:

Adenosine di-phosphate

References

  1. Voutilainen MH et al (2015) Therapeutic potential of the endoplasmic reticulum located and secreted CDNF/MANF family of neurotrophic factors in Parkinson’s disease. FEBS Lett 589(24 Pt A):3739–3748

    Article  CAS  PubMed  Google Scholar 

  2. Cui Q (2006) Actions of neurotrophic factors and their signaling pathways in neuronal survival and axonal regeneration. Mol Neurobiol 33(2):155–179

    Article  PubMed  Google Scholar 

  3. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Petrova P et al (2003) MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. J Mol Neurosci 20(2):173–188

    Article  CAS  PubMed  Google Scholar 

  5. Lindholm P et al (2007) Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature 448(7149):73–77

    Article  CAS  PubMed  Google Scholar 

  6. Lindahl M, Saarma M, Lindholm P (2017) Unconventional neurotrophic factors CDNF and MANF: structure, physiological functions and therapeutic potential. Neurobiol Dis 97(Pt B):90–102

    Article  CAS  PubMed  Google Scholar 

  7. Glembotski CC et al (2012) Mesencephalic astrocyte-derived neurotrophic factor protects the heart from ischemic damage and is selectively secreted upon sarco/endoplasmic reticulum calcium depletion. J Biol Chem 287(31):25893–25904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mizobuchi N et al (2007) ARMET is a soluble ER protein induced by the unfolded protein response via ERSE-II element. Cell Struct Funct 32(1):41–50

    Article  CAS  PubMed  Google Scholar 

  9. Oh-Hashi K et al (2012) Intracellular trafficking and secretion of mouse mesencephalic astrocyte-derived neurotrophic factor. Mol Cell Biochem 363(1-2):35–41

    Article  CAS  PubMed  Google Scholar 

  10. Voutilainen MH et al (2009) Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson’s disease. J Neurosci 29(30):9651–9659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Airavaara M et al (2009) Mesencephalic astrocyte-derived neurotrophic factor reduces ischemic brain injury and promotes behavioral recovery in rats. J Comp Neurol 515(1):116–124

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xu S et al (2019) Mesencephalic astrocyte-derived neurotrophic factor (MANF) protects against Abeta toxicity via attenuating Abeta-induced endoplasmic reticulum stress. J Neuroinflammation 16(1):35

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hellman M et al (2011) Mesencephalic astrocyte-derived neurotrophic factor (MANF) has a unique mechanism to rescue apoptotic neurons. J Biol Chem 286(4):2675–2680

    Article  CAS  PubMed  Google Scholar 

  14. Lindholm P et al (2008) MANF is widely expressed in mammalian tissues and differently regulated after ischemic and epileptic insults in rodent brain. Mol Cell Neurosci 39(3):356–371

    Article  CAS  PubMed  Google Scholar 

  15. Wang H et al (2014) Spatiotemporal expression of MANF in the developing rat brain. PLoS One 9(2):e90433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Danilova T et al (2019) Mesencephalic astrocyte-derived neurotrophic factor (MANF) is highly expressed in mouse tissues with metabolic function. Front Endocrinol (Lausanne) 10:765

    Article  Google Scholar 

  17. Chen YC et al (2012) MANF regulates dopaminergic neuron development in larval zebrafish. Dev Biol 370(2):237–249

    Article  CAS  PubMed  Google Scholar 

  18. Palgi M et al (2009) Evidence that DmMANF is an invertebrate neurotrophic factor supporting dopaminergic neurons. Proc Natl Acad Sci U S A 106(7):2429–2434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wen W et al (2020) Mesencephalic astrocyte-derived neurotrophic factor (MANF) regulates neurite outgrowth through the activation of Akt/mTOR and Erk/mTOR signaling pathways. Front Mol Neurosci 13(188)

  20. Tseng K-Y et al (2017) MANF is essential for neurite extension and neuronal migration in the developing cortex. eneuro 4(5)

  21. SAMHSA, 2019 National Survey on Drug Use and Health (NSDUH). Retrieved from https://www.samhsa.gov/data/report/2019-nsduh-annual-national-report, 2019.

  22. Muggli E et al (2016) “Did you ever drink more?” A detailed description of pregnant women’s drinking patterns. BMC Public Health 16:683

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nykjaer C et al (2014) Maternal alcohol intake prior to and during pregnancy and risk of adverse birth outcomes: evidence from a British cohort. J Epidemiol Community Health 68(6):542–549

    Article  PubMed  Google Scholar 

  24. Dejong K, Olyaei A, Lo JO (2019) Alcohol use in pregnancy. Clin Obstet Gynecol 62(1):142–155

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tan CH et al (2015) Alcohol use and binge drinking among women of childbearing age - United States, 2011–2013. MMWR Morb Mortal Wkly Rep 64(37):1042–1046

    Article  PubMed  Google Scholar 

  26. CDC (2012) Alcohol use and binge drinking among women of childbearing age—United States, 2006–2010. MMWR Morb Mortal Wkly Rep 61(28):534–538

    Google Scholar 

  27. Denny CH et al (2019) Consumption of alcohol beverages and binge drinking among pregnant women aged 18–44 years - United States, 2015–2017. MMWR Morb Mortal Wkly Rep 68(16):365–368

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ethen MK et al (2009) Alcohol consumption by women before and during pregnancy. Matern Child Health J 13(2):274–285

    Article  PubMed  Google Scholar 

  29. Crews FT, Nixon K (2009) Mechanisms of neurodegeneration and regeneration in alcoholism. Alcohol Alcohol 44(2):115–127

    Article  CAS  PubMed  Google Scholar 

  30. May PA et al (2014) Prevalence and characteristics of fetal alcohol spectrum disorders. Pediatrics 134(5):855–866

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wilhoit LF, Scott DA, Simecka BA (2017) Fetal alcohol spectrum disorders: characteristics, complications, and treatment. Community Ment Health J 53(6):711–718

    Article  PubMed  Google Scholar 

  32. Hoyme HE et al (2016) Updated clinical guidelines for diagnosing fetal alcohol spectrum disorders. Pediatrics 138(2)

  33. Luo J (2009) GSK3beta in ethanol neurotoxicity. Mol Neurobiol 40(2):108–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mooney S, Lein P, Miller M (2013) Comprehensive developmental neuroscience: neural circuit development and function in the heathy and diseased brain: chapter 28. Fetal alcohol spectrum disorder: targeted effects of ethanol on cell proliferation and survival. Elsevier Inc. Chapters

    Google Scholar 

  35. Crews FT, Vetreno RP (2016) Mechanisms of neuroimmune gene induction in alcoholism. Psychopharmacology 233(9):1543–1557

    Article  CAS  PubMed  Google Scholar 

  36. Chastain LG, Sarkar DK (2014) Role of microglia in regulation of ethanol neurotoxic action. Int Rev Neurobiol 118:81–103

