Skip to main content
Log in

Ghrelin attenuates methylmercury-induced oxidative stress in neuronal cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Methylmercury (MeHg) is a global pollutant, which can cause damage to the central nervous system at both high-acute and chronic-low exposures, especially in vulnerable populations, such as children and pregnant women. Nowadays, acute-high poisoning is rare. However, chronic exposure to low MeHg concentrations via fish consumption remains a health concern. Current therapeutic strategies for MeHg poisoning are based on the use of chelators. However, these therapies have limited efficacy. Ghrelin is a gut hormone with an important role in regulating physiologic processes. It has been reported that ghrelin plays a protective role against the toxicity of several xenobiotics. Here, we explored the role of ghrelin as a putative protector against MeHg-induced oxidative stress. Our data show that ghrelin was able to ameliorate MeHg-induced reactive oxygen species (ROS) production in primary neuronal hypothalamic and hippocampal cultures. An analogous effect was observed in mouse hypothalamic neuronal GT 1–7 cells. Using this model, our novel findings show that antioxidant protection of ghrelin against MeHg is mediated by glutathione upregulation and induction of the NRF2/NQO1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402(6762):656–660. https://doi.org/10.1038/45230

    Article  CAS  PubMed  Google Scholar 

  2. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S (2001) A role for ghrelin in the central regulation of feeding. Nature 409(6817):194–198. https://doi.org/10.1038/35051587

    Article  CAS  PubMed  Google Scholar 

  3. Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, Kennedy AR, Roberts GH, Morgan DG, Ghatei MA, Bloom SR (2000) The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 141(11):4325–4328. https://doi.org/10.1210/endo.141.11.7873

    Article  CAS  PubMed  Google Scholar 

  4. Sato T, Ida T, Nakamura Y, Shiimura Y, Kangawa K, Kojima M (2014) Physiological roles of ghrelin on obesity. Obes Res Clin Pract 8(5):e405-413. https://doi.org/10.1016/j.orcp.2013.10.002

    Article  PubMed  Google Scholar 

  5. Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, Hamelin M, Hreniuk DL, Palyha OC, Anderson J, Paress PS, Diaz C, Chou M, Liu KK, McKee KK, Pong SS, Chaung LY, Elbrecht A, Dashkevicz M, Heavens R, Rigby M, Sirinathsinghji DJS, Dean DC, Melillo DG, Patchett AA, Nargund R, Griffin PR, DeMartino JA, Gupta SK, Schaeffer JM, Smith RG, VanderPloeg LHT (1996) A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273(5277):974–977. https://doi.org/10.1126/science.273.5277.974

    Article  CAS  PubMed  Google Scholar 

  6. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK (2006) Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 494(3):528–548. https://doi.org/10.1002/cne.20823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bai J, Yang F, Dong L, Zheng Y (2017) Ghrelin Protects Human Lens Epithelial Cells against Oxidative Stress-Induced Damage. Oxid Med Cell Longev 2017:1910450. https://doi.org/10.1155/2017/1910450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tong XX, Wu D, Wang X, Chen HL, Chen JX, Wang XX, Wang XL, Gan L, Guo ZY, Shi GX, Zhang YZ, Jiang W (2012) Ghrelin protects against cobalt chloride-induced hypoxic injury in cardiac H9c2 cells by inhibiting oxidative stress and inducing autophagy. Peptides 38(2):217–227. https://doi.org/10.1016/j.peptides.2012.06.020

    Article  CAS  PubMed  Google Scholar 

  9. Cui S, Nian Q, Chen G, Wang X, Zhang J, Qiu J, Zhang Z (2019) Ghrelin ameliorates A549 cell apoptosis caused by paraquat via p38-MAPK regulated mitochondrial apoptotic pathway. Toxicology 426:152267. https://doi.org/10.1016/j.tox.2019.152267

    Article  CAS  PubMed  Google Scholar 

  10. Dong J, Song N, Xie J, Jiang H (2009) Ghrelin antagonized 1-methyl-4-phenylpyridinium (MPP(+))-induced apoptosis in MES23.5 cells. J Mol Neurosci MN 37 (2):182–189. https://doi.org/10.1007/s12031-008-9162-7

  11. Sun N, Wang H, Wang L (2016) Protective effects of ghrelin against oxidative stress, inducible nitric oxide synthase and inflammation in a mouse model of myocardial ischemia/reperfusion injury via the HMGB1 and TLR4/NF-kappaB pathway. Mol Med Rep 14(3):2764–2770. https://doi.org/10.3892/mmr.2016.5535

