Skip to main content

Advertisement

Log in

The 40-Hz White Light-Emitting Diode (LED) Improves the Structure–Function of the Brain Mitochondrial KATP Channel and Respiratory Chain Activities in Amyloid Beta Toxicity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

It has been described that using noninvasive exposure to 40-Hz white light LED reduces amyloid-beta, a peptide thought to initiate neurotoxic events in Alzheimer’s disease (AD). However, the mechanisms remain to be identified. Since AD impairs mitochondrial potassium channels and respiratory chain activity, the objectives of the current study were to determine the effect of 40-Hz white light LED on structure–function of mitoKATP channel and brain mitochondrial respiratory chain activity, production of reactive oxygen species (ROS), and ΔΨm in AD. Single mitoKATP channel was considered using a channel incorporated into the bilayer lipid membrane and expression of mitoKATP-Kir6.1 subunit as a pore-forming subunit of the channel was determined using a western blot analysis in Aβ1-42 toxicity and light-treated rats. Our results indicated a severe decrease in mito-KATP channel permeation and Kir6.1 subunit expression coming from the Aβ1-42-induced neurotoxicity. Furthermore, we found that Aβ1-42-induced neurotoxicity decreased activities of complexes I and IV and increased ROS production and ΔΨm. Surprisingly, light therapy increased channel permeation and mitoKATP-Kir6.1 subunit expression. Noninvasive 40-Hz white light LED treatment also increased activities of complexes I and IV and decreased ROS production and ΔΨm up to ~ 70%. Here, we report that brain mito-KATP channel and respiratory chain are, at least in part, novel targets of 40-Hz white light LED therapy in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data and material are available upon request to the corresponding author.

Abbreviations

AD:

Alzheimer’s disease

Aβ:

Beta amyloid

PBMT:

Photobiomodulation therapy

LED:

Light-emitting diode

MitoKATP channel:

Mitochondrial ATP-sensitive potassium channel

ROS:

Reactive oxygen species

ΔΨm :

Mitochondrial membrane potential

ICV:

Intracerebroventricular

STL:

Step-through latency

TDC:

Time spent in the dark compartment

TLC:

Thin-layer chromatography

BLM:

Bilayer lipid membrane

COX:

Cytochrome oxidase

ETC:

Electron transport chain

Complex I:

NADH-CoQ oxidoreductase

Complex IV:

Cytochrome c oxidase

CoQ:

Coenzyme Q

DCFH-DA:

2′,7′-Dichlorofluorescein diacetate

Rh 123:

Rhodamine 123

Po:

Open probability

V 1/2 :

Voltage for half-maximal activation

z d :

Equivalent gating charge

References

  1. Cornejo VH, Hetz C, editors (2013) The unfolded protein response in Alzheimer’s disease. Seminars in immunopathology. Springer. https://doi.org/10.1007/s00281-013-0373-9

  2. Cummings JL, Morstorf T, Zhong K (2014) Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimer’s Res Ther 6:1–7

    Article  Google Scholar 

  3. Salloway S, Sperling R, Fox NC et al (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370:322–333. https://doi.org/10.1056/NEJMoa1304839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lane N (2006) Power games. Nature Publishing Group, Berlin

    Google Scholar 

  5. Hamblin MR (2016) Shining light on the head: photobiomodulation for brain disorders. BBA Clin 6:113–124. https://doi.org/10.1016/j.bbacli.2016.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dougal G, Lee S (2013) Evaluation of the efficacy of low-level light therapy using 1072 nm infrared light for the treatment of herpes simplex labialis. Clin Exp Dermatol 38:713–718. https://doi.org/10.1111/ced.12069

    Article  CAS  PubMed  Google Scholar 

  7. Vatansever F, Hamblin MR (2012) Far infrared radiation (FIR): its biological effects and medical applications: Ferne Infrarotstrahlung: Biologische Effekte und medizinische Anwendungen. Photonics lasers Med 1:255–266. https://doi.org/10.1515/plm-2012-0034

    Article  Google Scholar 

  8. Hashmi JT, Huang YY, Sharma SK et al (2010) Effect of pulsing in low-level light therapy. Lasers Surg Med 42:450–466. https://doi.org/10.1002/lsm.20950