    Article  PubMed  Google Scholar 

  37. Haorah J et al (2008) Mechanism of alcohol-induced oxidative stress and neuronal injury. Free Radic Biol Med 45(11):1542–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hernández JA, López-Sánchez RC, Rendón-Ramírez A (2016) Lipids and oxidative stress associated with ethanol-induced neurological damage. Oxidative Med Cell Longev 2016:1543809

    Article  CAS  Google Scholar 

  39. Buján GE et al (2019) Oxidative stress-induced brain damage triggered by voluntary ethanol consumption during adolescence: a potential target for neuroprotection? Curr Pharm Des 25(45):4782–4790

    Article  CAS  PubMed  Google Scholar 

  40. Maier SE, Chen WJ, West JR (1996) Prenatal binge-like alcohol exposure alters neurochemical profiles in fetal rat brain. Pharmacol Biochem Behav 55(4):521–529

    Article  CAS  PubMed  Google Scholar 

  41. Sanderson JL, Donald Partridge L, Valenzuela CF (2009) Modulation of GABAergic and glutamatergic transmission by ethanol in the developing neocortex: an in vitro test of the excessive inhibition hypothesis of fetal alcohol spectrum disorder. Neuropharmacology 56(2):541–555

    Article  CAS  PubMed  Google Scholar 

  42. Luo J, Miller MW (1998) Growth factor-mediated neural proliferation: target of ethanol toxicity. Brain Res Brain Res Rev 27(2):157–167

    Article  CAS  PubMed  Google Scholar 

  43. Ke Z et al (2011) Ethanol induces endoplasmic reticulum stress in the developing brain. Alcohol Clin Exp Res 35(9):1574–1583

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Li H et al (2019) 4-Phenylbutyric acid protects against ethanol-induced damage in the developing mouse brain. Alcohol Clin Exp Res 43(1):69–78

    CAS  PubMed  Google Scholar 

  45. Alimov A et al (2013) Expression of autophagy and UPR genes in the developing brain during ethanol-sensitive and resistant periods. Metab Brain Dis 28(4):667–676

    Article  CAS  PubMed  Google Scholar 

  46. Yang F, Luo J (2015) Endoplasmic reticulum stress and ethanol neurotoxicity. Biomolecules 5(4):2538–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang Y et al (2018) Binge ethanol exposure induces endoplasmic reticulum stress in the brain of adult mice. Toxicol Appl Pharmacol 356:172–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hetz C, Saxena S (2017) ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol 13(8):477–491

    Article  CAS  PubMed  Google Scholar 

  49. Lindholm D, Wootz H, Korhonen L (2006) ER stress and neurodegenerative diseases. Cell Death Differ 13(3):385–392

    Article  CAS  PubMed  Google Scholar 

  50. Xin Q et al (2014) Endoplasmic reticulum stress in cerebral ischemia. Neurochem Int 68:18–27

    Article  CAS  PubMed  Google Scholar 

  51. Liu S et al (2015) Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death. Cell Death Dis 6(1):e1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Andhavarapu S et al (2019) Interplay between ER stress and autophagy: a possible mechanism in multiple sclerosis pathology. Exp Mol Pathol 108:183–190

    Article  CAS  PubMed  Google Scholar 

  53. O'Brien PD et al (2014) ER stress in diabetic peripheral neuropathy: a new therapeutic target. Antioxid Redox Signal 21(4):621–633

    Article  CAS  PubMed  Google Scholar 

  54. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086

    Article  CAS  PubMed  Google Scholar 

  55. Rasheva VI, Domingos PM (2009) Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis 14(8):996–1007

    Article  PubMed  Google Scholar 

  56. Apostolou A et al (2008) Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death. Exp Cell Res 314(13):2454–2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jӓntti M, Harvey BK (2020) Trophic activities of endoplasmic reticulum proteins CDNF and MANF. Cell Tissue Res

  58. Tadimalla A et al (2008) Mesencephalic astrocyte-derived neurotrophic factor is an ischemia-inducible secreted endoplasmic reticulum stress response protein in the heart. Circ Res 103(11):1249–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li-Na Z et al (2017) Mesencephalic astrocyte-derived neurotrophic factor and its role in nervous system disease. Neurol Sci

  60. Wang Y et al (2020) MANF is neuroprotective against ethanol-induced neurodegeneration through ameliorating ER stress. Neurobiol Dis:105216

  61. Shridhar R et al (1996) Mutations in the arginine-rich protein gene, in lung, breast, and prostate cancers, and in squamous cell carcinoma of the head and neck. Cancer Res 56(24):5576–5578

    CAS  PubMed  Google Scholar 

  62. Evron E et al (1997) Normal polymorphism in the incomplete trinucleotide repeat of the arginine-rich protein gene. Cancer Res 57(14):2888–2889

    CAS  PubMed  Google Scholar 

  63. Hellman M et al (2010) 1H, 13C and 15N resonance assignments of the human mesencephalic astrocyte-derived neurotrophic factor. Biomol NMR Assign 4(2):215–217

    Article  CAS  PubMed  Google Scholar 

  64. Hoseki J et al (2010) Solution structure and dynamics of mouse ARMET. FEBS Lett 584(8):1536–1542

    Article  CAS  PubMed  Google Scholar 

  65. Parkash V et al (2009) The structure of the conserved neurotrophic factors MANF and CDNF explains why they are bifunctional. Protein Eng Des Sel 22(4):233–241

    Article  CAS  PubMed  Google Scholar 

  66. Bai M et al (2018) Conserved roles of C. elegans and human MANFs in sulfatide binding and cytoprotection. Nat Commun 9(1):897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sereno D et al (2017) An evolutionary perspective on the role of mesencephalic astrocyte-derived neurotrophic factor (MANF): at the crossroads of poriferan innate immune and apoptotic pathways. Biochem Biophys Rep 11:161–173

    PubMed  PubMed Central  Google Scholar 

  68. Wang W et al (2015) Armet is an effector protein mediating aphid-plant interactions. FASEB J 29(5):2032–2045

    Article  CAS  PubMed  Google Scholar 

  69. Lindholm P, Saarma M (2010) Novel CDNF/MANF family of neurotrophic factors. Dev Neurobiol 70(5):360–371

    CAS  PubMed  Google Scholar 

  70. Lindstrom R et al (2013) Characterization of the structural and functional determinants of MANF/CDNF in Drosophila in vivo model. PLoS One 8(9):e73928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lindahl M et al (2014) MANF is indispensable for the proliferation and survival of pancreatic beta cells. Cell Rep 7(2):366–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen L et al (2015) Mesencephalic astrocyte-derived neurotrophic factor is involved in inflammation by negatively regulating the NF-kappaB pathway. Sci Rep 5:8133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hakonen E et al (2018) MANF protects human pancreatic beta cells against stress-induced cell death. Diabetologia

  74. Yan Y et al (2019) MANF antagonizes nucleotide exchange by the endoplasmic reticulum chaperone BiP. Nat Commun 10(1):541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Matlik K et al (2015) Role of two sequence motifs of mesencephalic astrocyte-derived neurotrophic factor in its survival-promoting activity. Cell Death Dis 6:e2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bozok V et al (2018) Antioxidative CXXC peptide motif from mesencephalic astrocyte-derived neurotrophic factor antagonizes programmed cell death. Front Cell Dev Biol 6:106