    Article  CAS  PubMed  Google Scholar 

  12. Wang Q, Lin P, Li P, Feng L, Ren Q, Xie X, Xu J (2017) Ghrelin protects the heart against ischemia/reperfusion injury via inhibition of TLR4/NLRP3 inflammasome pathway. Life Sci 186:50–58. https://doi.org/10.1016/j.lfs.2017.08.004

    Article  CAS  PubMed  Google Scholar 

  13. Kyoraku I, Shiomi K, Kangawa K, Nakazato M (2009) Ghrelin reverses experimental diabetic neuropathy in mice. Biochem Biophys Res Commun 389(3):405–408. https://doi.org/10.1016/j.bbrc.2009.08.171

    Article  CAS  PubMed  Google Scholar 

  14. Lee JY, Chung H, Yoo YS, Oh YJ, Oh TH, Park S, Yune TY (2010) Inhibition of apoptotic cell death by ghrelin improves functional recovery after spinal cord injury. Endocrinology 151(8):3815–3826. https://doi.org/10.1210/en.2009-1416

    Article  CAS  PubMed  Google Scholar 

  15. Ersahin M, Toklu HZ, Erzik C, Cetinel S, Akakin D, Velioglu-Ogunc A, Tetik S, Ozdemir ZN, Sener G, Yegen BC (2010) The anti-inflammatory and neuroprotective effects of ghrelin in subarachnoid hemorrhage-induced oxidative brain damage in rats. J Neurotrauma 27(6):1143–1155. https://doi.org/10.1089/neu.2009.1210

    Article  PubMed  Google Scholar 

  16. Lopez NE, Gaston L, Lopez KR, Coimbra RC, Hageny A, Putnam J, Eliceiri B, Coimbra R, Bansal V (2012) Early ghrelin treatment attenuates disruption of the blood brain barrier and apoptosis after traumatic brain injury through a UCP-2 mechanism. Brain Res 1489:140–148. https://doi.org/10.1016/j.brainres.2012.10.031

    Article  CAS  PubMed  Google Scholar 

  17. Spencer SJ, Miller AA, Andrews ZB (2013) The role of ghrelin in neuroprotection after ischemic brain injury. Brain Sci 3(1):344–359. https://doi.org/10.3390/brainsci3010344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bayliss JA, Andrews ZB (2013) Ghrelin is neuroprotective in Parkinson’s disease: molecular mechanisms of metabolic neuroprotection. Ther Adv Endocrinol Metab 4(1):25–36. https://doi.org/10.1177/2042018813479645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jeon SG, Hong SB, Nam Y, Tae J, Yoo A, Song EJ, Kim KI, Lee D, Park J, Lee SM, Kim JI, Moon M (2019) Ghrelin in Alzheimer’s disease: Pathologic roles and therapeutic implications. Ageing Res Rev 55:100945. https://doi.org/10.1016/j.arr.2019.100945

    Article  CAS  PubMed  Google Scholar 

  20. Al Massadi O, Lopez M, Tschop M, Dieguez C, Nogueiras R (2017) Current Understanding of the Hypothalamic Ghrelin Pathways Inducing Appetite and Adiposity. Trends Neurosci 40(3):167–180. https://doi.org/10.1016/j.tins.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  21. Chen Y, Wang H, Zhang Y, Wang Z, Liu S, Cui L (2019) Pretreatment of ghrelin protects H9c2 cells against hypoxia/reoxygenation-induced cell death via PI3K/AKT and AMPK pathways. Artif Cells Nanomed Biotechnol 47(1):2179–2187. https://doi.org/10.1080/21691401.2019.1620253

    Article  CAS  PubMed  Google Scholar 

  22. Favaro E, Granata R, Miceli I, Baragli A, Settanni F, Cavallo Perin P, Ghigo E, Camussi G, Zanone MM (2012) The ghrelin gene products and exendin-4 promote survival of human pancreatic islet endothelial cells in hyperglycaemic conditions, through phosphoinositide 3-kinase/Akt, extracellular signal-related kinase (ERK)1/2 and cAMP/protein kinase A (PKA) signalling pathways. Diabetologia 55(4):1058–1070. https://doi.org/10.1007/s00125-011-2423-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han QQ, Huang HJ, Wang YL, Yang L, Pilot A, Zhu XC, Yu R, Wang J, Chen XR, Liu Q, Li B, Wu GC, Yu J (2019) Ghrelin exhibited antidepressant and anxiolytic effect via the p38-MAPK signaling pathway in hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 93:11–20. https://doi.org/10.1016/j.pnpbp.2019.02.013

