We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Advertisement

Log in

Activation of the TREK-1 Potassium Channel Improved Cognitive Deficits in a Mouse Model of Alzheimer’s Disease by Modulating Glutamate Metabolism

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by cognitive dysfunction. The glutamate (Glu) metabolic pathway may be a major contributor to the memory dysfunction associated with AD. The TWIK-related potassium channel-1 (TREK-1) protects against brain ischemia, but any specific role for the channel in AD remains unknown. In this study, we used SAMP8 mice as an AD model and age-matched SAMR1 mice as controls. We explored the trends of changes in TREK-1 channel activity and the levels of AD-related molecules in the brains of SAMP8 mice. We found that the expression level of TREK-1 increased before 3 months of age and then began to decline. The levels of Tau and Glu increased with age whereas the acetylcholine level decreased with age. α-Linolenic acid (ALA), an activator of the TREK-1 channel, significantly increased the TREK-1 level, and improved the learning and memory deficits of SAMP8 mice aged 6 months. The mechanism in play may involve the Glu metabolic pathway. After activation of the TREK-1 channel, damaged neurons and astrocytes were rescued, the levels of Glu and the N-methyl-D-aspartate receptor were downregulated, and the level of glutamate transporter-1 was upregulated. These findings suggest that TREK-1 plays a crucial role in the pathological progression of AD; activation of the TREK-1 channel improved cognitive deficits in SAMP8 mice via a mechanism that involved Glu metabolism. The TREK-1 potassium channel may thus be a valuable therapeutic target in AD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data supporting the results of this study are available upon reasonable request of the corresponding author.

Code Availability

Not applicable.

References

  1. Goedert MS, Pillantini MG (2006) A century of Alzheimer's disease. Science 314(5800):777–781. https://doi.org/10.1126/science.1132814

    Article  CAS  PubMed  Google Scholar 

  2. Jeong S (2017) Molecular and cellular basis of neurodegeneration in Alzheimer's disease. Mol Cells 40(9):613–620. https://doi.org/10.14348/molcells.2017.0096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM (2016) Alzheimer's disease: Targeting the cholinergic system. Curr Neuropharmacol 14(1):101–115. https://doi.org/10.2174/1570159x13666150716165726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35. https://doi.org/10.1007/s00401-009-0619-8

    Article  PubMed  Google Scholar 

  5. Carozzi V, Marmiroli P, Cavaletti G (2008) Focus on the role of Glutamate in the pathology of the peripheral nervous system. CNS Neurol Disord Drug Targets 7(4):348–360. https://doi.org/10.2174/187152708786441876

    Article  CAS  PubMed  Google Scholar 

  6. Ferraguti F, Crepaldi L, Nicoletti F (2008) Metabotropic glutamate 1 receptor: current concepts and perspectives. Pharmacol Rev 60(4):536–581. https://doi.org/10.1124/pr.108.000166

    Article  CAS  PubMed  Google Scholar 

  7. Nakanishi S, Masu M (1994) Molecular diversity and functions of glutamate receptors. Annu Rev Biophys Biomol Struct 23:319–348. https://doi.org/10.1146/annurev.bb.23.060194.001535

    Article  CAS  PubMed  Google Scholar 

  8. Riederer P, Hoyer S (2006) From benefit to damage. Glutamate and advanced glycation end products in Alzheimer brain. J Neural Transm (Vienna) 113(11):1671–1677. https://doi.org/10.1007/s00702-006-0591-6

    Article  CAS  Google Scholar 

  9. Danysz W, Wroblewski JT, Costa E (1988) Learning impairment in rats by N-methyl-D-aspartate receptor antagonists. Neuropharmacology 27(6):653–656. https://doi.org/10.1016/0028-3908(88)90189-x

    Article  CAS  PubMed  Google Scholar 

  10. Morris RG (1989) Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. J Neurosci 9(9):3040–3057. https://doi.org/10.1523/jneurosci.09-09-03040.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Revett TJ, Baker GB, Jhamandas J, Kar S (2013) Glutamate system, amyloid ß peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci 38(1):6–23. https://doi.org/10.1503/jpn.110190

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27(11):2866–2875. https://doi.org/10.1523/jneurosci.4970-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yi JH, Pow DV, Hazell AS (2005) Early loss of the glutamate transporter splice-variant GLT-1v in rat cerebral cortex following lateral fluid-percussion injury. Glia 49(1):121–133. https://doi.org/10.1002/glia.20099

    Article  PubMed  Google Scholar 

  14. Meeker KD, Meabon JS, Cook DG (2015) Partial loss of the glutamate transporter GLT-1 alters brain Akt and insulin signaling in a mouse model of Alzheimer's disease. J Alzheimers Dis 45(2):509–520. https://doi.org/10.3233/jad-142304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chapman CG, Meadows HJ, Godden RJ, Campbell DA, Duckworth M, Kelsell RE et al (2000) Cloning, localisation and functional expression of a novel human, cerebellum specific, two pore domain potassium channel. Brain Res Mol Brain Res 82(1-2):74–83. https://doi.org/10.1016/s0169-328x(00)00183-2