    Article  PubMed  PubMed Central  Google Scholar 

  77. Henderson MJ et al (2013) Mesencephalic astrocyte-derived neurotrophic factor (MANF) secretion and cell surface binding are modulated by KDEL receptors. J Biol Chem 288(6):4209–4225

    Article  CAS  PubMed  Google Scholar 

  78. Jia J et al (2020) KDEL receptor is a cell surface receptor that cycles between the plasma membrane and the Golgi via clathrin-mediated transport carriers. Cell Mol Life Sci

  79. Vaccaro AM et al (1999) Saposins and their interaction with lipids. Neurochem Res 24(2):307–314

    Article  CAS  PubMed  Google Scholar 

  80. Hada M et al (2016) Cytosolic Ku70 regulates Bax-mediated cell death. Tumour Biol 37(10):13903–13914

    Article  CAS  PubMed  Google Scholar 

  81. Quan S et al (2007) The CXXC motif is more than a redox rheostat. J Biol Chem 282(39):28823–28833

    Article  CAS  PubMed  Google Scholar 

  82. Yagi T et al (2020) Neuroplastin modulates anti-inflammatory effects of MANF. iScience 23(12):101810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kovaleva, V., et al., MANF regulates unfolded protein response and neuronal survival through its ER-located receptor IRE1α. bioRxiv, 2020: p. 2020.09.22.307744.

  84. Yang S et al (2017) MANF regulates hypothalamic control of food intake and body weight. Nat Commun 8(1):579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu J et al (2015) ER stress-inducible protein MANF selectively expresses in human spleen. Hum Immunol 76(11):823–830

    Article  CAS  PubMed  Google Scholar 

  86. Stratoulias V, Heino TI (2015) Analysis of the conserved neurotrophic factor MANF in the Drosophila adult brain. Gene Expr Patterns 18(1-2):8–15

    Article  CAS  PubMed  Google Scholar 

  87. Yavarna T et al (2015) High diagnostic yield of clinical exome sequencing in Middle Eastern patients with Mendelian disorders. Hum Genet 134(9):967–980

    Article  CAS  PubMed  Google Scholar 

  88. Montaser H et al (2021) Loss of MANF causes childhood onset syndromic diabetes due to increased endoplasmic reticulum stress. Diabetes

  89. Pakarinen E et al (2020) MANF ablation causes prolonged activation of the UPR without neurodegeneration in the mouse midbrain dopamine system. eNeuro

  90. Richman C et al (2018) C. elegans MANF homolog is necessary for the protection of dopaminergic neurons and ER unfolded protein response. Front Neurosci 12:544

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wang Y, Wen W, Li H, Xu H, Xu M, Ma M, Luo J (2022) Deficiency of Mesencephalic Astrocyte-derived Neurotrophic Factor Affects Neurogenesis in Mouse Brain. Brain Res Bull S0361–9230(22):00058–00052. https://doi.org/10.1016/j.brainresbull.2022.02.019

    Article  Google Scholar 

  92. Airavaara M et al (2010) Widespread cortical expression of MANF by AAV serotype 7: localization and protection against ischemic brain injury. Exp Neurol 225(1):104–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yu YQ et al (2010) Induction profile of MANF/ARMET by cerebral ischemia and its implication for neuron protection. J Cereb Blood Flow Metab 30(1):79–91

    Article  CAS  PubMed  Google Scholar 

  94. Shen Y et al (2012) Upregulation of mesencephalic astrocyte-derived neurotrophic factor in glial cells is associated with ischemia-induced glial activation. J Neuroinflammation 9:254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang H et al (2015) Tunicamycin-induced unfolded protein response in the developing mouse brain. Toxicol Appl Pharmacol 283(3):157–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yoshida H et al (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 273(50):33741–33749

    Article  CAS  PubMed  Google Scholar 

  97. Yoshida H et al (2000) ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20(18):6755–6767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kokame K, Kato H, Miyata T (2001) Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response. J Biol Chem 276(12):9199–9205

    Article  CAS  PubMed  Google Scholar 

  99. Oh-Hashi K, Hirata Y, Kiuchi K (2013) Transcriptional regulation of mouse mesencephalic astrocyte-derived neurotrophic factor in Neuro2a cells. Cell Mol Biol Lett 18(3):398–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yamamoto K et al (2004) Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE, UPRE and ERSE-II. J Biochem 136(3):343–350

    Article  CAS  PubMed  Google Scholar 

  101. Wang D et al (2018) XBP1 activation enhances MANF expression via binding to endoplasmic reticulum stress response elements within MANF promoter region in hepatitis B. Int J Biochem Cell Biol 99:140–146

    Article  CAS  PubMed  Google Scholar 

  102. Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23(21):7448–7459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang S et al (2014) Age-dependent decrease in chaperone activity impairs MANF expression, leading to Purkinje cell degeneration in inducible SCA17 mice. Neuron 81(2):349–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Martindale JJ et al (2006) Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6. Circ Res 98(9):1186–1193

    Article  CAS  PubMed  Google Scholar 

  105. Kim Y et al (2016) Mesencephalic astrocyte-derived neurotrophic factor as a urine biomarker for endoplasmic reticulum stress-related kidney diseases. J Am Soc Nephrol 27(10):2974–2982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tousson-Abouelazm N et al (2020) Urinary ERdj3 and mesencephalic astrocyte-derived neutrophic factor identify endoplasmic reticulum stress in glomerular disease. Lab Investig 100(7):945–958

    Article  CAS  PubMed  Google Scholar 

  107. Fu J et al (2020) Liraglutide protects pancreatic β cells from endoplasmic reticulum stress by upregulating MANF to promote autophagy turnover. Life Sci 252:117648

    Article  CAS  PubMed  Google Scholar 

  108. Galli E et al (2016) Increased circulating concentrations of mesencephalic astrocyte-derived neurotrophic factor in children with type 1 diabetes. Sci Rep 6:29058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Llewellyn DH, Roderick HL, Rose S (1997) KDEL receptor expression is not coordinatedly up-regulated with ER stress-induced reticuloplasmin expression in HeLa cells. Biochem Biophys Res Commun 240(1):36–40

    Article  CAS  PubMed  Google Scholar 

  110. Glembotski CC (2011) Functions for the cardiomyokine, MANF, in cardioprotection, hypertrophy and heart failure. J Mol Cell Cardiol 51(4):512–517

    Article  CAS  PubMed  Google Scholar 

  111. Eesmaa A et al (2021) The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor. J Biol Chem:100295

  112. Lindstrom R et al (2016) Exploring the conserved role of MANF in the unfolded protein response in Drosophila melanogaster. PLoS One 11(3):e0151550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Huang J et al (2016) Mesencephalic astrocyte-derived neurotrophic factor reduces cell apoptosis via upregulating GRP78 in SH-SY5Y cells. Cell Biol Int 40(7):803–811

