Skip to main content

Advertisement

Log in

Activation of the GPX4/TLR4 Signaling Pathway Participates in the Alleviation of Selenium Yeast on Deltamethrin-Provoked Cerebrum Injury in Quails

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Deltamethrin (DLM) is a member of pyrethroid pesticide widely applied for agriculture and aquaculture, and its residue in the environment seriously threatens the bio-safety. The cerebrum might be vulnerable to pesticide-triggered oxidative stress. However, there is no specific antidote for treating DLM-triggered cerebral injury. Selenium (Se) is an essential trace element functionally forming selenoprotein glutathione peroxidase (GPX) in antioxidant defense. Se yeast (SY) is a common and effective organic form of Se supplement with high selenomethionine content. Accordingly, this study focused on investigating the therapeutic potential of SY on DLM-induced cerebral injury in quails after chronically exposing to DLM and exploring the underlying mechanisms. Quails were treated with/without SY (0.4 mg kg−1 SY added in standard diet) in the presence/absence of DLM (45 mg kg−1 body weight intragastrically) for 12 weeks. The results showed SY supplementation ameliorated DLM-induced cerebral toxicity. Concretely, SY elevated the content of Se and increased GPX4 level in DLM-treated quail cerebrum. Furthermore, SY enhanced antioxidant defense system by upregulating nuclear factor-erythroid-2-related factor 2 (Nrf2) associated members. Inversely, SY diminished the changes of apoptosis- and inflammation-associated proteins and genes including toll-like receptor 4 (TLR4). Collectively, our results suggest that dietary SY protects against DLM-induced cerebral toxicity in quails via positively regulating the GPX4/TLR4 signaling pathway. GPX4 may be a potential therapeutic target for insecticide-induced biotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

DLM:

Deltamethrin

Se:

Selenium

GPX:

Glutathione peroxidase

GSH:

Glutathione

ROS:

Reactive oxygen species

GSSG:

Disulfide glutathione

SY:

Selenium yeast

SOD:

Superoxide dismutase

MDA:

Malondialdehyde

TLR4:

Toll-like receptor 4

NF-κB:

Nuclear factor-kappa B

Nrf2:

Nuclear factor-erythroid-2-related factor 2

TNF-α:

Tumor necrosis factor-alpha

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

WBC:

White blood cell

RBC:

Red blood cell

ICP-MS:

Inductively coupled plasma mass spectrometry

H&E:

Hematoxylin and eosin

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling

TBST:

Tris-buffered saline and 20% Tween 20

PPI:

Protein–protein interaction

SEM:

Standard error of mean

NQO1:

Nicotinamide adenine dinucleotide phosphatase: quinone acceptor 1

HO-1:

Heme oxygenase-1

iNOS:

Inducible nitric oxide synthase

COX-2:

Cyclooxygenase-2

JNK3:

Jun N-terminal kinas e3

Bax:

B cell lymphoma gene 2-associated X protein

Keap1:

Kelch-like ECH-associated protein 1

References

  1. Braguini WL, Cadena SM, Carnieri EG, Rocha ME, de Oliveira MB (2004) Effects of deltamethrin on functions of rat liver mitochondria and on native and synthetic model membranes. Toxicol Lett 152:191–202. https://doi.org/10.1016/j.toxlet.2004.03.017

    Article  CAS  PubMed  Google Scholar 

  2. Guardiola FA, Gónzalez-Párraga P, Meseguer J, Cuesta A, Esteban MA (2014) Modulatory effects of deltamethrin-exposure on the immune status, metabolism and oxidative stress in gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 36:120–129. https://doi.org/10.1016/j.fsi.2013.10.020

    Article  CAS  PubMed  Google Scholar 

  3. Song YF, Kai JR, Song XY, Zhang W, Li LL (2015) Long-term toxic effects of deltamethrin and fenvalerante in soil. J Hazard Mater 289:158–164. https://doi.org/10.1016/j.jhazmat.2015.02.057

    Article  CAS  PubMed  Google Scholar 

  4. Brooks SJ, Ruus A, Rundberget JT, Kringstad A, Lillicrap A (2019) Bioaccumulation of selected veterinary medicinal products (VMPs) in the blue mussel (Mytilus edulis). Sci Total Environ 655:1409–1419. https://doi.org/10.1016/j.scitotenv.2018.11.212

    Article  CAS  PubMed  Google Scholar 

  5. Chandra N, Jain NK, Sondhia S, Srivastava AB (2013) Deltamethrin induced toxicity and ameliorative effect of alpha-tocopherol in broilers. Bull Environ Contam Toxicol 90:673–678. https://doi.org/10.1007/s00128-013-0981-z

    Article  CAS  PubMed  Google Scholar 

  6. Dong T, Lin L, He Y, Nie PC, Qu FF, Xiao SP (2018) Density functional theory analysis of deltamethrin and its determination in strawberry by surface enhanced Raman spectroscopy. Molecules 23:1458. https://doi.org/10.3390/molecules23061458