    Article  CAS  PubMed  Google Scholar 

  24. Huang J, Liu W, Doycheva DM, Gamdzyk M, Lu W, Tang J, Zhang JH (2019) Ghrelin attenuates oxidative stress and neuronal apoptosis via GHSR-1alpha/AMPK/Sirt1/PGC-1alpha/UCP2 pathway in a rat model of neonatal HIE. Free Radical Biol Med 141:322–337. https://doi.org/10.1016/j.freeradbiomed.2019.07.001

    Article  CAS  Google Scholar 

  25. Chung H, Kim E, Lee DH, Seo S, Ju S, Lee D, Kim H, Park S (2007) Ghrelin inhibits apoptosis in hypothalamic neuronal cells during oxygen-glucose deprivation. Endocrinology 148(1):148–159. https://doi.org/10.1210/en.2006-0991

    Article  CAS  PubMed  Google Scholar 

  26. Andrews ZB, Liu ZW, Walllingford N, Erion DM, Borok E, Friedman JM, Tschop MH, Shanabrough M, Cline G, Shulman GI, Coppola A, Gao XB, Horvath TL, Diano S (2008) UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature 454(7206):846–851. https://doi.org/10.1038/nature07181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hao Y, Liu C, Huang J, Gu Y, Li H, Yang Z, Liu J, Wang W, Li R (2016) Ghrelin protects against depleted uranium-induced apoptosis of MC3T3-E1 cells through oxidative stress-mediated p38-mitogen-activated protein kinase pathway. Toxicol Appl Pharmacol 290:116–125. https://doi.org/10.1016/j.taap.2015.10.022

    Article  CAS  PubMed  Google Scholar 

  28. Kheradmand A, Alirezaei M, Dezfoulian O (2015) Biochemical and histopathological evaluations of ghrelin effects following cadmium toxicity in the rat testis. Andrologia 47(6):634–643. https://doi.org/10.1111/and.12311

    Article  CAS  PubMed  Google Scholar 

  29. Wang H, Dou S, Zhu J, Shao Z, Wang C, Xu X, Cheng B (2021) Ghrelin protects against rotenone-induced cytotoxicity: Involvement of mitophagy and the AMPK/SIRT1/PGC1alpha pathway. Neuropeptides 87:102134. https://doi.org/10.1016/j.npep.2021.102134

    Article  CAS  PubMed  Google Scholar 

  30. NRC (2002) Toxicological Effects of Methylmercury. Washington (DC)

  31. Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury–current exposures and clinical manifestations. N Engl J Med 349(18):1731–1737. https://doi.org/10.1056/NEJMra022471

    Article  CAS  PubMed  Google Scholar 

  32. Hintelmann H (2010) Organomercurials. Their formation and pathways in the environment. Met Ions Life Sci 7:365–401. https://doi.org/10.1039/BK9781847551771-00365

    Article  CAS  PubMed  Google Scholar 

  33. Hassan SA, Moussa EA, Abbott LC (2012) The effect of methylmercury exposure on early central nervous system development in the zebrafish (Danio rerio) embryo. J Appl Toxicol JAT 32(9):707–713. https://doi.org/10.1002/jat.1675

    Article  CAS  PubMed  Google Scholar 

  34. Marsh DO, Clarkson TW, Myers GJ, Davidson PW, Cox C, Cernichiari E, Tanner MA, Lednar W, Shamlaye C, Choisy O et al (1995) The Seychelles study of fetal methylmercury exposure and child development: introduction. Neurotoxicology 16(4):583–596

    CAS  PubMed  Google Scholar 

  35. Franco JL, Teixeira A, Meotti FC, Ribas CM, Stringari J, Garcia Pomblum SC, Moro AM, Bohrer D, Bairros AV, Dafre AL, Santos AR, Farina M (2006) Cerebellar thiol status and motor deficit after lactational exposure to methylmercury. Environ Res 102(1):22–28. https://doi.org/10.1016/j.envres.2006.02.003