    Article  CAS  PubMed  Google Scholar 

  114. Hartman JH et al (2019) MANF deletion abrogates early larval Caenorhabditis elegans stress response to tunicamycin and Pseudomonas aeruginosa. Eur J Cell Biol

  115. Herranen A et al (2020) Deficiency of the ER-stress-regulator MANF triggers progressive outer hair cell death and hearing loss. Cell Death Dis 11(2):100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Doyle KM et al (2011) Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J Cell Mol Med 15(10):2025–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yang W et al (2014) Mesencephalic astrocyte-derived neurotrophic factor prevents neuron loss via inhibiting ischemia-induced apoptosis. J Neurol Sci 344(1-2):129–138

    Article  CAS  PubMed  Google Scholar 

  118. Wang XY et al (2016) MRI dynamically evaluates the therapeutic effect of recombinant human MANF on ischemia/reperfusion injury in rats. Int J Mol Sci 17(9)

  119. Matlik K et al (2018) Poststroke delivery of MANF promotes functional recovery in rats. Sci Adv 4(5):eaap8957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Teppo J et al (2020) Molecular profile of the rat peri-infarct region four days after stroke: study with MANF. Exp Neurol 329:113288

    Article  CAS  PubMed  Google Scholar 

  121. Gao B et al (2020) Effects of mesencephalic astrocyte-derived neurotrophic factor on cerebral angiogenesis in a rat model of cerebral ischemia. Neurosci Lett 715:134657

    Article  CAS  PubMed  Google Scholar 

  122. Yang F et al (2020) Bone marrow mesenchymal stem cells induce M2 microglia polarization through PDGF-AA/MANF signaling. World J Stem Cells 12(7):633–658

    Article  PubMed  PubMed Central  Google Scholar 

  123. Belayev L et al (2020) DHA modulates MANF and TREM2 abundance, enhances neurogenesis, reduces infarct size, and improves neurological function after experimental ischemic stroke. CNS Neurosci Ther 26(11):1155–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cordero-Llana O et al (2015) Enhanced efficacy of the CDNF/MANF family by combined intranigral overexpression in the 6-OHDA rat model of Parkinson’s disease. Mol Ther 23(2):244–254

    Article  CAS  PubMed  Google Scholar 

  125. Hao F et al (2017) Long-term protective effects of AAV9-mesencephalic astrocyte-derived neurotrophic factor gene transfer in Parkinsonian rats. Exp Neurol

  126. Sun H et al (2017) Mesencephalic astrocyte-derived neurotrophic factor reduces cell apoptosis via upregulating HSP70 in SHSY-5Y cells. Transl Neurodegener 6:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang J et al (2017) Mesencephalic astrocyte-derived neurotrophic factor alleviated 6-OHDA-induced cell damage via ROS-AMPK/mTOR mediated autophagic inhibition. Exp Gerontol 89:45–56

    Article  CAS  PubMed  Google Scholar 

  128. Zhang J et al (2017) Nrf2-mediated neuroprotection by MANF against 6-OHDA-induced cell damage via PI3K/AKT/GSK3beta pathway. Exp Gerontol 100:77–86

    Article  CAS  PubMed  Google Scholar 

  129. Liu Y et al (2018) MANF improves the MPP(+)/MPTP-induced Parkinson’s disease via improvement of mitochondrial function and inhibition of oxidative stress. Am J Transl Res 10(5):1284–1294

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang Z et al (2018) MANF protects dopamine neurons and locomotion defects from a human alpha-synuclein induced Parkinson’s disease model in C. elegans by regulating ER stress and autophagy pathways. Exp Neurol

  131. Galli E et al (2019) Increased serum levels of mesencephalic astrocyte-derived neurotrophic factor in subjects with Parkinson’s disease. Front Neurosci 13:929

    Article  PubMed  PubMed Central  Google Scholar 

  132. Virachit S et al (2019) Levels of glial cell line-derived neurotrophic factor are decreased, but fibroblast growth factor 2 and cerebral dopamine neurotrophic factor are increased in the hippocampus in Parkinson’s disease. Brain Pathol 29(6):813–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Liu X-C et al (2021) Increased MANF expression in the inferior temporal gyrus in patients with Alzheimer disease. Frontiers in Aging. Neuroscience 13(220)

  134. Guo J et al (2018) Piperine ameliorates SCA17 neuropathology by reducing ER stress. Mol Neurodegener 13(1):4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Neves J et al (2016) Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science 353(6294):aaf3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gao FJ et al (2017) Identification of mesencephalic astrocyte-derived neurotrophic factor as a novel neuroprotective factor for retinal ganglion cells. Front Mol Neurosci 10:76

    Article  PubMed  PubMed Central  Google Scholar 

  137. Lu J et al (2018) Photoreceptor protection by mesencephalic astrocyte-derived neurotrophic factor (MANF). eNeuro 5(2)

  138. McLaughlin T et al (2018) p58(IPK) is an endogenous neuroprotectant for retinal ganglion cells. Front Aging Neurosci 10:267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang X et al (2020) MANF promotes diabetic corneal epithelial wound healing and nerve regeneration by attenuating hyperglycemia-induced endoplasmic reticulum stress. Diabetes 69(6):1264–1278

    Article  CAS  PubMed  Google Scholar 

  140. Neves J et al (2020) MANF delivery improves retinal homeostasis and cell replacement therapies in ageing mice. Exp Gerontol 134:110893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. DeGracia DJ, Montie HL (2004) Cerebral ischemia and the unfolded protein response. J Neurochem 91(1):1–8

    Article  CAS  PubMed  Google Scholar 

  142. Tseng KY et al (2017) MANF promotes differentiation and migration of neural progenitor cells with potential neural regenerative effects in stroke. Mol Ther

  143. Ryu EJ et al (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson’s disease. J Neurosci 22(24):10690–10698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mercado G et al (2016) ER stress and Parkinson’s disease: pathological inputs that converge into the secretory pathway. Brain Res 1648(Pt B):626–632

    Article  CAS  PubMed  Google Scholar 

  145. Yang C, Gao Y (2020) Mesencephalic astrocyte-derived neurotrophic factor: a treatment option for Parkinson’s disease. Front Biosci (Landmark Ed) 25:1718–1731

    Article  CAS  Google Scholar 

  146. Albert K, Airavaara M (2019) Neuroprotective and reparative effects of endoplasmic reticulum luminal proteins - mesencephalic astrocyte-derived neurotrophic factor and cerebral dopamine neurotrophic factor. Croat Med J 60(2):99–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164(4):603–615

    Article  CAS  PubMed  Google Scholar 

  148. Huang HC et al (2015) Endoplasmic reticulum stress as a novel neuronal mediator in Alzheimer’s disease. Neurol Res 37(4):366–374

    Article  CAS  PubMed  Google Scholar 

  149. Gerakis Y, Hetz C (2018) Emerging roles of ER stress in the etiology and pathogenesis of Alzheimer’s disease. FEBS J 285(6):995–1011