    Article  CAS  PubMed  Google Scholar 

  16. Hervieu GJ, Cluderay JE, Gray CW, Green PJ, Ranson JL, Randall AD et al (2001) Distribution and expression of TREK-1, a two-pore-domain potassium channel, in the adult rat CNS. Neuroscience 103(4):899–919. https://doi.org/10.1016/s0306-4522(01)00030-6

    Article  CAS  PubMed  Google Scholar 

  17. Vivier D, Bennis K, Lesage F, Ducki S (2016) Perspectives on the two-pore domain potassium channel TREK-1 (TWIK-Related K(+) Channel 1). A novel therapeutic target? J Med Chem 59(11):5149–5157. https://doi.org/10.1021/acs.jmedchem.5b00671

    Article  CAS  PubMed  Google Scholar 

  18. Yarishkin O, Phuong TTT, Bretz CA, Olsen KW, Baumann JM, Lakk M et al (2018) TREK-1 channels regulate pressure sensitivity and calcium signaling in trabecular meshwork cells. J Gen Physiol 150(12):1660–1675. https://doi.org/10.1085/jgp.201812179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goonetilleke L, Quayle J (2012) TREK-1 K(+) channels in the cardiovascular system: their significance and potential as a therapeutic target. Cardiovasc Ther 30(1):e23–e29. https://doi.org/10.1111/j.1755-5922.2010.00227.x

    Article  CAS  PubMed  Google Scholar 

  20. Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzuca M et al (2004) TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 23(13):2684–2695. https://doi.org/10.1038/sj.emboj.7600234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu Y, Sun Q, Chen X, Jing L, Wang W, Yu Z et al (2014) Linolenic acid provides multi-cellular protective effects after photothrombotic cerebral ischemia in rats. Neurochem Res 39(9):1797–1808. https://doi.org/10.1007/s11064-014-1390-3

    Article  CAS  PubMed  Google Scholar 

  22. Lalo U, Palygin O, Rasooli-Nejad S, Andrew J, Haydon PG, Pankratov Y (2014) Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 12(1):e1001747. https://doi.org/10.1371/journal.pbio.1001747

    Article  PubMed  PubMed Central  Google Scholar 

  23. Woo DH, Han KS, Shim JW, Yoon BE, Kim E, Bae JY et al (2012) TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151(1):25–40. https://doi.org/10.1016/j.cell.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  24. Lu L, Zhang G, Song C, Wang X, Qian W, Wang Z et al (2017) Arachidonic acid has protective effects on oxygen-glucose deprived astrocytes mediated through enhancement of potassium channel TREK-1 activity. Neurosci Lett 636:241–247. https://doi.org/10.1016/j.neulet.2016.11.034

    Article  CAS  PubMed  Google Scholar 

  25. Bittner S, Ruck T, Schuhmann MK, Herrmann AM, Moha ou Maati H, Bobak N et al (2013) Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med 19(9):1161–1165. https://doi.org/10.1038/nm.3303

    Article  CAS  PubMed  Google Scholar 

  26. Akiguchi I, Pallàs M, Budka H, Akiyama H, Ueno M, Han J et al (2017) SAMP8 mice as a neuropathological model of accelerated brain aging and dementia: Toshio Takeda's legacy and future directions. Neuropathology 37(4):293–305. https://doi.org/10.1111/neup.12373

    Article  CAS  PubMed  Google Scholar 

  27. Orejana L, Barros-Miñones L, Jordán J, Puerta E, Aguirre N (2012) Sildenafil ameliorates cognitive deficits and tau pathology in a senescence-accelerated mouse model. Neurobiol Aging 33(3):625.e611–625.e620. https://doi.org/10.1016/j.neurobiolaging.2011.03.018

    Article  CAS  Google Scholar 

  28. Diaz-Perdigon T, Belloch FB, Ricobaraza A, Elboray EE, Suzuki T, Tordera RM et al (2020) Early sirtuin 2 inhibition prevents age-related cognitive decline in a senescence-accelerated mouse model. Neuropsychopharmacology 45(2):347–357. https://doi.org/10.1038/s41386-019-0503-8

    Article  CAS  PubMed  Google Scholar 

  29. Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G, Lazdunski M (2000) Polyunsaturated fatty acids are potent neuroprotectors. EMBO J 19(8):1784–1793. https://doi.org/10.1093/emboj/19.8.1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Djillani A, Mazella J, Heurteaux C, Borsotto M (2019) Role of TREK-1 in health and disease, focus on the central nervous system. Front Pharmacol 10:379. https://doi.org/10.3389/fphar.2019.00379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin R, Li L, Zhang Y, Huang S, Chen S, Shi J et al (2018) Electroacupuncture ameliorate learning and memory by improving N-acetylaspartate and glutamate metabolism in APP/PS1 mice. Biol Res 51(1):21. https://doi.org/10.1186/s40659-018-0166-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao Y, Tan L, Yu JT, Tan L (2018) Tau in Alzheimer's disease: mechanisms and therapeutic strategies. Curr Alzheimer Res 15(3):283–300. https://doi.org/10.2174/1567205014666170417111859