    Article  CAS  PubMed  Google Scholar 

  36. Ke T, Goncalves FM, Goncalves CL, Dos Santos AA, Rocha JBT, Farina M, Skalny A, Tsatsakis A, Bowman AB (1865) Aschner M (2019) Post-translational modifications in MeHg-induced neurotoxicity. Biochim Biophys Acta 8:2068–2081. https://doi.org/10.1016/j.bbadis.2018.10.024

    Article  CAS  Google Scholar 

  37. Aschner M, Syversen T, Souza DO, Rocha JB, Farina M (2007) Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Braz J Med Biol Res = Revista brasileira de pesquisas medicas e biologicas 40 (3):285–291. https://doi.org/10.1590/s0100-879x2007000300001

  38. Farina M, Aschner M, Rocha JB (2011) Oxidative stress in MeHg-induced neurotoxicity. Toxicol Appl Pharmacol 256(3):405–417. https://doi.org/10.1016/j.taap.2011.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Limke TL, Bearss JJ, Atchison WD (2004) Acute exposure to methylmercury causes Ca2+ dysregulation and neuronal death in rat cerebellar granule cells through an M3 muscarinic receptor-linked pathway. Toxicol Sci Off J Soc Toxicol 80(1):60–68. https://doi.org/10.1093/toxsci/kfh131

    Article  CAS  Google Scholar 

  40. do Nascimento JL, Oliveira KR, Crespo-Lopez ME, Macchi BM, Maues LA, PinheiroMda C, Silveira LC, Herculano AM 2008 Methylmercury neurotoxicity & antioxidant defenses Indian J Med Res 128 4 373 382

  41. Feng S, Xu Z, Wang F, Yang T, Liu W, Deng Y, Xu B (2017) Sulforaphane Prevents Methylmercury-Induced Oxidative Damage and Excitotoxicity Through Activation of the Nrf2-ARE Pathway. Mol Neurobiol 54(1):375–391. https://doi.org/10.1007/s12035-015-9643-y

    Article  CAS  PubMed  Google Scholar 

  42. Franco JL, Braga HC, Stringari J, Missau FC, Posser T, Mendes BG, Leal RB, Santos AR, Dafre AL, Pizzolatti MG, Farina M (2007) Mercurial-induced hydrogen peroxide generation in mouse brain mitochondria: protective effects of quercetin. Chem Res Toxicol 20(12):1919–1926. https://doi.org/10.1021/tx7002323

    Article  CAS  PubMed  Google Scholar 

  43. Stringari J, Nunes AK, Franco JL, Bohrer D, Garcia SC, Dafre AL, Milatovic D, Souza DO, Rocha JB, Aschner M, Farina M (2008) Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicol Appl Pharmacol 227(1):147–154. https://doi.org/10.1016/j.taap.2007.10.010

    Article  CAS  PubMed  Google Scholar 

  44. Culbreth M, Zhang Z, Aschner M (2017) Methylmercury augments Nrf2 activity by downregulation of the Src family kinase Fyn. Neurotoxicology 62:200–206. https://doi.org/10.1016/j.neuro.2017.07.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ni M, Li X, Yin Z, Sidoryk-Wegrzynowicz M, Jiang H, Farina M, Rocha JB, Syversen T, Aschner M (2011) Comparative study on the response of rat primary astrocytes and microglia to methylmercury toxicity. Glia 59(5):810–820. https://doi.org/10.1002/glia.21153

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang L, Jiang H, Yin Z, Aschner M, Cai J (2009) Methylmercury toxicity and Nrf2-dependent detoxification in astrocytes. Toxicol Sci Off J Soc Toxicol 107(1):135–143. https://doi.org/10.1093/toxsci/kfn201

    Article  CAS  Google Scholar 

  47. Toyama T, Sumi D, Shinkai Y, Yasutake A, Taguchi K, Tong KI, Yamamoto M, Kumagai Y (2007) Cytoprotective role of Nrf2/Keap1 system in methylmercury toxicity. Biochem Biophys Res Commun 363(3):645–650. https://doi.org/10.1016/j.bbrc.2007.09.017

    Article  CAS  PubMed  Google Scholar 

  48. Rafati-Rahimzadeh M, Kazemi S, Moghadamnia AA (2014) Current approaches of the management of mercury poisoning: need of the hour. Daru J Fac Pharm Tehran Univ Med Sci 22:46. https://doi.org/10.1186/2008-2231-22-46