    Article  CAS  PubMed  Google Scholar 

  150. Kurt MA et al (2001) Neurodegenerative changes associated with beta-amyloid deposition in the brains of mice carrying mutant amyloid precursor protein and mutant presenilin-1 transgenes. Exp Neurol 171(1):59–71

    Article  CAS  PubMed  Google Scholar 

  151. Walkowicz L et al (2017) Downregulation of DmMANF in glial cells results in neurodegeneration and affects sleep and lifespan in Drosophila melanogaster. Front Neurosci 11:610

    Article  PubMed  PubMed Central  Google Scholar 

  152. Gao FJ et al (2017) Expression and distribution of mesencephalic astrocyte-derived neurotrophic factor in the retina and optic nerve. Front Hum Neurosci 10:686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sousa-Victor P, Jasper H, Neves J (2018) Trophic factors in inflammation and regeneration: the role of MANF and CDNF. Front Physiol 9:1629

    Article  PubMed  PubMed Central  Google Scholar 

  154. Lemoine, P., H. Harrousseau, and J. Borteyru, Les enfants de parents alcooliques. Anomalies observees: a propos de 127 cas. 4Jd, 1968. 25 p. 476.

  155. Jones KL, Smith DW (1973) Recognition of the fetal alcohol syndrome in early infancy. Lancet 302(7836):999–1001

    Article  CAS  PubMed  Google Scholar 

  156. Jones KL (2011) The effects of alcohol on fetal development. Birth Defects Res C Embryo Today 93(1):3–11

    Article  CAS  PubMed  Google Scholar 

  157. Jarmasz JS et al (2017) Human brain abnormalities associated with prenatal alcohol exposure and fetal alcohol spectrum disorder. J Neuropathol Exp Neurol 76(9):813–833

    Article  PubMed  PubMed Central  Google Scholar 

  158. Boschen KE, Klintsova AY (2017) Neurotrophins in the brain: interaction with alcohol exposure during development. Vitam Horm 104:197–242

    Article  CAS  PubMed  Google Scholar 

  159. Caputo C, Wood E, Jabbour L (2016) Impact of fetal alcohol exposure on body systems: a systematic review. Birth Defects Res C Embryo Today 108(2):174–180

    Article  CAS  PubMed  Google Scholar 

  160. Petrelli B, Weinberg J, Hicks GG (2018) Effects of prenatal alcohol exposure (PAE): insights into FASD using mouse models of PAE. Biochem Cell Biol 96(2):131–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Jones KL, Smith DW (1975) The fetal alcohol syndrome. Teratology 12(1):1–10

    Article  CAS  PubMed  Google Scholar 

  162. Clarren SK et al (1978) Brain malformations related to prenatal exposure to ethanol. J Pediatr 92(1):64–67

    Article  CAS  PubMed  Google Scholar 

  163. Wisniewski K et al (1983) A clinical neuropathological study of the fetal alcohol syndrome. Neuropediatrics 14(4):197–201

    Article  CAS  PubMed  Google Scholar 

  164. Lebel C, Roussotte F, Sowell ER (2011) Imaging the impact of prenatal alcohol exposure on the structure of the developing human brain. Neuropsychol Rev 21(2):102–118

    Article  PubMed  PubMed Central  Google Scholar 

  165. Donald KA et al (2015) Neuroimaging effects of prenatal alcohol exposure on the developing human brain: a magnetic resonance imaging review. Acta Neuropsychiatr 27(5):251–269

    Article  PubMed  Google Scholar 

  166. Jacobson SW et al (2017) Heavy prenatal alcohol exposure is related to smaller corpus callosum in newborn MRI scans. Alcohol Clin Exp Res 41(5):965–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sowell ER et al (2008) Abnormal cortical thickness and brain-behavior correlation patterns in individuals with heavy prenatal alcohol exposure. Cereb Cortex 18(1):136–144

    Article  PubMed  Google Scholar 

  168. Sowell ER et al (2002) Mapping cortical gray matter asymmetry patterns in adolescents with heavy prenatal alcohol exposure. Neuroimage 17(4):1807–1819

    Article  PubMed  Google Scholar 

  169. Sowell ER et al (2008) Mapping white matter integrity and neurobehavioral correlates in children with fetal alcohol spectrum disorders. J Neurosci 28(6):1313–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Bookstein FL et al (2002) Midline corpus callosum is a neuroanatomical focus of fetal alcohol damage. Anat Rec 269(3):162–174

    Article  PubMed  Google Scholar 

  171. Wozniak JR et al (2009) Microstructural corpus callosum anomalies in children with prenatal alcohol exposure: an extension of previous diffusion tensor imaging findings. Alcohol Clin Exp Res 33(10):1825–1835

    Article  PubMed  PubMed Central  Google Scholar 

  172. O'Hare ED et al (2005) Mapping cerebellar vermal morphology and cognitive correlates in prenatal alcohol exposure. Neuroreport 16(12):1285–1290

    Article  PubMed  Google Scholar 

  173. Sowell ER et al (1996) Abnormal development of the cerebellar vermis in children prenatally exposed to alcohol: size reduction in lobules I-V. Alcohol Clin Exp Res 20(1):31–34

    Article  CAS  PubMed  Google Scholar 

  174. Autti-Rämö I et al (2002) MRI findings in children with school problems who had been exposed prenatally to alcohol. Dev Med Child Neurol 44(2):98–106

    Article  PubMed  Google Scholar 

  175. Mattson SN, Bernes GA, Doyle LR (2019) Fetal alcohol spectrum disorders: a review of the neurobehavioral deficits associated with prenatal alcohol exposure. Alcohol Clin Exp Res 43(6):1046–1062

    PubMed  PubMed Central  Google Scholar 

  176. Nunez CC, Roussotte F, Sowell ER (2011) Focus on: structural and functional brain abnormalities in fetal alcohol spectrum disorders. Alcohol Res Health 34(1):121–131

    PubMed  PubMed Central  Google Scholar 

  177. Tsang TW et al (2016) Prenatal alcohol exposure, FASD, and child behavior: a meta-analysis. Pediatrics 137(3):e20152542

    Article  PubMed  Google Scholar 

  178. Roussotte FF et al (2012) Regional brain volume reductions relate to facial dysmorphology and neurocognitive function in fetal alcohol spectrum disorders. Hum Brain Mapp 33(4):920–937

    Article  PubMed  Google Scholar 

  179. Hendrickson TJ et al (2017) Cortical gyrification is abnormal in children with prenatal alcohol exposure. Neuroimage Clin 15:391–400

    Article  PubMed  PubMed Central  Google Scholar 

  180. Schmahmann JD (2019) The cerebellum and cognition. Neurosci Lett 688:62–75

    Article  CAS  PubMed  Google Scholar 

  181. Sullivan EV et al (1995) Alcohol and the cerebellum: effects on balance, motor coordination, and cognition. Alcohol Health Res World 19(2):138–141