    Article  CAS  PubMed  Google Scholar 

  33. Miyasaka T, Shinzaki Y, Yoshimura S, Yoshina S, Kage-Nakadai E, Mitani S et al (2018) Imbalanced expression of tau and tubulin induces neuronal dysfunction in C. elegans Models of Tauopathy. Front Neurosci 12:415. https://doi.org/10.3389/fnins.2018.00415

  34. Tsolaki M, Sakka V, Gerasimou G, Dimacopoulos N, Chatzizisi O, Fountoulakis KN et al (2001) Correlation of rCBF (SPECT), CSF tau, and cognitive function in patients with dementia of the Alzheimer's type, other types of dementia, and control subjects. Am J Alzheimers Dis Other Demen 16(1):21–31. https://doi.org/10.1177/153331750101600107

    Article  CAS  PubMed  Google Scholar 

  35. Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW et al (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67(6):953–966. https://doi.org/10.1016/j.neuron.2010.08.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Smith JW, Evans AT, Costall B, Smythe JW (2002) Thyroid hormones, brain function and cognition: a brief review. Neurosci Biobehav Rev 26(1):45–60. https://doi.org/10.1016/s0149-7634(01)00037-9

    Article  CAS  PubMed  Google Scholar 

  37. Fuhrmann M, Bittner T, Jung CK, Burgold S, Page RM, Mitteregger G et al (2010) Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease. Nat Neurosci 13(4):411–413. https://doi.org/10.1038/nn.2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hascup KN, Hascup ER, Pomerleau F, Huettl P, Gerhardt GA (2008) Second-by-second measures of L-glutamate in the prefrontal cortex and striatum of freely moving mice. J Pharmacol Exp Ther 324(2):725–731. https://doi.org/10.1124/jpet.107.131698

    Article  CAS  PubMed  Google Scholar 

  39. Sun Y, Yang J, Hu X, Gao X, Li Y, Yu M et al (2018) Conditioned medium from overly excitatory primary astrocytes induced by La(3+) increases apoptosis in primary neurons via upregulating the expression of NMDA receptors. Metallomics 10(7):1016–1028. https://doi.org/10.1039/c8mt00056e

    Article  CAS  PubMed  Google Scholar 

  40. Mahmoud S, Gharagozloo M, Simard C, Gris D (2019) Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells 8(2). https://doi.org/10.3390/cells8020184

  41. Gu B, Nakamichi N, Zhang WS, Nakamura Y, Kambe Y, Fukumori R et al (2009) Possible protection by notoginsenoside R1 against glutamate neurotoxicity mediated by N-methyl-D-aspartate receptors composed of an NR1/NR2B subunit assembly. J Neurosci Res 87(9):2145–2156. https://doi.org/10.1002/jnr.22021

    Article  CAS  PubMed  Google Scholar 

  42. Mookherjee P, Green PS, Watson GS, Marques MA, Tanaka K, Meeker KD et al (2011) GLT-1 loss accelerates cognitive deficit onset in an Alzheimer's disease animal model. J Alzheimers Dis 26(3):447–455. https://doi.org/10.3233/jad-2011-110503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Lu Li Laboratory, Institute of Pharmacology, Lanzhou University School of Basic Medicine, for their constructive feedback on the production of this manuscript.

Funding

This study was supported by the Key Laboratory of Traditional Chinese Medicine Innovation and Transformation of Gansu Province/Engineering Laboratory of Traditional Chinese Medicine Products of Gansu Province (ZYFYZH-KJ-2016–004) and the Talent Innovation and Entrepreneurial Science and Technology Project of Lanzhou City (2015-RC-20).

Author information

Authors and Affiliations

Authors

Contributions

F Li has full access to all data in the study and is responsible for the integrity of the data and the accuracy of the data analysis. SN Zhou and F Li contributed equally to this work and are co-first authors. F Li collected the data and drafted and revised the manuscript. SN Zhou analyzed the data. X Zeng did animal experiments, Z Li finished ELISA detection, and R Yang and XX Wang contributed to section staining. B Meng and WL Pei collected the data. L Li designed the study and F Li interpreted data and reviewed the manuscript. L Li and XX Wang did critical revision of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Rui Yang or Li Lu.

Ethics declarations

Ethical Approval

All the animal experiments were conducted according to the guidelines for animal care and use in China. The authors also confirm that the study was performed in accordance with the approval of the ethical committee for animal experimentation at Lanzhou University.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fang Li and Shu-ning Zhou are co-first authors.

Li Lu is the first corresponding author and Rui Yang is the second corresponding author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Zhou, Sn., Zeng, X. et al. Activation of the TREK-1 Potassium Channel Improved Cognitive Deficits in a Mouse Model of Alzheimer’s Disease by Modulating Glutamate Metabolism. Mol Neurobiol 59, 5193–5206 (2022). https://doi.org/10.1007/s12035-022-02776-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02776-9

Keywords

Navigation