    Article  CAS  PubMed Central  Google Scholar 

  7. Parsons AE, Escobar-Lux RH, Sævik PN, Samuelsen OB, Agnalt AL (2020) The impact of anti-sea lice pesticides, azamethiphos and deltamethrin, on European lobster (Homarus gammarus) larvae in the Norwegian marine environment. Environ Pollut 264:114725. https://doi.org/10.1016/j.envpol.2020.114725

    Article  CAS  PubMed  Google Scholar 

  8. Richardson JR, Taylor MM, Shalat SL, Guillot TS, Caudle WM, Hossain MM, Mathews TA, Jones SR, Cory-Slechta DA, Miller GW (2015) Developmental pesticide exposure reproduces features of attention deficit hyperactivity disorder. FASEB J 29:1960–1972. https://doi.org/10.1096/fj.14-260901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu YQ, Li WH, Yuan MR, Liu X (2020) The synthetic pyrethroid deltamethrin impairs zebrafish (Danio rerio) swim bladder development. Sci Total Environ 701:134870. https://doi.org/10.1016/j.scitotenv.2019.134870

    Article  CAS  PubMed  Google Scholar 

  10. Li M, Liu XY, Feng XZ (2019) Cardiovascular toxicity and anxiety-like behavior induced by deltamethrin in zebrafish (Danio rerio) larvae. Chemosphere 219:155–164. https://doi.org/10.1016/j.chemosphere.2018.12.011

    Article  CAS  PubMed  Google Scholar 

  11. Liu XY, Gao Q, Feng ZY, Tang YQ, Zhao X, Chen DY, Feng XZ (2021) Protective effects of spermidine and melatonin on deltamethrin-induced cardiotoxicity and neurotoxicity in zebrafish. Cardiovasc Toxicol 21:29–41. https://doi.org/10.1007/s12012-020-09591-5

    Article  CAS  PubMed  Google Scholar 

  12. Ning MX, Hao WJ, Cao C, Xie XJ, Fan WF, Huang H, Yue YC, Tang MY, Wang W, Gu W, Meng QG (2020) Toxicity of deltamethrin to Eriocheir sinensis and the isolation of a deltamethrin-degrading bacterium, Paracoccus sp. P-2. Chemosphere 257:127162. https://doi.org/10.1016/j.chemosphere.2020.127162

  13. Osama E, Galal AAA, Abdalla H, El-Sheikh SMA (2019) Chlorella vulgaris ameliorates testicular toxicity induced by deltamethrin in male rats via modulating oxidative stress. Andrologia 51:e13214. https://doi.org/10.1111/and.13214

    Article  CAS  PubMed  Google Scholar 

  14. Lu QR, Sun YQ, Ares I, Anadón A, Martínez M, Martínez-Larrañaga MR, Yuan ZH, Wang X, Martinez MA (2019) Deltamethrin toxicity: a review of oxidative stress and metabolism. Environ Res 170:260–281. https://doi.org/10.1016/j.envres.2018.12.045

    Article  CAS  PubMed  Google Scholar 

  15. Jia ZZ, Zhang JW, Zhou D, Xu DQ, Feng XZ (2019) Deltamethrin exposure induces oxidative stress and affects meiotic maturation in mouse oocyte. Chemosphere 223:704–713. https://doi.org/10.1016/j.chemosphere.2019.02.092

    Article  CAS  PubMed  Google Scholar 

  16. Özdemir S, Altun S, Özkaraca M, Ghosi A, Toraman E, Arslan H (2018) Cypermethrin, chlorpyrifos, deltamethrin, and imidacloprid exposure up-regulates the mRNA and protein levels of bdnf and c-fos in the brain of adult zebrafish (Danio rerio). Chemosphere 203:318–326. https://doi.org/10.1016/j.chemosphere.2018.03.190

    Article  CAS  PubMed  Google Scholar 

  17. Parlak V (2018) Evaluation of apoptosis, oxidative stress responses, AChE activity and body malformations in zebrafish (Danio rerio) embryos exposed to deltamethrin. Chemosphere 207:397–403. https://doi.org/10.1016/j.chemosphere.2018.05.112

    Article  CAS  PubMed  Google Scholar 

  18. Zhang C, Zhang Q, Pang YY, Song XZ, Zhou N, Wang J, He L, Lv JH, Song Y, Cheng Y, Yang XZ (2019) The protective effects of melatonin on oxidative damage and the immune system of the Chinese mitten crab (Eriocheir sinensis) exposed to deltamethrin. Sci Total Environ 653:1426–1434. https://doi.org/10.1016/j.scitotenv.2018.11.063