    PubMed  PubMed Central  Google Scholar 

  182. Roebuck TM et al (1998) Prenatal exposure to alcohol affects the ability to maintain postural balance. Alcohol Clin Exp Res 22(1):252–258

    Article  CAS  PubMed  Google Scholar 

  183. Valenzuela CF, Lindquist B, Zamudio-Bulcock PA (2010) A review of synaptic plasticity at Purkinje neurons with a focus on ethanol-induced cerebellar dysfunction. Int Rev Neurobiol 91:339–372

    Article  CAS  PubMed  Google Scholar 

  184. Sowell ER et al (2001) Mapping callosal morphology and cognitive correlates: effects of heavy prenatal alcohol exposure. Neurology 57(2):235–244

    Article  CAS  PubMed  Google Scholar 

  185. Biffen SC et al (2017) Reductions in corpus callosum volume partially mediate effects of prenatal alcohol exposure on IQ. Front Neuroanat 11:132

    Article  PubMed  Google Scholar 

  186. Ma X et al (2005) Evaluation of corpus callosum anisotropy in young adults with fetal alcohol syndrome according to diffusion tensor imaging. Alcohol Clin Exp Res 29(7):1214–1222

    Article  PubMed  Google Scholar 

  187. Paolozza A et al (2014) Response inhibition deficits in children with fetal alcohol spectrum disorder: relationship between diffusion tensor imaging of the corpus callosum and eye movement control. Neuroimage Clin 5:53–61

    Article  PubMed  PubMed Central  Google Scholar 

  188. Almeida L et al (2020) Murine models for the study of fetal alcohol spectrum disorders: an overview. Front Pediatr 8:359

    Article  PubMed  PubMed Central  Google Scholar 

  189. Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(Suppl 3):511–533

    Article  PubMed  PubMed Central  Google Scholar 

  190. Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3(1):79–83

    Article  CAS  PubMed  Google Scholar 

  191. Khan I, Leventhal BL Developmental delay, in StatPearls. 2021, StatPearls Publishing Copyright © 2021. StatPearls Publishing LLC, Treasure Island

  192. Koop M et al (1986) Volumetric development of the fetal telencephalon, cerebral cortex, diencephalon, and rhombencephalon including the cerebellum in man. Bibl Anat 28:53–78

    Google Scholar 

  193. Chen VS et al (2017) Histology atlas of the developing prenatal and postnatal mouse central nervous system, with emphasis on prenatal days E7.5 to E18.5. Toxicol Pathol 45(6):705–744

    Article  PubMed  PubMed Central  Google Scholar 

  194. Gil-Mohapel J et al (2010) Hippocampal cell loss and neurogenesis after fetal alcohol exposure: insights from different rodent models. Brain Res Rev 64(2):283–303

    Article  CAS  PubMed  Google Scholar 

  195. Parnell SE et al (2014) Dysmorphogenic effects of first trimester-equivalent ethanol exposure in mice: a magnetic resonance microscopy-based study. Alcohol Clin Exp Res 38(7):2008–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Fish EW et al (2016) Acute alcohol exposure during neurulation: behavioral and brain structural consequences in adolescent C57BL/6J mice. Behav Brain Res 311:70–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sulik KK, Johnston MC (1983) Sequence of developmental alterations following acute ethanol exposure in mice: craniofacial features of the fetal alcohol syndrome. Am J Anat 166(3):257–269

    Article  CAS  PubMed  Google Scholar 

  198. Dunty WC Jr et al (2001) Selective vulnerability of embryonic cell populations to ethanol-induced apoptosis: implications for alcohol-related birth defects and neurodevelopmental disorder. Alcohol Clin Exp Res 25(10):1523–1535

    Article  CAS  PubMed  Google Scholar 

  199. Takahashi T et al (1999) Sequence of neuron origin and neocortical laminar fate: relation to cell cycle of origin in the developing murine cerebral wall. J Neurosci 19(23):10357–10371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Cui ZJ et al (2010) Prenatal alcohol exposure induces long-term changes in dendritic spines and synapses in the mouse visual cortex. Alcohol Alcohol 45(4):312–319

    Article  CAS  PubMed  Google Scholar 

  201. El Shawa H, Abbott CW 3rd, Huffman KJ (2013) Prenatal ethanol exposure disrupts intraneocortical circuitry, cortical gene expression, and behavior in a mouse model of FASD. J Neurosci 33(48):18893–18905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Barnes DE, Walker DW (1981) Prenatal ethanol exposure permanently reduces the number of pyramidal neurons in rat hippocampus. Brain Res 227(3):333–340

    Article  CAS  PubMed  Google Scholar 

  203. Miller MW (1996) Limited ethanol exposure selectively alters the proliferation of precursor cells in the cerebral cortex. Alcohol Clin Exp Res 20(1):139–143

    Article  CAS  PubMed  Google Scholar 

  204. Kotkoskie LA, Norton S (1989) Morphometric analysis of developing rat cerebral cortex following acute prenatal ethanol exposure. Exp Neurol 106(3):283–288

    Article  CAS  PubMed  Google Scholar 

  205. Miranda RC et al (2008) Modeling the impact of alcohol on cortical development in a dish: strategies from mapping neural stem cell fate. Methods Mol Biol 447:151–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Xu W et al (2020) Early ethanol exposure inhibits the differentiation of hippocampal dentate gyrus granule cells in a mouse model of fetal alcohol spectrum disorders. Alcohol Clin Exp Res 44(5):1112–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Ikonomidou C et al (2000) Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 287(5455):1056–1060

    Article  CAS  PubMed  Google Scholar 

  208. Gursky ZH, Spillman EC, Klintsova AY (2020) Single-day postnatal alcohol exposure induces apoptotic cell death and causes long-term neuron loss in rodent thalamic nucleus reuniens. Neuroscience 435:124–134

    Article  CAS  PubMed  Google Scholar 

  209. Idrus NM, Napper RM (2012) Acute and long-term Purkinje cell loss following a single ethanol binge during the early third trimester equivalent in the rat. Alcohol Clin Exp Res 36(8):1365–1373

    Article  CAS  PubMed  Google Scholar 

  210. Olney JW et al (2002) Ethanol-induced caspase-3 activation in the in vivo developing mouse brain. Neurobiol Dis 9(2):205–219

    Article  CAS  PubMed  Google Scholar 

  211. Olney JW et al (2002) Ethanol-induced apoptotic neurodegeneration in the developing C57BL/6 mouse brain. Brain Res Dev Brain Res 133(2):115–126

    Article  CAS  PubMed  Google Scholar 

  212. Goodlett CR, Marcussen BL, West JR (1990) A single day of alcohol exposure during the brain growth spurt induces brain weight restriction and cerebellar Purkinje cell loss. Alcohol 7(2):107–114

    Article  CAS  PubMed  Google Scholar 

  213. Kleiber ML et al (2014) Third trimester-equivalent ethanol exposure is characterized by an acute cellular stress response and an ontogenetic disruption of genes critical for synaptic establishment and function in mice. Dev Neurosci 36(6):499–519

