Skip to main content
Log in

Impaired Sphingolipid Hydrolase Activities in Dementia with Lewy Bodies and Multiple System Atrophy

Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The synucleinopathies are a group of neurodegenerative diseases characterized by the oligomerization of alpha-synuclein protein in neurons or glial cells. Recent studies provide data that ceramide metabolism impairment may play a role in the pathogenesis of synucleinopathies due to its influence on alpha-synuclein accumulation. The aim of the current study was to assess changes in activities of enzymes involved in ceramide metabolism in patients with different synucleinopathies (Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA)). The study enrolled 163 PD, 44 DLB, and 30 MSA patients as well as 159 controls. Glucocerebrosidase, alpha-galactosidase, acid sphingomyelinase enzyme activities, and concentrations of the corresponding substrates (hexosylsphingosine, globotriaosylsphingosine, lysosphingomyelin) were measured by liquid chromatography tandem-mass spectrometry in blood. Expression levels of GBA, GLA, and SMPD1 genes encoding glucoceresobridase, alpha-galactosidase, and acid sphingomyelinase enzymes, correspondently, were analyzed by real-time PCR with TaqMan assay in CD45 + blood cells. Increased hexosylsphingosine concentration was observed in DLB and MSA patients in comparison to PD and controls (p < 0.001) and it was associated with earlier age at onset (AAO) of DLB (p = 0.0008). SMPD1 expression was decreased in MSA compared to controls (p = 0.015). Acid sphingomyelinase activity was decreased in DLB, MSA patients compared to PD patients (p < 0.0001, p < 0.0001, respectively), and in MSA compared to controls (p < 0.0001). Lower acid sphingomyelinase activity was associated with earlier AAO of PD (p = 0.012). Our data support the role of lysosomal dysfunction in the pathogenesis of synucleinopathies, namely, the pronounced alterations of lysosomal activities involved in ceramide metabolism in patients with MSA and DLB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Availability of Data and Materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Coon EA, Singer W (2020) Synucleinopathies. Contin Lifelong Learn Neurol 26:72–92. https://doi.org/10.1212/CON.0000000000000819

  2. Lee HJ, Ricarte D, Ortiz D, Lee SJ (2019) Models of multiple system atrophy. Exp Mol Med 51:. https://doi.org/10.1038/s12276-019-0346-8

  3. Marvian AT, Koss DJ, Aliakbari F et al (2019) In vitro models of synucleinopathies: informing on molecular mechanisms and protective strategies. J Neurochem 150:535–565. https://doi.org/10.1111/jnc.14707

    Article  CAS  PubMed  Google Scholar 

  4. Zunke F, Andresen L, Wesseler S et al (2016) Characterization of the complex formed by β-glucocerebrosidase and the lysosomal integral membrane protein type-2. Proc Natl Acad Sci U S A 113:3791–3796. https://doi.org/10.1073/pnas.1514005113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Paciotti S, Gatticchi L, Beccari T, Parnetti L (2019) Lysosomal enzyme activities as possible CSF biomarkers of synucleinopathies. Clin Chim Acta 495:13–24. https://doi.org/10.1016/j.cca.2019.03.1627

    Article  CAS  PubMed  Google Scholar 

  6. Schulze H, Sandhoff K (2011) Lysosomal lipid storage diseases. Cold Spring Harb Perspect Biol 3:1–19. https://doi.org/10.1101/cshperspect.a004804

    Article  CAS  Google Scholar 

  7. Velayati A, Yu WH, Sidransky E (2010) The role of glucocerebrosidase mutations in parkinson disease and Lewy body disorders. Curr Neurol Neurosci Rep 10:190–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tayebi N, Callahan M, Madike V et al (2001) Gaucher disease and parkinsonism: a phenotypic and genotypic characterization. Mol Genet Metab 73:313–321. https://doi.org/10.1006/mgme.2001.3201

    Article  CAS  PubMed  Google Scholar 

  9. Tayebi N, Walker J, Stubblefield B et al (2003) Gaucher disease with parkinsonian manifestations: does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol Genet Metab 79:104–109. https://doi.org/10.1016/S1096-7192(03)00071-4