    Article  CAS  PubMed  Google Scholar 

  19. Salim S (2017) Oxidative stress and the central nervous system. J Pharmacol Exp Ther 360:201–205. https://doi.org/10.1124/jpet.116.237503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yousof SM, Awad YM, Mostafa EMA, Hosny MM, Anwar MM, Eldesouki RE, Badawy AE (2021) The potential neuroprotective role of Amphora coffeaeformis algae against monosodium glutamate-induced neurotoxicity in adult albino rats. Food Funct 12:706–716. https://doi.org/10.1039/d0fo01957g

    Article  CAS  PubMed  Google Scholar 

  21. Balaban H, Nazıroğlu M, Demirci K, Övey İS (2017) The protective role of selenium on scopolamine-induced memory impairment, oxidative stress, and apoptosis in aged rats: the involvement of TRPM2 and TRPV1 channels. Mol Neurobiol 54:2852–2868. https://doi.org/10.1007/s12035-016-9835-0

    Article  CAS  PubMed  Google Scholar 

  22. Chung S, Zhou R, Webster TJ (2020) Green synthesized BSA-coated selenium nanoparticles inhibit bacterial growth while promoting mammalian cell growth. Int J Nanomedicine 15:115–124. https://doi.org/10.2147/IJN.S193886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qian F, Misra S, Prabhu KS (2019) Selenium and selenoproteins in prostanoid metabolism and immunity. Crit Rev Biochem Mol Biol 54:484–516. https://doi.org/10.1080/10409238.2020.1717430

    Article  CAS  PubMed  Google Scholar 

  24. Reid ME, Duffield-Lillico AJ, Slate E, Natarajan N, Turnbull B, Jacobs E, Combs GFJR, Alberts DS, Clark LC, Marshall JR (2008) The nutritional prevention of cancer: 400 mcg per day selenium treatment. Nutr Cancer 60:155–163. https://doi.org/10.1080/01635580701684856

    Article  CAS  PubMed  Google Scholar 

  25. Ren XM, Wang SS, Zhang CQ, Hu XD, Zhou L, Li YH, Xu LC (2020) Selenium ameliorates cadmium-induced mouse Leydig TM3 cell apoptosis via inhibiting the ROS/JNK/c-jun signaling pathway. Ecotoxicol Environ Saf 192:110266. https://doi.org/10.1016/j.ecoenv.2020.110266

    Article  CAS  PubMed  Google Scholar 

  26. Bulteau AL, Chavatte L (2015) Update on selenoprotein biosynthesis. Antioxid Redox Signal 23:775–794. https://doi.org/10.1089/ars.2015.6391

    Article  CAS  PubMed  Google Scholar 

  27. Lu J, Holmgren A (2009) Selenoproteins. J Biol Chem 284:723–727. https://doi.org/10.1074/jbc.R800045200

    Article  CAS  PubMed  Google Scholar 

  28. Nassef E, Saker O, Shukry M (2020) Effect of Se sources and concentrations on performance, antioxidant defense, and functional egg quality of laying Japanese quail (Coturnix japonica). Environ Sci Pollut Res Int 27:37677–37683. https://doi.org/10.1007/s11356-020-09853-3

    Article  CAS  PubMed  Google Scholar 

  29. Guillin OM, Vindry C, Ohlmann T, Chavatte L (2019) Selenium, selenoproteins and viral infection. Nutrients 11:2101. https://doi.org/10.3390/nu11092101

    Article  CAS  PubMed Central  Google Scholar 

  30. Del Vesco AP, Gasparino E (2013) Production of reactive oxygen species, gene expression, and enzymatic activity in quail subjected to acute heat stress. J Anim Sci 91:582–587. https://doi.org/10.2527/jas.2012-5498

    Article  PubMed  Google Scholar 

  31. Kesheri M, Kanchan S, Richa SRP (2014) Isolation and in silico analysis of Fe-superoxide dismutase in the cyanobacterium Nostoc commune. Gene 553:117–125. https://doi.org/10.1016/j.gene.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  32. Ansong E, Yang W, Diamond AM (2014) Molecular cross-talk between members of distinct families of selenium containing proteins. Mol Nutr Food Res 58:117–123. https://doi.org/10.1002/mnfr.201300543

    Article  CAS  PubMed  Google Scholar 

  33. Gan F, Xue H, Huang Y, Pan C, Huang K (2015) Selenium alleviates porcine nephrotoxicity of ochratoxin A by improving selenoenzyme expression in vitro. PLoS ONE 10:e0119808. https://doi.org/10.1371/journal.pone.0119808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schwarz K, Foltz CM (1957) Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 79:3292–3293