    Article  CAS  Google Scholar 

  49. Cheng Y, Chen B, Xie W, Chen Z, Yang G, Cai Y, Shang H, Zhao W (2020) Ghrelin attenuates secondary brain injury following intracerebral hemorrhage by inhibiting NLRP3 inflammasome activation and promoting Nrf2/ARE signaling pathway in mice. Int Immunopharmacol 79:106180. https://doi.org/10.1016/j.intimp.2019.106180

    Article  CAS  PubMed  Google Scholar 

  50. Wang H, Dou S, Zhu J, Shao Z, Wang C, Cheng B (2020) Ghrelin mitigates MPP(+)-induced cytotoxicity: Involvement of ERK1/2-mediated Nrf2/HO-1 and endoplasmic reticulum stress PERK signaling pathway. Peptides 133:170374. https://doi.org/10.1016/j.peptides.2020.170374

    Article  CAS  PubMed  Google Scholar 

  51. Mellon PL, Windle JJ, Goldsmith PC, Padula CA, Roberts JL, Weiner RI (1990) Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 5(1):1–10. https://doi.org/10.1016/0896-6273(90)90028-e

    Article  CAS  PubMed  Google Scholar 

  52. Castoldi AF, Coccini T, Ceccatelli S, Manzo L (2001) Neurotoxicity and molecular effects of methylmercury. Brain Res Bull 55(2):197–203. https://doi.org/10.1016/s0361-9230(01)00458-0

    Article  CAS  PubMed  Google Scholar 

  53. Sarafian TA, Vartavarian L, Kane DJ, Bredesen DE, Verity MA (1994) bcl-2 expression decreases methyl mercury-induced free-radical generation and cell killing in a neural cell line. Toxicol Lett 74(2):149–155. https://doi.org/10.1016/0378-4274(94)90093-0

    Article  CAS  PubMed  Google Scholar 

  54. Ferrer B, Peres TV, Dos Santos AA, Bornhorst J, Morcillo P, Goncalves CL, Aschner M (2018) Methylmercury Affects the Expression of Hypothalamic Neuropeptides That Control Body Weight in C57BL/6J Mice. Toxicol Sci Off J Soc Toxicol 163(2):557–568. https://doi.org/10.1093/toxsci/kfy052

    Article  CAS  Google Scholar 

  55. Ferrer B, Suresh H, Santamaria A, Rocha JB, Bowman AB, Aschner M (2021) The antioxidant role of STAT3 in methylmercury-induced toxicity in mouse hypothalamic neuronal GT1-7 cell line. Free Radical Biol Med 171:245–259. https://doi.org/10.1016/j.freeradbiomed.2021.05.024

    Article  CAS  Google Scholar 

  56. Aschner M (2012) Considerations on methylmercury (MeHg) treatments in in vitro studies. Neurotoxicology 33(3):512–513. https://doi.org/10.1016/j.neuro.2012.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) Image J2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18(1):529. https://doi.org/10.1186/s12859-017-1934-z

    Article  PubMed  PubMed Central  Google Scholar 

  58. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  59. Lopez M, Lage R, Saha AK, Perez-Tilve D, Vazquez MJ, Varela L, Sangiao-Alvarellos S, Tovar S, Raghay K, Rodriguez-Cuenca S, Deoliveira RM, Castaneda T, Datta R, Dong JZ, Culler M, Sleeman MW, Alvarez CV, Gallego R, Lelliott CJ, Carling D, Tschop MH, Dieguez C, Vidal-Puig A (2008) Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab 7(5):389–399. https://doi.org/10.1016/j.cmet.2008.03.006

    Article  CAS  PubMed  Google Scholar 

  60. Chung H, Li E, Kim Y, Kim S, Park S (2013) Multiple signaling pathways mediate ghrelin-induced proliferation of hippocampal neural stem cells. J Endocrinol 218(1):49–59. https://doi.org/10.1530/JOE-13-0045

    Article  CAS  PubMed  Google Scholar 

  61. Camina JP, Lodeiro M, Ischenko O, Martini AC, Casanueva FF (2007) Stimulation by ghrelin of p42/p44 mitogen-activated protein kinase through the GHS-R1a receptor: role of G-proteins and beta-arrestins. J Cell Physiol 213(1):187–200. https://doi.org/10.1002/jcp.21109