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hamblin MR, editor (2019) Photobiomodulation for Alzheimer’s disease: has the light dawned? Photonics. Multidisciplinary Digital Publishing Institute, Basel. https://doi.org/10.3390/photonics6030077

  10. Rojas JC, Gonzalez-Lima F (2013) Neurological and psychological applications of transcranial lasers and LEDs. Biochem Pharmacol 86:447–457. https://doi.org/10.1016/j.bcp.2013.06.012

    Article  CAS  PubMed  Google Scholar 

  11. Iaccarino HF, Singer AC, Martorell AJ et al (2016) Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 540:230–235. https://doi.org/10.1038/nature20587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Singer AC, Martorell AJ, Douglas JM et al (2018) Noninvasive 40-Hz light flicker to recruit microglia and reduce amyloid beta load. Nat Protoc 13:1850–1868. https://doi.org/10.1038/s41596-018-0021-x

    Article  CAS  PubMed  Google Scholar 

  13. Lu Y, Wang R, Dong Y et al (2017) Low-level laser therapy for beta amyloid toxicity in rat hippocampus. Neurobiol Aging 49:165–182. https://doi.org/10.1016/j.neurobiolaging.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  14. Wataha J, Lewis J, Lockwood P et al (2004) Blue light differentially modulates cell survival and growth. J Dental Res 83:104–108. https://doi.org/10.1177/154405910408300204

    Article  CAS  Google Scholar 

  15. Gorgidze L, Oshemkova S, Vorobjev I (1998) Blue light inhibits mitosis in tissue culture cells. Biosci Rep 18:215–224. https://doi.org/10.1023/A:1020104914726

    Article  CAS  PubMed  Google Scholar 

  16. García-Silva MT, Ribes A, Campos Y et al (1997) Syndrome of encephalopathy, petechiae, and ethylmalonic aciduria. Pediatr Neurol 17:165–170

    Article  PubMed  Google Scholar 

  17. Hockberger PE, Skimina TA, Centonze VE et al (1999) Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells. Proc Natl Acad Sci 96:6255–6260. https://doi.org/10.1073/pnas.96.11.6255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Devi L, Prabhu BM, Galati DF et al (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 26:9057–9068. https://doi.org/10.1523/JNEUROSCI.1469-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Correia SC, Carvalho C, Cardoso S et al (2010) Mitochondrial preconditioning: a potential neuroprotective strategy. Front Aging Neurosci 2:138. https://doi.org/10.3389/fnagi.2010.00138

    Article  PubMed  PubMed Central  Google Scholar 

  20. Valla J, Schneider L, Niedzielko T et al (2006) Impaired platelet mitochondrial activity in Alzheimer’s disease and mild cognitive impairment. Mitochondrion 6:323–330. https://doi.org/10.1016/j.mito.2006.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bosetti F, Brizzi F, Barogi S et al (2002) Cytochrome c oxidase and mitochondrial F1F0-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer’s disease. Neurobiol Aging 23:371–376. https://doi.org/10.1016/S0197-4580(01)00314-1

    Article  CAS  PubMed  Google Scholar 

  22. Choma K, Bednarczyk P, Koszela-Piotrowska I et al (2009) Single channel studies of the ATP-regulated potassium channel in brain mitochondria. J Bioenerg Biomembr 41:323. https://doi.org/10.1007/s10863-009-9233-7

    Article  CAS  PubMed  Google Scholar 

  23. Ma G, Chen S (2004) Diazoxide and Nω-nitro-L-arginine counteracted Aβ1-42-induced cytotoxicity. NeuroReport 15:1813–1817. https://doi.org/10.1097/01.wnr.0000135694.89237.3d

    Article  CAS  PubMed  Google Scholar 

  24. Alejandro A, S. Eliza H, Colin GN, Monica SR (2009) Molecular biology of KATP channels and implications for health and disease. IUBMB life 61:971–978. https://doi.org/10.1002/iub.246

    Article  CAS  Google Scholar 

  25. Szabo I, Zoratti M (2014) Mitochondrial channels: ion fluxes and more. Physiol Rev 94:519–608. https://doi.org/10.1152/physrev.00021.2013