    Article  CAS  Google Scholar 

  35. Ye RH, Huang JQ, Wang ZX, Chen YX, Dong YL (2021) Trace element selenium effectively alleviates intestinal diseases. Int J Mol Sci 22:11708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim JH, Kil DY (2020) Comparison of toxic effects of dietary organic or inorganic selenium and prediction of selenium intake and tissue selenium concentrations in broiler chickens using feather selenium concentrations. Poult Sci 99:6462–6473. https://doi.org/10.1016/j.psj.2020.08.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kieliszek M (2019) Selenium-fascinating microelement, properties and sources in food. Molecules 24:1298. https://doi.org/10.3390/molecules24071298

    Article  CAS  PubMed Central  Google Scholar 

  38. Mahima VAK, Kumar A, Rahal A, Kumar V, Roy D (2012) Inorganic versus organic selenium supplementation: a review. Pak J Biol Sci 15:418–425. https://doi.org/10.3923/pjbs.2012.418.425

    Article  CAS  PubMed  Google Scholar 

  39. Yuan D, Zhan XA, Wang YX (2012) Effect of selenium sources on the expression of cellular glutathione peroxidase and cytoplasmic thioredoxin reductase in the liver and kidney of broiler breeders and their offspring. Poult Sci 91:936–942. https://doi.org/10.3382/ps.2011-01921

    Article  CAS  PubMed  Google Scholar 

  40. Federal Register. Food additives permitted in feed and drinking water of animals; Selenium yeast. https://www.federalregister.gov/documents/2000/06/06/00-14214/food-additives-permitted-in-feed-and-drinking-water-of-animals-selenium-yeast. (accessed Jan. 2020).

  41. Food and Drug Administration (FDA) (2003) Food additives permitted in feed and drinking water of animals: Delenium yeast. Federal Register 68:52339–52340

  42. Ibrahim D, Kishawy ATY, Khater SI, Hamed Arisha AH, Mohammed HA, Abdelaziz AS, Abd El-Rahman GI, Elabbasy MT (2019) Effect of dietary modulation of selenium form and level on performance, tissue retention, quality of frozen stored meat and gene expression of antioxidant status in ross broiler chickens. Animals (Basel) 9:342. https://doi.org/10.3390/ani9060342

    Article  Google Scholar 

  43. Zhang ZH, Wu QY, Chen C, Zheng R, Chen Y, Ni JZ, Song GL (2018) Comparison of the effects of selenomethionine and selenium-enriched yeast in the triple-transgenic mouse model of Alzheimer’s disease. Food Funct 9:3965–3973. https://doi.org/10.1039/c7fo02063e

    Article  CAS  PubMed  Google Scholar 

  44. Hamid M, Abdulrahim Y, Liu D, Qian G, Khan A, Huang K (2018) The hepatoprotective effect of selenium-enriched yeast and gum arabic combination on carbon tetrachloride-induced chronic liver injury in rats. J Food Sci 83:525–534. https://doi.org/10.1111/1750-3841.14030

    Article  CAS  PubMed  Google Scholar 

  45. Wang XD, Shen ZH, Wang CL, Li EC, Qin JG, Chen LQ (2019) Dietary supplementation of selenium yeast enhances the antioxidant capacity and immune response of juvenile Eriocheir Sinensis under nitrite stress. Fish Shellfish Immunol 87:22–31. https://doi.org/10.1016/j.fsi.2018.12.076

    Article  CAS  PubMed  Google Scholar 

  46. Liu L, Wu CM, Chen DW, Yu B, Huang ZQ, Luo YH, Zheng P, Mao XB, Yu J, Luo JQ, Yan H, He J (2020) Selenium-enriched yeast alleviates oxidative stress-induced intestinal mucosa disruption in weaned pigs. Oxid Med Cell Longev 2020:5490743. https://doi.org/10.1155/2020/5490743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li P, Li K, Zou C, Tong C, Sun L, Cao ZJ, Yang SH, Lyu QF (2020) Selenium yeast alleviates ochratoxin a-induced hepatotoxicity via modulation of the PI3K/AKT and Nrf2/Keap1 signaling pathways in chickens. Toxins (Basel) 12:143. https://doi.org/10.3390/toxins12030143

    Article  CAS  Google Scholar 

  48. Han B, Lv ZJ, Zhang XY, Lv YY, Li SY, Wu PF, Yang QY, Li JY, Qu B, Zhang ZG (2020) Deltamethrin induces liver fibrosis in quails via activation of the TGF-β1/Smad signaling pathway. Environ Pollut 259:113870. https://doi.org/10.1016/j.envpol.2019.113870

    Article  CAS  PubMed  Google Scholar 

  49. Yang DQ, Lv ZJ, Zhang HL, Liu BY, Jiang HJ, Tan X, Lu JJ, Baiyun RQ, Zhang ZG (2017) Activation of the Nrf2 signaling pathway involving KLF9 plays a critical role in allicin resisting against arsenic trioxide-induced hepatotoxicity in rats. Biol Trace Elem Res 176:192–200. https://doi.org/10.1007/s12011-016-0821-1