    Article  CAS  PubMed  Google Scholar 

  62. Lu TH, Hsieh SY, Yen CC, Wu HC, Chen KL, Hung DZ, Chen CH, Wu CC, Su YC, Chen YW, Liu SH, Huang CF (2011) Involvement of oxidative stress-mediated ERK1/2 and p38 activation regulated mitochondria-dependent apoptotic signals in methylmercury-induced neuronal cell injury. Toxicol Lett 204(1):71–80. https://doi.org/10.1016/j.toxlet.2011.04.013

    Article  CAS  PubMed  Google Scholar 

  63. Sokolowski K, Falluel-Morel A, Zhou X, DiCicco-Bloom E (2011) Methylmercury (MeHg) elicits mitochondrial-dependent apoptosis in developing hippocampus and acts at low exposures. Neurotoxicology 32(5):535–544. https://doi.org/10.1016/j.neuro.2011.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Unoki T, Abiko Y, Toyama T, Uehara T, Tsuboi K, Nishida M, Kaji T, Kumagai Y (2016) Methylmercury, an environmental electrophile capable of activation and disruption of the Akt/CREB/Bcl-2 signal transduction pathway in SH-SY5Y cells. Sci Rep 6:28944. https://doi.org/10.1038/srep28944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Abdanipour A, Dadkhah M, Alipour M, Feizi H (2018) Effect of Ghrelin on Caspase 3 and Bcl2 Gene Expression in H2O2 Treated Rat's Bone Marrow Stromal Cells. Adv Pharm Bull 8 (3):429–435. https://doi.org/10.15171/apb.2018.050

  66. Liang QH, Liu Y, Wu SS, Cui RR, Yuan LQ, Liao EY (2013) Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway. Toxicol Appl Pharmacol 272(3):591–597. https://doi.org/10.1016/j.taap.2013.07.018

    Article  CAS  PubMed  Google Scholar 

  67. Chung H, Seo S, Moon M, Park S (2008) Phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3 beta and ERK1/2 pathways mediate protective effects of acylated and unacylated ghrelin against oxygen-glucose deprivation-induced apoptosis in primary rat cortical neuronal cells. J Endocrinol 198(3):511–521. https://doi.org/10.1677/JOE-08-0160

    Article  CAS  PubMed  Google Scholar 

  68. Turpaev KT (2013) Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles. Bioche Biokhimiia 78(2):111–126. https://doi.org/10.1134/S0006297913020016

    Article  CAS  Google Scholar 

  69. Rush T, Liu X, Nowakowski AB, Petering DH, Lobner D (2012) Glutathione-mediated neuroprotection against methylmercury neurotoxicity in cortical culture is dependent on MRP1. Neurotoxicology 33(3):476–481. https://doi.org/10.1016/j.neuro.2012.03.004

    Article  CAS  PubMed  Google Scholar 

  70. Shanker G, Syversen T, Aschner JL, Aschner M (2005) Modulatory effect of glutathione status and antioxidants on methylmercury-induced free radical formation in primary cultures of cerebral astrocytes. Brain Res Mol Brain Res 137(1–2):11–22. https://doi.org/10.1016/j.molbrainres.2005.02.006

    Article  CAS  PubMed  Google Scholar 

  71. Antunes Dos Santos A, Appel Hort M, Culbreth M, Lopez-Granero C, Farina M, Rocha JB, Aschner M (2016) Methylmercury and brain development: A review of recent literature. J Trace Elem Med Biol 38:99–107. https://doi.org/10.1016/j.jtemb.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  72. Jackson AC (2018) Chronic Neurological Disease Due to Methylmercury Poisoning. Can J Neurol Sci 45(6):620–623. https://doi.org/10.1017/cjn.2018.323

    Article  PubMed  Google Scholar 

  73. Patrick L (2002) Mercury toxicity and antioxidants: Part 1: role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity. Altern Med Rev J Clin Ther 7(6):456–471

    Google Scholar 

  74. Cleary BM, Romano ME, Chen CY, Heiger-Bernays W, Crawford KA (2021) Comparison of Recreational Fish Consumption Advisories Across the USA. Curr Environ Health Rep 8(2):71–88. https://doi.org/10.1007/s40572-021-00312-w

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gribble MO, Karimi R, Feingold BJ, Nyland JF, O’Hara TM, Gladyshev MI, Chen CY (2016) Mercury, selenium and fish oils in marine food webs and implications for human health. J Marine Biol Assoc United Kingdom Marine Biol Assoc United Kingdom 96(1):43–59. https://doi.org/10.1017/S0025315415001356