    Article  CAS  PubMed  Google Scholar 

  214. Saito M et al (2016) Ethanol-induced neurodegeneration and glial activation in the developing brain. Brain Sci 6(3)

  215. Goodlett CR et al (1993) Transient cortical astrogliosis induced by alcohol exposure during the neonatal brain growth spurt in rats. Brain Res Dev Brain Res 72(1):85–97

    Article  CAS  PubMed  Google Scholar 

  216. Lowery RL et al (2021) Microglia and astrocytes show limited, acute alterations in morphology and protein expression following a single developmental alcohol exposure. J Neurosci Res

  217. Farber NB, Creeley CE, Olney JW (2010) Alcohol-induced neuroapoptosis in the fetal macaque brain. Neurobiol Dis 40(1):200–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Creeley CE, Olney JW (2013) Drug-induced apoptosis: mechanism by which alcohol and many other drugs can disrupt brain development. Brain Sci 3(3):1153–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Marquardt K, Brigman JL (2016) The impact of prenatal alcohol exposure on social, cognitive and affective behavioral domains: insights from rodent models. Alcohol 51:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Cantacorps L et al (2018) Altered brain functional connectivity and behaviour in a mouse model of maternal alcohol binge-drinking. Prog Neuro-Psychopharmacol Biol Psychiatry 84(Pt A):237–249

    Article  CAS  Google Scholar 

  221. Wozniak DF et al (2004) Apoptotic neurodegeneration induced by ethanol in neonatal mice is associated with profound learning/memory deficits in juveniles followed by progressive functional recovery in adults. Neurobiol Dis 17(3):403–414

    Article  CAS  PubMed  Google Scholar 

  222. Hunt WA (1996) Role of acetaldehyde in the actions of ethanol on the brain—a review. Alcohol 13(2):147–151

    Article  CAS  PubMed  Google Scholar 

  223. Quertemont E et al (2005) The role of acetaldehyde in the central effects of ethanol. Alcohol Clin Exp Res 29(2):221–234

    Article  CAS  PubMed  Google Scholar 

  224. Zakhari S (2006) Overview: how is alcohol metabolized by the body? Alcohol Res Health 29(4):245–254

    PubMed  PubMed Central  Google Scholar 

  225. Hempel J et al (1984) Human liver alcohol dehydrogenase. 1. The primary structure of the beta 1 beta 1 isoenzyme. Eur J Biochem 145(3):437–445

    Article  CAS  PubMed  Google Scholar 

  226. Edenberg HJ (2007) The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health 30(1):5–13

    PubMed  PubMed Central  Google Scholar 

  227. Lieber CS, DeCarli LM (1972) The role of the hepatic microsomal ethanol oxidizing system (MEOS) for ethanol metabolism in vivo. J Pharmacol Exp Ther 181(2):279–287

    CAS  PubMed  Google Scholar 

  228. Aragon CM, Spivak K, Amit Z (1985) Blockade of ethanol induced conditioned taste aversion by 3-amino-1,2,4-triazole: evidence for catalase mediated synthesis of acetaldehyde in rat brain. Life Sci 37(22):2077–2084

    Article  CAS  PubMed  Google Scholar 

  229. Weiner H, Wang X (1994) Aldehyde dehydrogenase and acetaldehyde metabolism. Alcohol Alcohol Suppl 2:141–145

    CAS  PubMed  Google Scholar 

  230. Aragon CM, Rogan F, Amit Z (1992) Ethanol metabolism in rat brain homogenates by a catalase-H2O2 system. Biochem Pharmacol 44(1):93–98

    Article  CAS  PubMed  Google Scholar 

  231. Zimatkin SM, Buben AL (2007) Ethanol oxidation in the living brain. Alcohol Alcohol 42(6):529–532

    Article  CAS  PubMed  Google Scholar 

  232. Galter D et al (2003) Distribution of class I, III and IV alcohol dehydrogenase mRNAs in the adult rat, mouse and human brain. Eur J Biochem 270(6):1316–1326

    Article  CAS  PubMed  Google Scholar 

  233. Beisswenger TB, Holmquist B, Vallee BL (1985) chi-ADH is the sole alcohol dehydrogenase isozyme of mammalian brains: implications and inferences. Proc Natl Acad Sci U S A 82(24):8369–8373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Martínez SE et al (2001) Distribution of alcohol dehydrogenase mRNA in the rat central nervous system. Consequences for brain ethanol and retinoid metabolism. Eur J Biochem 268(19):5045–5056

    PubMed  Google Scholar 

  235. Zimatkin SM, Lindros KO (1996) Distribution of catalase in rat brain: aminergic neurons as possible targets for ethanol effects. Alcohol Alcohol 31(2):167–174

    Article  CAS  PubMed  Google Scholar 

  236. Hipólito L et al (2007) Brain metabolism of ethanol and alcoholism: an update. Curr Drug Metab 8(7):716–727

    Article  PubMed  Google Scholar 

  237. Cohen G, Sinet PM, Heikkila R (1980) Ethanol oxidation by rat brain in vivo. Alcohol Clin Exp Res 4(4):366–370

    Article  CAS  PubMed  Google Scholar 

  238. Peana AT et al (2015) Role of ethanol-derived acetaldehyde in operant oral self-administration of ethanol in rats. Psychopharmacology 232(23):4269–4276

    Article  CAS  PubMed  Google Scholar 

  239. Sohda T et al (1993) Immunohistochemical demonstration of ethanol-inducible P450 2E1 in rat brain. Alcohol Alcohol Suppl 1b:69–75

    Article  CAS  PubMed  Google Scholar 

  240. Upadhya SC et al (2000) Cytochrome P4502E (CYP2E) in brain: constitutive expression, induction by ethanol and localization by fluorescence in situ hybridization. Arch Biochem Biophys 373(1):23–34

    Article  CAS  PubMed  Google Scholar 

  241. Zhong Y et al (2012) Induction of brain CYP2E1 by chronic ethanol treatment and related oxidative stress in hippocampus, cerebellum, and brainstem. Toxicology 302(2-3):275–284

    Article  CAS  PubMed  Google Scholar 

  242. Hansson T et al (1990) Regional distribution of ethanol-inducible cytochrome P450 IIE1 in the rat central nervous system. Neuroscience 34(2):451–463

    Article  CAS  PubMed  Google Scholar 

  243. Quertemont E et al (2005) Is ethanol a pro-drug? Acetaldehyde contribution to brain ethanol effects. Alcohol Clin Exp Res 29(8):1514–1521

    Article  CAS  PubMed  Google Scholar 

  244. Vasiliou V et al (2006) CYP2E1 and catalase influence ethanol sensitivity in the central nervous system. Pharmacogenet Genomics 16(1):51–58

    Article  CAS  PubMed  Google Scholar 

  245. Zimatkin SM et al (2006) Enzymatic mechanisms of ethanol oxidation in the brain. Alcohol Clin Exp Res 30(9):1500–1505