    Article  CAS  PubMed  Google Scholar 

  50. Lv YY, Bing QZ, Lv ZJ, Xue JD, Li SY, Han B, Yang QY, Wang XQ, Zhang ZG (2020) Imidacloprid-induced liver fibrosis in quails via activation of the TGF-β1/Smad pathway. Sci Total Environ 705:135915. https://doi.org/10.1016/j.scitotenv.2019.135915

  51. Barbosa V, Maulvault AL, Anacleto P, Santos M, Mai M, Oliveira H, Delgado I, Coelho I, Barata M, Araújo-Luna R, Ribeiro L, Eljasik P, Sobczak M, Sadowski J, Tórz A, Panicz R, Dias J, Pousão-Ferreira P, Carvalho ML, Martins M, Marques A (2021) Effects of steaming on health-valuable nutrients from fortified farmed fish: gilthead seabream (Sparus aurata) and common carp (Cyprinus carpio) as case studies. Food Chem Toxicol 152:112218. https://doi.org/10.1016/j.fct.2021.112218

    Article  CAS  PubMed  Google Scholar 

  52. Delgado I, Ventura M, Gueifão S, Coelho I, Nascimento AC, Silva JAL, Castanheira I (2019) 12th IFDC 2017 special issue–iodine, selenium and iron contents in Portuguese key foods as consumed. J Food Compos Anal 79:39–46. https://doi.org/10.1016/j.jfca.2019.03.004

    Article  CAS  Google Scholar 

  53. Li JY, Zheng XY, Ma XY, Xu XY, Du Y, Lv QJ, Li XR, Wu Y, Sun HX, Yu LJ, Zhang ZG (2019) Melatonin protects against chromium(VI)-induced cardiac injury via activating the AMPK/Nrf2 pathway. J Inorg Biochem 197:110698. https://doi.org/10.1016/j.jinorgbio.2019.110698

    Article  CAS  PubMed  Google Scholar 

  54. Li SY, Baiyun RQ, Lv ZJ, Li JY, Han DX, Zhao WY, Yu LJ, Deng N, Liu ZY, Zhang ZG (2019) Exploring the kidney hazard of exposure to mercuric chloride in mice: disorder of mitochondrial dynamics induces oxidative stress and results in apoptosis. Chemosphere 234:822–829. https://doi.org/10.1016/j.chemosphere.2019.06.096

    Article  CAS  PubMed  Google Scholar 

  55. Lu JJ, Jiang HJ, Liu BY, Baiyun RQ, Li SY, Lv YY, Li D, Qiao SQ, Tan X, Zhang ZG (2018) Grape seed procyanidin extract protects against Pb-induced lung toxicity by activating the AMPK/Nrf2/p62 signaling axis. Food Chem Toxicol 116:59–69. https://doi.org/10.1016/j.fct.2018.03.034

    Article  CAS  PubMed  Google Scholar 

  56. Zheng XY, Li SY, Li JY, Lv YY, Wang XQ, Wu PF, Yang QY, Tang YQ, Liu Y, Zhang ZG (2020) Hexavalent chromium induces renal apoptosis and autophagy via disordering the balance of mitochondrial dynamics in rats. Ecotoxicol Environ Saf 204:11061. https://doi.org/10.1016/j.ecoenv.2020.111061

    Article  CAS  Google Scholar 

  57. Li SY, Zheng XY, Zhang XY, Yu HX, Han B, Lv YY, Liu Y, Wang XQ, Zhang ZG (2021) Exploring the liver fibrosis induced by deltamethrin exposure in quails and elucidating the protective mechanism of resveratrol. Ecotoxicol Environ Saf 207:111501. https://doi.org/10.1016/j.ecoenv.2020.111501

    Article  CAS  PubMed  Google Scholar 

  58. Han BQ, Lv ZJ, Han XM, Li SY, Han B, Yang QY, Wang XQ, Wu PF, Li JY, Deng N, Zhang ZG (2022) Harmful effects of inorganic mercury exposure on kidney cells: Mitochondrial dynamics disorder and excessive oxidative stress. Biol Trace Elem Res 200:1591–1597. https://doi.org/10.1007/s12011-021-02766-3

  59. Han B, Li SY, Lv YY, Yang DQ, Li JY, Yang QY, Wu PF, Lv ZJ, Zhang ZG (2019) Dietary melatonin attenuates chromium-induced lung injury via activating the Sirt1/Pgc-1α/Nrf2 pathway. Food Funct 10:5555–5565. https://doi.org/10.1039/c9fo01152h

    Article  CAS  PubMed  Google Scholar 

  60. Li SY, Han B, Wu PF, Yang QY, Wang XQ, Li JY, Liao YG, Deng N, Jiang HJ, Zhang ZG (2022) Effect of inorganic mercury exposure on reproductive system of male mice: immunosuppression and fibrosis in testis. Environ Toxicol 37:69–78. https://doi.org/10.1002/tox.23378