    Article  CAS  PubMed  Google Scholar 

  26. Peng K, Hu J, Xiao J et al (2018) Mitochondrial ATP-sensitive potassium channel regulates mitochondrial dynamics to participate in neurodegeneration of Parkinson’s disease. BBA-Mol Basis Dis 1864:1086–1103. https://doi.org/10.1016/j.bbadis.2018.01.013

    Article  CAS  Google Scholar 

  27. Jafari A, Noursadeghi E, Khodagholi F et al (2015) Brain mitochondrial ATP-insensitive large conductance Ca+ 2-activated K+ channel properties are altered in a rat model of amyloid-β neurotoxicity. Exp Neurol 269:8–16. https://doi.org/10.1016/j.expneurol.2014.12.024

    Article  CAS  PubMed  Google Scholar 

  28. Boyd-Kimball D, Sultana R, Poon HF et al (2005) Proteomic identification of proteins specifically oxidized by intracerebral injection of amyloid β-peptide (1–42) into rat brain: implications for Alzheimer’s disease. Neuroscience 132:313–324. https://doi.org/10.1016/j.neuroscience.2004.12.022

    Article  CAS  PubMed  Google Scholar 

  29. Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates: hard, cover. Elsevier, Amsterdam

    Google Scholar 

  30. Davoodi FG, Motamedi F, Akbari E et al (2011) Effect of reversible inactivation of reuniens nucleus on memory processing in passive avoidance task. Behavi Brain Res 221:1–6. https://doi.org/10.1016/j.bbr.2011.02.020

    Article  Google Scholar 

  31. Rosenthal RE, Hamud F, Fiskum G et al (1987) Cerebral ischemia and reperfusion: prevention of brain mitochondrial injury by lidoflazine. J Cereb Blood Flow Metab 7:752–758. https://doi.org/10.1038/jcbfm.1987.130

    Article  CAS  PubMed  Google Scholar 

  32. Da Cruz S, Xenarios I, Langridge J et al (2003) Proteomic analysis of the mouse liver mitochondrial inner membrane. J Biol Chem 278:41566–41571. https://doi.org/10.1074/jbc.M304940200

    Article  CAS  PubMed  Google Scholar 

  33. Singleton W, Gray M, Brown M, White J (1965) Chromatographically homogeneous lecithin from egg phospholipids. J Am Oil Chem Soc 42:53–56. https://doi.org/10.1007/BF02558256

    Article  CAS  PubMed  Google Scholar 

  34. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/j.neuroscience.2004.12.022

    Article  CAS  PubMed  Google Scholar 

  35. Torabi N, Noursadeghi E, Shayanfar F et al (2021) Intranasal insulin improves the structure–function of the brain mitochondrial ATP–sensitive Ca2+ activated potassium channel and respiratory chain activities under diabetic conditions. BBA-Mol Basis Dis 1867:166075. https://doi.org/10.1016/j.bbadis.2021.166075

    Article  CAS  Google Scholar 

  36. Thapa D, Nichols CE, Lewis SE et al (2015) Transgenic overexpression of mitofilin attenuates diabetes mellitus-associated cardiac and mitochondria dysfunction. J Mol Cell Cardiol 79:212–223. https://doi.org/10.1016/j.yjmcc.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  37. Baseler WA, Dabkowski ER, Jagannathan R et al (2013) Reversal of mitochondrial proteomic loss in type 1 diabetic heart with overexpression of phospholipid hydroperoxide glutathione peroxidase. Am J Physiol-Regul, Integr Comp Physiol 304:R553–R565. https://doi.org/10.1152/ajpregu.00249.2012

    Article  CAS  Google Scholar 

  38. Fahanik-Babaei J, Eliassi A, Jafari A et al (2011) Electro-pharmacological profile of a mitochondrial inner membrane big-potassium channel from rat brain. BBA-Biomembr 1808:454–460. https://doi.org/10.1016/j.bbamem.2010.10.005

    Article  CAS  Google Scholar 

  39. Fahanik-Babaei J, Rezaee B, Nazari M et al (2020) A new brain mitochondrial sodium-sensitive potassium channel: effect of sodium ions on respiratory chain activity. J Cell Sci 133:jcs242446. https://doi.org/10.1242/jcs.242446