    Article  CAS  PubMed  Google Scholar 

  10. Sidransky E, Nalls MA, Aasly JO et al (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 361:1651–1661. https://doi.org/10.1056/NEJMoa0901281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Emelyanov AK, Usenko TS, Tesson C et al (2018) Mutation analysis of Parkinson’s disease genes in a Russian data set. Neurobiol Aging. https://doi.org/10.1016/j.neurobiolaging.2018.06.027

    Article  PubMed  Google Scholar 

  12. Neumann J, Bras J, Deas E et al (2009) Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 132:1783–1794. https://doi.org/10.1093/brain/awp044

    Article  PubMed  PubMed Central  Google Scholar 

  13. Foo JN, Liany H, Bei JX et al (2013) A rare lysosomal enzyme gene SMPD1 variant (p. R591C) associates with Parkinson’s disease. Neurobiol Aging 34:2890.e13-2890.e15. https://doi.org/10.1016/j.neurobiolaging.2013.06.010

    Article  CAS  Google Scholar 

  14. Dagan E, Schlesinger I, Ayoub M et al (2015) The contribution of Niemann-Pick SMPD1 mutations to Parkinson disease in Ashkenazi Jews. Park Relat Disord 21:1067–1071. https://doi.org/10.1016/j.parkreldis.2015.06.016

    Article  CAS  Google Scholar 

  15. Gan-Or Z, Ozelius LJ, Bar-Shira A, et al (2013) The p.L302P mutation in the lysosomal enzyme gene SMPD1 is a risk factor for Parkinson disease. Neurology. https://doi.org/10.1212/WNL.0b013e31828f180e

  16. Robak LA, Jansen IE, van Rooij J et al (2017) Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease. Brain 140:3191–3203. https://doi.org/10.1093/brain/awx285

    Article  PubMed  PubMed Central  Google Scholar 

  17. Alcalay RN, Wolf P, Levy OA, et al (2018) Alpha galactosidase A activity in Parkinson’s disease. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2018.01.012

  18. Alcalay RN, Mallett V, Vanderperre B, et al (2019) SMPD1 mutations, activity, and α-synuclein accumulation in Parkinson’s disease. Mov Disord. https://doi.org/10.1002/mds.27642

  19. Nishioka K, Ross OA, Vilariño-Güell C et al (2011) Glucocerebrosidase mutations in diffuse Lewy body disease. Park Relat Disord 17:55–57. https://doi.org/10.1016/j.parkreldis.2010.09.009

    Article  Google Scholar 

  20. Moors TE, Paciotti S, Ingrassia A et al (2019) Characterization of brain lysosomal activities in GBA-related and sporadic Parkinson’s disease and dementia with Lewy bodies. Mol Neurobiol 56:1344–1355. https://doi.org/10.1007/s12035-018-1090-0

    Article  CAS  PubMed  Google Scholar 

  21. Gegg ME, Burke D, Heales SJR et al (2012) Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Ann Neurol 72:455–463. https://doi.org/10.1002/ana.23614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alcalay RN, Wolf P, Chiang MSR, et al (2020) Longitudinal measurements of glucocerebrosidase activity in Parkinson’s patients. Ann Clin Transl Neurol 1–15. https://doi.org/10.1002/acn3.51164

  23. Pchelina S, Emelyanov A, Baydakova G, et al (2017) Oligomeric α-synuclein and glucocerebrosidase activity levels in GBA-associated Parkinson’s disease. Neurosci Lett. https://doi.org/10.1016/j.neulet.2016.10.039

  24. Papagiannakis N, Xilouri M, Koros C et al (2015) Lysosomal alterations in peripheral blood mononuclear cells of Parkinson’s disease patients. Mov Disord 30:1830–1834. https://doi.org/10.1002/mds.26433

    Article  CAS  PubMed  Google Scholar 

  25. Paciotti S, Albi E, Parnetti L, Beccari T (2020) Lysosomal ceramide metabolism disorders: implications in Parkinson’s disease. J Clin Med 9:594. https://doi.org/10.3390/jcm9020594

    Article  CAS  PubMed Central  Google Scholar 

  26. Pchelina S, Baydakova G, Nikolaev M et al (2018) Blood lysosphingolipids accumulation in patients with parkinson’s disease with glucocerebrosidase 1 mutations. Mov Disord. https://doi.org/10.1002/mds.27393