    Article  CAS  PubMed  Google Scholar 

  61. Han B, Wang XQ, Wu PF, Jiang HJ, Yang QY, Li SY, Li JY, Zhang ZG (2021) Pulmonary inflammatory and fibrogenic response induced by graphitized multi-walled carbon nanotube involved in cGAS-STING signaling pathway. J Hazard Mater 417:125984. https://doi.org/10.1016/j.jhazmat.2021.125984

  62. Yang DQ, Jiang HJ, Lu JJ, Lv YY, Baiyun RQ, Li SY, Liu BY, Lv ZJ, Zhang ZG (2018) Dietary grape seed proanthocyanidin extract regulates metabolic disturbance in rat liver exposed to lead associated with PPARα signaling pathway. Environ Pollut 237:377–387. https://doi.org/10.1016/j.envpol.2018.02.035

    Article  CAS  PubMed  Google Scholar 

  63. Yang QY, Han B, Li SY, Wang XQ, Wu PF, Liu Y, Li JY, Han BQ, Deng N, Zhang ZG (2022) The link between deacetylation and hepatotoxicity induced by exposure to hexavalent chromium. J Adv Res 35:129–140. https://doi.org/10.1016/j.jare.2021.04.002

  64. Hołyńska-Iwan I, Szewczyk-Golec K (2020) Pyrethroids: how they affect human and animal health? Medicina (Kaunas) 56:582. https://doi.org/10.3390/medicina56110582

    Article  Google Scholar 

  65. Hołyńska-Iwan I, Bogusiewicz J, Chajdas D, Szewczyk-Golec K, Lampka M, Olszewska-Słonina D (2018) The immediate influence of deltamethrin on ion transport through rabbit skin. An in vitro study. Pestic Biochem Physiol 148:144–150. https://doi.org/10.1016/j.pestbp.2018.04.011

    Article  CAS  PubMed  Google Scholar 

  66. Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F, Peng ZY (2019) Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev 2019:5080843

    PubMed  PubMed Central  Google Scholar 

  67. Anstee QM, Goldin RD (2006) Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol 87:1–16. https://doi.org/10.1111/j.0959-9673.2006.00465.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Matović V, Buha A, Ðukić-Ćosić D, Bulat Z (2015) Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem Toxicol 78:130–140. https://doi.org/10.1016/j.fct.2015.02.011

    Article  CAS  PubMed  Google Scholar 

  69. Takata N, Myburgh J, Botha A, Nomngongo PN (2021) The importance and status of the micronutrient selenium in South Africa: a review. Environ Geochem Health. https://doi.org/10.1007/s10653-021-01126-3

    Article  PubMed  Google Scholar 

  70. Tsikas D (2017) Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem 524:13–30. https://doi.org/10.1016/j.ab.2016.10.021

    Article  CAS  PubMed  Google Scholar 

  71. Liu BY, Jiang HJ, Lu JJ, Baiyun RQ, Li SY, Lv YY, Li D, Wu H, Zhang ZG (2018) Grape seed procyanidin extract ameliorates lead-induced liver injury via miRNA153 and AKT/GSK-3β/Fyn-mediated Nrf2 activation. J Nutr Biochem 52:115–123. https://doi.org/10.1016/j.jnutbio.2017.09.025

    Article  CAS  PubMed  Google Scholar 

  72. Song C, Heping HF, Shen YS, Jin SX, Li DY, Zhang AG, Ren XL, Wang KL, Zhang L, Wang JD, Shi DM (2020) AMPK/p38/Nrf2 activation as a protective feedback to restrain oxidative stress and inflammation in microglia stimulated with sodium fluoride. Chemosphere 244:125495. https://doi.org/10.1016/j.chemosphere.2019.125495

    Article  CAS  PubMed  Google Scholar 

  73. Wang XQ, Han B, Wu PF, Li SY, Lv YY, Lu JJ, Yang QY, Li JY, Zhu Y, Zhang ZG (2020) Dibutyl phthalate induces allergic airway inflammation in rats via inhibition of the Nrf2/TSLP/JAK1 pathway. Environ Pollut 267:115564. https://doi.org/10.1016/j.envpol.2020.115564

    Article  CAS  PubMed  Google Scholar 

  74. Lv YY, Jiang HJ, Li SY, Han B, Liu Y, Yang DQ, Li JY, Yang QY, Zhang WuPF, ZG, (2020) Sulforaphane prevents chromium-induced lung injury in rats via activation of the Akt/GSK-3β/Fyn pathway. Environ Pollut 259:113812. https://doi.org/10.1016/j.envpol.2019.113812