    Article  CAS  PubMed  Google Scholar 

  40. Navarro A, Gómez C, Sánchez-Pino M-J et al (2005) Vitamin E at high doses improves survival, neurological performance, and brain mitochondrial function in aging male mice. Am J Physiol-Regul, Integr Comp Physiol 289:R1392–R1399. https://doi.org/10.1152/ajpregu.00834.2004

    Article  CAS  Google Scholar 

  41. Spinazzi M, Casarin A, Pertegato V et al (2012) Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat protoc 7:1235. https://doi.org/10.1038/nprot.2012.058

    Article  CAS  PubMed  Google Scholar 

  42. Luo J, Shi R (2005) Acrolein induces oxidative stress in brain mitochondria. Neurochem Int 46:243–252. https://doi.org/10.1016/j.neuint.2004.09.001

    Article  CAS  PubMed  Google Scholar 

  43. Pipatpiboon N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2012) PPARγ agonist improves neuronal insulin receptor function in hippocampus and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets. Endocrinology 153:329–338. https://doi.org/10.1210/en.2011-1502

    Article  CAS  PubMed  Google Scholar 

  44. Lacza Z, Snipes JA, Kis B et al (2003) Investigation of the subunit composition and the pharmacology of the mitochondrial ATP-dependent K+ channel in the brain. Brain Res 994:27–36. https://doi.org/10.1016/j.brainres.2003.09.046

    Article  CAS  PubMed  Google Scholar 

  45. Brustovetsky T, Shalbuyeva N, Brustovetsky N (2005) Lack of manifestations of diazoxide/5-hydroxydecanoate-sensitive KATP channel in rat brain nonsynaptosomal mitochondria. J Physiol 568:47–59. https://doi.org/10.1113/jphysiol.2005.091199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moreira PI, Zhu X, Wang X et al (2010) Mitochondria: a therapeutic target in neurodegeneration. BBA-Mol Basis Dis 1802:212–220. https://doi.org/10.1016/j.bbadis.2009.10.007

    Article  CAS  Google Scholar 

  47. Paggio A, Checchetto V, Campo A et al (2019) Identification of an ATP-sensitive potassium channel in mitochondria. Nature 572:609–613. https://doi.org/10.1038/s41586-019-1498-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Inoue I, Nagase H, Kishi K, Higuti T (1991) ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352:244–247

    Article  CAS  PubMed  Google Scholar 

  49. Liu D, Pitta M, Lee J-H et al (2010) The K ATP channel activator diazoxide ameliorates amyloid-β and Tau pathologies and improves memory in the 3xTgAD mouse model of Alzheimer’s disease. J Alzheimers Dis 22:443–457. https://doi.org/10.3233/JAD-2010-101017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu L, Shen F, Lin L et al (2006) The neuroprotection conferred by activating the mitochondrial ATP-sensitive K+ channel is mediated by inhibiting the mitochondrial permeability transition pore. Neurosci Lett 402:184–189. https://doi.org/10.1016/j.neulet.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  51. Liu D, Lu C, Wan R et al (2002) Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release. J Cereb Blood Flow Metab 22:431–443. https://doi.org/10.1097/00004647-200204000-00007

    Article  CAS  PubMed  Google Scholar 

  52. Macauley SL, Stanley M, Caesar EE et al (2015) Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo. J Clin Investig 125:2463–2467

    Article  PubMed  PubMed Central  Google Scholar 

  53. Xie J, Duan L, Qian X et al (2010) KATP channel openers protect mesencephalic neurons against MPP+-induced cytotoxicity via inhibition of ROS production. J Neurosci Res 88:428–437. https://doi.org/10.1002/jnr.22213

    Article  CAS  PubMed  Google Scholar 

  54. Virgili N, Mancera P, Wappenhans B et al (2013) KATP channel opener diazoxide prevents neurodegeneration: a new mechanism of action via antioxidative pathway activation. PLoS ONE 8:e75189. https://doi.org/10.1371/annotation/0e045706-ea24-41db-be90-27d1cbcd35b1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gozen A, Demiryurek S, Taskin A et al (2013) Protective activity of ischemic preconditioning on rat testicular ischemia: effects of Y-27632 and 5-hydroxydecanoic acid. J Pediatr Surg 48:1565–1572. https://doi.org/10.1016/j.jpedsurg.2012.10.074