    Article  CAS  PubMed  Google Scholar 

  246. Burd L, Blair J, Dropps K (2012) Prenatal alcohol exposure, blood alcohol concentrations and alcohol elimination rates for the mother, fetus and newborn. J Perinatol 32(9):652–659

    Article  CAS  PubMed  Google Scholar 

  247. Goodlett CR, Horn KH (2001) Mechanisms of alcohol-induced damage to the developing nervous system. Alcohol Res Health 25(3):175–184

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Bhatia S et al (2019) Oxidative stress and DNA damage in the mechanism of fetal alcohol spectrum disorders. Birth Defects Res 111(12):714–748

    Article  CAS  PubMed  Google Scholar 

  249. Luo J (2014) Autophagy and ethanol neurotoxicity. Autophagy 10(12):2099–2108

    Article  CAS  PubMed  Google Scholar 

  250. Kaminen-Ahola N (2020) Fetal alcohol spectrum disorders: genetic and epigenetic mechanisms. Prenat Diagn 40(9):1185–1192

    Article  CAS  PubMed  Google Scholar 

  251. Ji C (2012) Mechanisms of alcohol-induced endoplasmic reticulum stress and organ injuries. Biochem Res Int 2012:216450

    Article  CAS  PubMed  Google Scholar 

  252. Ji C, Kaplowitz N (2003) Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice. Gastroenterology 124(5):1488–1499

    Article  CAS  PubMed  Google Scholar 

  253. Lugea A et al (2011) Adaptive unfolded protein response attenuates alcohol-induced pancreatic damage. Gastroenterology 140(3):987–997

    Article  CAS  PubMed  Google Scholar 

  254. Pandol SJ et al (2010) Alcohol abuse, endoplasmic reticulum stress and pancreatitis. Dig Dis 28(6):776–782

    Article  PubMed  Google Scholar 

  255. Waldron RT et al (2018) Ethanol induced disordering of pancreatic acinar cell endoplasmic reticulum: an ER stress/defective unfolded protein response model. Cell Mol Gastroenterol Hepatol 5(4):479–497

    Article  PubMed  PubMed Central  Google Scholar 

  256. Nguyen KH, Lee JH, Nyomba BL (2012) Ethanol causes endoplasmic reticulum stress and impairment of insulin secretion in pancreatic β-cells. Alcohol 46(1):89–99

    Article  CAS  PubMed  Google Scholar 

  257. Wu H et al (2021) MANF protects pancreatic acinar cells against alcohol-induced endoplasmic reticulum stress and cellular injury. J Hepatobiliary Pancreat Sci

  258. Srinivasan MP et al (2021) Differential cytotoxicity, ER/oxidative stress, dysregulated AMPKα signaling, and mitochondrial stress by ethanol and its metabolites in human pancreatic acinar cells. Alcohol Clin Exp Res

  259. Li SY et al (2009) Aldehyde dehydrogenase-2 (ALDH2) ameliorates chronic alcohol ingestion-induced myocardial insulin resistance and endoplasmic reticulum stress. J Mol Cell Cardiol 47(2):247–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Li SY, Ren J (2008) Cardiac overexpression of alcohol dehydrogenase exacerbates chronic ethanol ingestion-induced myocardial dysfunction and hypertrophy: role of insulin signaling and ER stress. J Mol Cell Cardiol 44(6):992–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Wang W et al (2021) Astaxanthin attenuates alcoholic cardiomyopathy via inhibition of endoplasmic reticulum stress-mediated cardiac apoptosis. Toxicol Appl Pharmacol 412:115378

    Article  CAS  PubMed  Google Scholar 

  262. Ji C (2015) Advances and new concepts in alcohol-induced organelle stress, unfolded protein responses and organ damage. Biomolecules 5(2):1099–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. George AK et al (2017) Hydrogen sulfide, endoplasmic reticulum stress and alcohol mediated neurotoxicity. Brain Res Bull 130:251–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Chen G et al (2008) Ethanol promotes endoplasmic reticulum stress-induced neuronal death: involvement of oxidative stress. J Neurosci Res 86(4):937–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta 1833(12):3460–3470

    Article  CAS  PubMed  Google Scholar 

  266. Ji C et al (2005) Role of CHOP in hepatic apoptosis in the murine model of intragastric ethanol feeding. Alcohol Clin Exp Res 29(8):1496–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Lee H et al (2011) Endoplasmic reticulum stress-induced JNK activation is a critical event leading to mitochondria-mediated cell death caused by β-lapachone treatment. PLoS ONE 6(6):e21533

    Article  PubMed  PubMed Central  Google Scholar 

  268. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    Article  CAS  PubMed  Google Scholar 

  269. Matson LM, Grahame NJ (2013) Pharmacologically relevant intake during chronic, free-choice drinking rhythms in selectively bred high alcohol-preferring mice. Addict Biol 18(6):921–929

    Article  CAS  PubMed  Google Scholar 

  270. Xu H et al (2021) Chronic voluntary alcohol drinking causes anxiety-like behavior, thiamine deficiency, and brain damage of female crossed high alcohol preferring mice. Front Pharmacol 12(258)

  271. Xu H et al (2019) Effects of chronic voluntary alcohol drinking on thiamine concentrations, endoplasmic reticulum stress, and oxidative stress in the brain of crossed high alcohol preferring mice. Neurotox Res

  272. George AK et al (2018) Exercise mitigates alcohol induced endoplasmic reticulum stress mediated cognitive impairment through ATF6-Herp signaling. Sci Rep 8(1):5158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Cassidy LL, Dlugos FF, Dlugos CA (2013) Time course of SERCA 2b and calreticulin expression in Purkinje neurons of ethanol-fed rats with behavioral correlates. Alcohol Alcohol 48(6):667–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Dlugos CA (2006) Smooth endoplasmic reticulum dilation and degeneration in Purkinje neuron dendrites of aging ethanol-fed female rats. Cerebellum 5(2):155–162

    Article  CAS  PubMed  Google Scholar 

  275. Dlugos CA (2014) ATF6 and caspase 12 expression in Purkinje neurons in acute slices from adult, ethanol-fed rats. Brain Res 1577:11–20

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Cody Dvorak for proofreading the manuscript.

Funding

This work was supported by the National Institutes of Health (NIH) grants AA017226 and AA015407. It was also supported in part by the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development [Biomedical Laboratory Research and Development: Merit Review (BX001721)].

Author information

Authors and Affiliations

Authors

Contributions

W. W. reviewed literatures, wrote the manuscript, and made the tables and figures; H. L. revised the manuscript; and J. L. revised the manuscript and provided financial support. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Jia Luo.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, W., Li, H. & Luo, J. Potential Role of MANF, an ER Stress Responsive Neurotrophic Factor, in Protecting Against Alcohol Neurotoxicity. Mol Neurobiol 59, 2992–3015 (2022). https://doi.org/10.1007/s12035-022-02786-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02786-7

Keywords

Navigation