    Article  CAS  PubMed  Google Scholar 

  75. Reszka E, Wieczorek E, Jablonska E, Janasik B, Fendler W, Wasowicz W (2015) Association between plasma selenium level and NRF2 target genes expression in humans. J Trace Elem Med Biol 30:102–106. https://doi.org/10.1016/j.jtemb.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  76. Yan J, Li JJ, Zhang L, Sun Y, Jiang J, Huang Y, Xu H, Jiang H, Hu R (2018) Nrf2 protects against acute lung injury and inflammation by modulating TLR4 and Akt signaling. Free Radic Biol Med 121:78–85. https://doi.org/10.1016/j.freeradbiomed.2018.04.557

    Article  CAS  PubMed  Google Scholar 

  77. Vilahur G, Badimon L (2014) Ischemia/reperfusion activates myocardial innate immune response: the key role of the toll-like receptor. Front Physiol 5:496. https://doi.org/10.3389/fphys.2014.00496

    Article  PubMed  PubMed Central  Google Scholar 

  78. Choe U, Li YF, Yu L, Gao BY, Wang TTY, Sun JH, Chen P, Yu LL (2020) Chemical composition of cold-pressed blackberry seed flour extract and its potential health-beneficial properties. Food Sci Nutr 8:1215–1225. https://doi.org/10.1002/fsn3.1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang ZG, Guo CM, Jiang HJ, Han B, Wang XQ, Li SY, Lv YY, Lv ZJ, Zhu Y (2020) Inflammation response after the cessation of chronic arsenic exposure and post-treatment of natural astaxanthin in liver: potential role of cytokine-mediated cell-cell interactions. Food Funct 11:9252–9262. https://doi.org/10.1039/d0fo01223h

    Article  CAS  PubMed  Google Scholar 

  80. Zhao JY, Bi W, Zhang JW, Xiao S, Zhou RY, Tsang CK, Lu DX, Zhu L (2020) USP8 protects against lipopolysaccharide-induced cognitive and motor deficits by modulating microglia phenotypes through TLR4/MyD88/NF-κB signaling pathway in mice. Brain Behav Immun 88:582–596. https://doi.org/10.1016/j.bbi.2020.04.052

    Article  CAS  PubMed  Google Scholar 

  81. Liu BY, Yu HX, Baiyun RQ, Lu JJ, Li SY, Bing QZ, Zhang XY, Zhang ZG (2018) Protective effects of dietary luteolin against mercuric chloride-induced lung injury in mice: involvement of AKT/Nrf2 and NF-κB pathways. Food Chem Toxicol 113:296–302. https://doi.org/10.1016/j.fct.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  82. Tedgui A, Mallat Z (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86:515–581. https://doi.org/10.1152/physrev.00024.2005

    Article  CAS  PubMed  Google Scholar 

  83. Zhu XJ, Yao YY, Yang JR, Zhengxie JH, Li XY, Hu SJ, Zhang A, Dong JD, Zhang CC, Gan GM (2020) COX-2-PGE2 signaling pathway contributes to hippocampal neuronal injury and cognitive impairment in PTZ-kindled epilepsy mice. Int Immunopharmacol 87:106801. https://doi.org/10.1016/j.intimp.2020.106801

    Article  CAS  PubMed  Google Scholar 

  84. Wei ZJ, Nie GH, Yang F, Pi SX, Wang C, Cao HB, Guo XQ, Liu P, Li GY, Hu GL, Zhang CY (2020) Inhibition of ROS/NLRP3/Caspase-1 mediated pyroptosis attenuates cadmium-induced apoptosis in duck renal tubular epithelial cells. Environ Pollut 273:115919. https://doi.org/10.1016/j.envpol.2020.115919

    Article  CAS  PubMed  Google Scholar 

  85. Zhang F, Yu W, Hargrove JL, Greenspan P, Dean RG, Taylor EW, Hartle DK (2002) Inhibition of TNF-alpha induced ICAM-1, VCAM-1 and E-selectin expression by selenium. Atherosclerosis 161:381–386. https://doi.org/10.1016/s0021-9150(01)00672-4

    Article  CAS  PubMed  Google Scholar 

  86. Kim SH, Johnson VJ, Shin TY, Sharma RP (2004) Selenium attenuates lipopolysaccharide-induced oxidative stress responses through modulation of p38 MAPK and NF-kappaB signaling pathways. Exp Biol Med (Maywood) 229:203–213. https://doi.org/10.1177/153537020422900209

    Article  CAS  Google Scholar 

  87. Zamamiri-Davis F, Lu Y, Thompson JT, Prabhu KS, Reddy PV, Sordillo LM, Reddy CC (2002) Nuclear factor-kappaB mediates over-expression of cyclooxygenase-2 during activation of RAW 264.7 macrophages in selenium deficiency. Free Radic Biol Med 32:890–897. https://doi.org/10.1016/s0891-5849(02)00775-x