    Article  CAS  Google Scholar 

  76. Aaseth J, Ajsuvakova OP, Skalny AV, Skalnaya MG, Tinkov AA (2018) Chelator combination as therapeutic strategy in mercury and lead poisonings. Coordin Chem Rev 358:1–12. https://doi.org/10.1016/j.ccr.2017.12.011

    Article  CAS  Google Scholar 

  77. Kim JJ, Kim YS, Kumar V (2019) Heavy metal toxicity: An update of chelating therapeutic strategies. J Trace Elem Med Biol 54:226–231. https://doi.org/10.1016/j.jtemb.2019.05.003

    Article  CAS  PubMed  Google Scholar 

  78. Carvalho CM, Chew EH, Hashemy SI, Lu J, Holmgren A (2008) Inhibition of the human thioredoxin system. A molecular mechanism of mercury toxicity. J Biol Chem 283 (18):11913–11923. https://doi.org/10.1074/jbc.M710133200

  79. Dreiem A, Seegal RF (2007) Methylmercury-induced changes in mitochondrial function in striatal synaptosomes are calcium-dependent and ROS-independent. Neurotoxicology 28(4):720–726. https://doi.org/10.1016/j.neuro.2007.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu W, Yang TY, Xu ZF, Xu B, Deng Y (2019) Methyl-mercury induces apoptosis through ROS-mediated endoplasmic reticulum stress and mitochondrial apoptosis pathways activation in rat cortical neurons. Free Radical Res 53(1):26–44. https://doi.org/10.1080/10715762.2018.1546852

    Article  CAS  Google Scholar 

  81. Polunas M, Halladay A, Tjalkens RB, Philbert MA, Lowndes H, Reuhl K (2011) Role of oxidative stress and the mitochondrial permeability transition in methylmercury cytotoxicity. Neurotoxicology 32(5):526–534. https://doi.org/10.1016/j.neuro.2011.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shanker G, Aschner JL, Syversen T, Aschner M (2004) Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury. Brain Res Mol Brain Res 128(1):48–57. https://doi.org/10.1016/j.molbrainres.2004.05.022

    Article  CAS  PubMed  Google Scholar 

  83. Yin ZB, Milatovic D, Aschner JL, Syversen T, Rocha JBT, Souza DO, Sidoryk M, Albrecht J, Aschner M (2007) Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes. Brain Res 1131(1):1–10. https://doi.org/10.1016/j.brainres.2006.10.070

    Article  CAS  PubMed  Google Scholar 

  84. Tinkov AA, Aschner M, Ke T, Ferrer B, Zhou JC, Chang JS, Santamaria A, Chao JC, Aaseth J, Skalny AV (2021) Adipotropic effects of heavy metals and their potential role in obesity. Fac Rev 10:32. https://doi.org/10.12703/r/10-32

  85. Chang J, Zhou Y, Wang Q, Aschner M, Lu RZ (2019) Plant components can reduce methylmercury toxication: A mini-review. Bba-Gen Subjects 1863 (12). Artn 129290 https://doi.org/10.1016/J.Bbagen.2019.01.012

  86. Fujimura K, Wakino S, Minakuchi H, Hasegawa K, Hosoya K, Komatsu M, Kaneko Y, Shinozuka K, Washida N, Kanda T, Tokuyama H, Hayashi K, Itoh H (2014) Ghrelin protects against renal damages induced by angiotensin-II via an antioxidative stress mechanism in mice. PLoS ONE 9(4):e94373. https://doi.org/10.1371/journal.pone.0094373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ferrer B, Prince LM, Tinkov AA, Santamaria A, Bowman AB, Aschner M (2021) Chronic exposure to methylmercury disrupts ghrelin actions in C57BL/6J mice. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 147:111918. https://doi.org/10.1016/j.fct.2020.111918

    Article  CAS  Google Scholar 

  88. Liu S, Chen S, Ren J, Li B, Qin B (2018) Ghrelin protects retinal ganglion cells against rotenone via inhibiting apoptosis, restoring mitochondrial function, and activating AKT-mTOR signaling. Neuropeptides 67:63–70. https://doi.org/10.1016/j.npep.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  89. Ajsuvakova OP, Tinkov AA, Aschner M, Rocha JBT, Michalke B, Skalnaya MG, Skalny AV, Butnariu M, Dadar M, Sarac I, Aaseth J, Bjorklund G (2020) Sulfhydryl groups as targets of mercury toxicity. Coordin Chem Rev 417. Artn 213343 https://doi.org/10.1016/J.Ccr.2020.213343