    Article  PubMed  Google Scholar 

  27. Postuma RB, Berg D, Stern M, et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord.

  28. Gilman S, Wenning GK, Low PA et al (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71:670–676. https://doi.org/10.1212/01.wnl.0000324625.00404.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McKeith IG, Boeve BF, Dickson DW et al (2017) Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 89:88–100. https://doi.org/10.1212/WNL.0000000000004058

    Article  PubMed  PubMed Central  Google Scholar 

  30. Aharon-Peretz J, Badarny S, Rosenbaum H, Gershoni-Baruch R (2005) Mutations in the glucocerebrosidase gene and Parkinson disease: phenotype-genotype correlation. Neurology 65:1460–1461. https://doi.org/10.1212/01.wnl.0000176987.47875.28

    Article  CAS  PubMed  Google Scholar 

  31. Hashad DI, Abou-Zeid AA, Achmawy GA et al (2011) G2019S mutation of the leucine-rich repeat kinase 2 gene in a cohort of Egyptian patients with Parkinson’s disease. Genet Test Mol Biomarkers 15:861–866. https://doi.org/10.1089/gtmb.2011.0016

    Article  CAS  PubMed  Google Scholar 

  32. Qin L, Jing X, Qiu Z, et al (2016) Aging of immune system: immune signature from peripheral blood lymphocyte subsets in 1068 healthy adults. Aging (Albany NY) 8:848–859. https://doi.org/10.18632/aging.100894

  33. Buttarelli FR, Fanciulli A, Pellicano C, Pontieri FE (2011) The dopaminergic system in peripheral blood lymphocytes: from physiology to pharmacology and potential applications to neuropsychiatric disorders. Curr Neuropharmacol 9:278–288. https://doi.org/10.2174/157015911795596612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  35. Polo G, Burlina AP, Kolamunnage TB et al (2017) Diagnosis of sphingolipidoses: a new simultaneous measurement of lysosphingolipids by LC-MS/MS. Clin Chem Lab Med 55:403–414. https://doi.org/10.1515/cclm-2016-0340

    Article  CAS  PubMed  Google Scholar 

  36. Nikolaev MA, Kopytova AE, Baidakova GV et al (2019) Human peripheral blood macrophages as a model for studying glucocerebrosidase dysfunction. Cell Tissue Biol 13:100–106. https://doi.org/10.1134/S1990519X19020081

    Article  Google Scholar 

  37. Chuang W-L, Pacheco J, Hoxha D et al (2019) Galactosylsphingosine does not interfere with the quantitation of plasma glucosylsphingosine levels in Gaucher patients. Clin Chim Acta 494:48–51. https://doi.org/10.1016/j.cca.2019.03.009

    Article  CAS  PubMed  Google Scholar 

  38. Heinrich M, Wickel M, Winoto-Morbach S et al (2000) Ceramide as an activator lipid of cathepsin D. Adv Exp Med Biol 477:305–315. https://doi.org/10.1007/0-306-46826-3_33

    Article  CAS  PubMed  Google Scholar 

  39. Hallett PJ, Huebecker M, Brekk OR et al (2018) Glycosphingolipid levels and glucocerebrosidase activity are altered in normal aging of the mouse brain. Neurobiol Aging 67:189–200. https://doi.org/10.1016/j.neurobiolaging.2018.02.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hruska KS, LaMarca ME, Scott CR, Sidransky E (2008) Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum Mutat 29:567–583. https://doi.org/10.1002/humu.20676

    Article  CAS  PubMed  Google Scholar 

  41. Hurvitz N, Dinur T, Cohen MB et al (2019) Glucosylsphingosine (Lyso-gb1) as a biomarker for monitoring treated and untreated children with Gaucher disease. Int J Mol Sci 20:1–9. https://doi.org/10.3390/ijms20123033

    Article  CAS  Google Scholar 

  42. Alcalay RN, Levy OA, Waters CC et al (2015) Glucocerebrosidase activity in Parkinson’s disease with and without GBA mutations. Brain 138:2648–2658. https://doi.org/10.1093/brain/awv179