    Article  CAS  PubMed  Google Scholar 

  88. Yang DQ, Tan X, Lv ZJ, Liu BY, Baiyun RQ, Lu JJ, Zhang ZG (2016) Regulation of Sirt1/Nrf2/TNF-α signaling pathway by luteolin is critical to attenuate acute mercuric chloride exposure induced hepatotoxicity. Sci Rep 6:37157. https://doi.org/10.1038/srep37157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu ZW, Wang JK, Qiu C, Guan GC, Liu XH, Li SJ, Deng ZR (2015) Matrine pretreatment improves cardiac function in rats with diabetic cardiomyopathy via suppressing ROS/TLR-4 signaling pathway. Acta Pharmacol Sin 36:323–333. https://doi.org/10.1038/aps.2014.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu ZW, Zhu HT, Chen KL, Qiu C, Tang KF, Niu XL (2013) Selenium attenuates high glucose-induced ROS/TLR-4 involved apoptosis of rat cardiomyocyte. Biol Trace Elem Res 156:262–270. https://doi.org/10.1007/s12011-013-9857-7

    Article  CAS  PubMed  Google Scholar 

  91. Zhong XM, Zhang L, Li YM, Li P, Li J, Cheng GC (2018) Kaempferol alleviates ox-LDL-induced apoptosis by up-regulation of miR-26a-5p via inhibiting TLR4/NF-κB pathway in human endothelial cells. Biomed Pharmacother 108:1783–1789. https://doi.org/10.1016/j.biopha.2018.09.175

    Article  CAS  PubMed  Google Scholar 

  92. Huang DJ, Li Y, Yang ZX, Sun YN, Wan D (2019) Association of the TLR4-MyD88-JNK signaling pathway with inflammatory response in intracranial hemorrhage rats and its effect on neuronal apoptosis. Eur Rev Med Pharmacol Sci 23:4882–4889. https://doi.org/10.26355/eurrev_201906_18076

  93. Wang L, Song LF, Chen XY, Ma YL, Suo JF, Shi JH, Chen GH (2019) MiR-181b inhibits P38/JNK signaling pathway to attenuate autophagy and apoptosis in juvenile rats with kainic acid-induced epilepsy via targeting TLR4. CNS Neurosci Ther 25:112–122. https://doi.org/10.1111/cns.12991

    Article  CAS  PubMed  Google Scholar 

  94. Yang DQ, Han B, Baiyun RQ, Lv ZJ, Wang XQ, Li SY, Lv YY, Xue JD, Liu Y, Zhang ZG (2020) Sulforaphane attenuates hexavalent chromium-induced cardiotoxicity via the activation of the Sesn2/AMPK/Nrf2 signaling pathway. Metallomics 12:2009–2020. https://doi.org/10.1039/d0mt00124d

    Article  CAS  PubMed  Google Scholar 

  95. Yang DQ, Yang QY, Fu N, Li SY, Han B, Liu Y, Baiyun RQ, Lu JJ, Zhang ZG (2021) Hexavalent chromium induced heart dysfunction via Sesn2-mediated impairment of mitochondrial function and energy supply. Chemosphere 264:128547. https://doi.org/10.1016/j.chemosphere.2020.128547

    Article  CAS  PubMed  Google Scholar 

  96. Yang QY, Han B, Xue JD, Lv YY, Li SY, Liu Y, Wu PF, Wang XQ, Zhang ZG (2020) Hexavalent chromium induces mitochondrial dynamics disorder in rat liver by inhibiting AMPK/PGC-1α signaling pathway. Environ Pollut 265:114855. https://doi.org/10.1016/j.envpol.2020.114855

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (31972754) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Heilongjiang Province (LC2017007).

Author information

Authors and Affiliations

Authors

Contributions

Jiayi Li, conceptualization, methodology, investigation, and writing—original draft. Zhongxian Yu, methodology, investigation, and data curation. Bing Han, methodology, visualization, and software. Siyu Li, methodology, investigation, and software. Yueying Lv, methodology and validation. Xiaoqiao Wang, methodology and investigation. Qingyue Yang, methodology and validation. Pengfei Wu, software and formal analysis. Yuge Liao, investigation and formal analysis. Bing Qu, validation and formal analysis. Zhigang Zhang, conceptualization, methodology, writing—review and editing, and funding acquisition. All authors approve the final version of the manuscript.

Corresponding author

Correspondence to Zhigang Zhang.

Ethics declarations

Ethics Approval

The animal protocol was performed under the approbation of the Ethical Committee for Animal Experiments (Northeast Agricultural University, Grant Number: 20190928).

Consent to Participate

Not applicable.

Consent for Publication

All authors provide consent for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yu, Z., Han, B. et al. Activation of the GPX4/TLR4 Signaling Pathway Participates in the Alleviation of Selenium Yeast on Deltamethrin-Provoked Cerebrum Injury in Quails. Mol Neurobiol 59, 2946–2961 (2022). https://doi.org/10.1007/s12035-022-02744-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02744-3

Keywords

Navigation