  90. Richardson RJ, Murphy SD (1975) Effect of glutathione depletion on tissue deposition of methylmercury in rats. Toxicol Appl Pharmacol 31(3):505–519. https://doi.org/10.1016/0041-008x(75)90274-4

    Article  CAS  PubMed  Google Scholar 

  91. Ishii N, Tsubouchi H, Miura A, Yanagi S, Ueno H, Shiomi K, Nakazato M (2018) Ghrelin alleviates paclitaxel-induced peripheral neuropathy by reducing oxidative stress and enhancing mitochondrial anti-oxidant functions in mice. Eur J Pharmacol 819:35–42. https://doi.org/10.1016/j.ejphar.2017.11.024

    Article  CAS  PubMed  Google Scholar 

  92. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236(2):313–322. https://doi.org/10.1006/bbrc.1997.6943

    Article  CAS  PubMed  Google Scholar 

  93. Joo MS, Kim WD, Lee KY, Kim JH, Koo JH, Kim SG (2016) AMPK Facilitates Nuclear Accumulation of Nrf2 by Phosphorylating at Serine 550. Mol Cell Biol 36(14):1931–1942. https://doi.org/10.1128/Mcb.00118-16

    Article  PubMed  PubMed Central  Google Scholar 

  94. Andrews ZB (2011) Central mechanisms involved in the orexigenic actions of ghrelin. Peptides 32(11):2248–2255. https://doi.org/10.1016/j.peptides.2011.05.014

    Article  CAS  PubMed  Google Scholar 

  95. Heimfarth L, Delgado J, Mignori MR, Gelain DP, Moreira JCF, Pessoa-Pureur R (2018) Developmental neurotoxicity of the hippocampus following in utero exposure to methylmercury: impairment in cell signaling. Arch Toxicol 92(1):513–527. https://doi.org/10.1007/s00204-017-2042-6

    Article  CAS  PubMed  Google Scholar 

  96. Heimfarth L, Delgado J, Mingori MR, Moresco KS, Pureur RP, Gelain DP, Moreira JCF (2018) Delayed neurochemical effects of prenatal exposure to MeHg in the cerebellum of developing rats. Toxicol Lett 284:161–169. https://doi.org/10.1016/j.toxlet.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  97. Fujimura M, Usuki F (2015) Low concentrations of methylmercury inhibit neural progenitor cell proliferation associated with up-regulation of glycogen synthase kinase 3beta and subsequent degradation of cyclin E in rats. Toxicol Appl Pharmacol 288(1):19–25. https://doi.org/10.1016/j.taap.2015.07.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Pamela Mellon from University of California, San Diego, for providing GT1-7 cells and the Analytical Imaging Facility of Albert Einstein College of Medicine (supported by a NCI Cancer Center Support Grant P30CA013330), specially to Andrea Briceno for her invaluable assistance with imaging.

Funding

This work was supported in part by a grant from the National Institute of Environmental Health Sciences (NIEHS) R01ES007331 (MA and ABB). This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of state support for the creation and development of World-Class Research Centers “Digital biodesign and personalized healthcare” 075–15-2020–926 (AVS).

Author information

Authors and Affiliations

Authors

Contributions

B.F. and M.A. conceived the project. H.S. and B.F. conducted the experiments and collected the data. B.F. analyzed the data and wrote the manuscript. A.S., A.V.S. and J.B.R. revised the manuscript. A.B.B., A.V.S. and M.A. edited the manuscript secured funding. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Beatriz Ferrer or Michael Aschner.

Ethics declarations

Ethics approval

As already mentioned in the “Materials and Methods” section, part of this study design of rat primary neuronal cultures isolation from rat was reviewed and approved by the Institutional Animal Care and Use Committees (IACUC) of Albert Einstein College of Medicine.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrer, B., Suresh, H., Tinkov, A.A. et al. Ghrelin attenuates methylmercury-induced oxidative stress in neuronal cells. Mol Neurobiol 59, 2098–2115 (2022). https://doi.org/10.1007/s12035-022-02726-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02726-5

Keywords

Navigation