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wu G, Huang J, Feng X et al (2011) Decreased expression of lysosomal alpha-Galactosiase A gene in sporadic Parkinson’s disease. Neurochem Res 36:1939–1944. https://doi.org/10.1007/s11064-011-0516-0

    Article  CAS  PubMed  Google Scholar 

  44. Wu G, Yan B, Wang X et al (2008) Decreased activities of lysosomal acid alpha-D-galactosidase A in the leukocytes of sporadic Parkinson’s disease. J Neurol Sci 271:168–173. https://doi.org/10.1016/j.jns.2008.04.011

    Article  CAS  PubMed  Google Scholar 

  45. Huebecker M, Moloney EB, Van Der Spoel AC et al (2019) Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson’s disease. Mol Neurodegener 14:1–21. https://doi.org/10.1186/s13024-019-0339-z

    Article  Google Scholar 

  46. Nelson MP, Boutin M, Tse TE et al (2018) The lysosomal enzyme alpha-Galactosidase A is deficient in Parkinson’s disease brain in association with the pathologic accumulation of alpha-synuclein. Neurobiol Dis 110:68–81. https://doi.org/10.1016/j.nbd.2017.11.006

    Article  CAS  PubMed  Google Scholar 

  47. Lin G, Wang L, Marcogliese PC, Bellen HJ (2019) Sphingolipids in the pathogenesis of Parkinson’s disease and Parkinsonism. Trends Endocrinol Metab 30:106–117. https://doi.org/10.1016/j.tem.2018.11.003

    Article  CAS  PubMed  Google Scholar 

  48. Keatinge M, Bui H, Menke A et al (2015) Glucocerebrosidase 1 deficient Danio rerio mirror key pathological aspects of human Gaucher disease and provide evidence of early microglial activation preceding alpha-synuclein-independent neuronal cell death. Hum Mol Genet 24:6640–6652. https://doi.org/10.1093/hmg/ddv369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mao C yuan, Yang J, Wang H, et al (2017) SMPD1 variants in Chinese Han patients with sporadic Parkinson’s disease. Park Relat Disord 34:59–61. https://doi.org/10.1016/j.parkreldis.2016.10.014

  50. Emelyanov A, Usenko T, Nikolaev M, et al. Increased alpha-synuclein level in CD45+ blood cells in asymptomatic carriers of GBA mutations. Mov Disorders. 2021, accepted.

  51. Zhuravlev A, Lavrinova A, Kulabuhova D, et al. The CD45+ blood cells alpha-synuclein concentration in synucleinopathies. Eur Neuropsychopharmacol Supp. 2021, accepted.

  52. Keatinge M, Gegg ME, Watson L, Mortiboys H (2020) Unexpected opposing biological effect of genetics risk factors for Parkinson ’ s disease ( Condensed title : ASM inhibition rescues GCase deficiency ). 1–28

Download references

Acknowledgements

The authors are grateful to all patients whose participation in the study made this analysis possible.

Funding

The study was supported by Russian foundation for basic research grant № 20–015-00116.

Author information

Authors and Affiliations

Authors

Contributions

Project was initiated by TU and SP. KS, MI, KI, LK, IF, DZ, AT, YI, EP, NZ, EG, and AK are doctors who generated the studied groups of patients with MSA, DLB, and PD. TU, AB, KB, AZ, and AE were involved in processing of the collection of biological samples (dry blood spots, CD45 + blood cells). TU and AB were involved in experimental design of study. Execution of biochemical assays have been done by TU, AB, KB, GB, and EZ. Statistical analyses were set up and performed by TU, AB, and KB. Figures were composed by TU and AB. TU, SP, and AB contributed to the interpretation of the data. TU wrote the first draft of the manuscript. The review and critique have been done by SP and KS. The manuscript was edited and finalized by SP and TU.

Corresponding author

Correspondence to T. S. Usenko.

Ethics declarations

Ethics Approval and Consent to Participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by ethics committee of Pavlov First Saint-Petersburg State Medical University.

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 245 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usenko, T.S., Senkevich, K.A., Bezrukova, A.I. et al. Impaired Sphingolipid Hydrolase Activities in Dementia with Lewy Bodies and Multiple System Atrophy. Mol Neurobiol 59, 2277–2287 (2022). https://doi.org/10.1007/s12035-021-02688-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02688-0

Keywords

Navigation