    Article  PubMed  Google Scholar 

  56. Tosun C, Koltz MT, Kurland DB et al (2013) The protective effect of glibenclamide in a model of hemorrhagic encephalopathy of prematurity. Brain Sci 3:215–238. https://doi.org/10.3390/brainsci3010215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Erejuwa OO, Sulaiman SA, Wahab MSA et al (2010) Antioxidant protective effect of glibenclamide and metformin in combination with honey in pancreas of streptozotocin-induced diabetic rats. Int J Mol Sci 11:2056–2066. https://doi.org/10.3390/ijms11052056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Atlasz T, Babai N, Reglodi D et al (2007) Diazoxide is protective in the rat retina against ischemic injury induced by bilateral carotid occlusion and glutamate-induced degeneration. Neurotox Res 12:105–111. https://doi.org/10.1007/BF03033919

    Article  CAS  PubMed  Google Scholar 

  59. Hu P, Zheng M, Jiang J et al (2010) Effects of diazoxide on the mitochondrial ultrastructure and permeability in donor rat myocardium. Zhongguo ying yong sheng li xue za zhi= Zhongguo yingyong shenglixue zazhi. Chin J Appl Physiol 26:19–22

    Google Scholar 

  60. Nesi G, Sestito S, Digiacomo M, Rapposelli S (2017) Oxidative stress, mitochondrial abnormalities and proteins deposition: multitarget approaches in Alzheimer’s disease. Curr Top Med Chem 17:3062–3079. https://doi.org/10.2174/1568026617666170607114232

    Article  CAS  PubMed  Google Scholar 

  61. Tiiman A, Palumaa P, Tougu V (2013) The missing link in the amyloid cascade of Alzheimer’s disease—metal ions. Neurochem Int 62:367–378. https://doi.org/10.1016/j.neuint.2013.01.023

    Article  CAS  PubMed  Google Scholar 

  62. Flannery PJ, Trushina E (2019) Mitochondrial dysfunction in Alzheimer’s disease and progress in mitochondria-targeted therapeutics. Curr Behav Neurosci Rep 6:88–102. https://doi.org/10.1007/s40473-019-00179-0

    Article  Google Scholar 

  63. Trushina E, McMurray C (2007) Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145:1233–1248. https://doi.org/10.1016/j.neuroscience.2006.10.056

    Article  CAS  PubMed  Google Scholar 

  64. Kilbride SM, Gluchowska SA, Telford JE et al (2011) High-level inhibition of mitochondrial complexes III and IV is required to increase glutamate release from the nerve terminal. Mol Neurodegener 6:1–9. https://doi.org/10.1186/1750-1326-6-53

    Article  CAS  Google Scholar 

  65. Golpich M, Amini E, Mohamed Z et al (2017) Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci Therap 23:5–22. https://doi.org/10.1111/cns.12655

    Article  Google Scholar 

  66. Murphy PM (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13. https://doi.org/10.1042/BJ20081386

    Article  CAS  PubMed  Google Scholar 

  67. Scialò F, Fernández-Ayala DJ, Sanz A (2017) Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease. Front Physiol 8:428. https://doi.org/10.3389/fphys.2017.00428

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dong Y, Digman MA, Brewer GJ (2019) Age-and AD-related redox state of NADH in subcellular compartments by fluorescence lifetime imaging microscopy. Geroscience 41:51–67. https://doi.org/10.1007/s11357-019-00052-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hajnóczky G, Csordás G, Madesh M, Pacher P (2000) The machinery of local Ca2+ signalling between sarco-endoplasmic reticulum and mitochondria. J Physiol 529:69–81. https://doi.org/10.1111/j.1469-7793.2000.00069.x

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mellerio J (1994) Light effects on the retina. Principles and practice of ophthalmology 1:1326–1345

    Google Scholar 

  71. García J, Silva E (1997) Flavin-sensitized photooxidation of amino acids present in a parenteral nutrition infusate: protection by ascorbic acid. J Nutr Biochem 8:341–345. https://doi.org/10.1016/S0955-2863(97)00024-7

    Article  Google Scholar 

  72. Verret L, Mann EO, Hang GB et al (2012) Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149:708–721. https://doi.org/10.1016/j.cell.2012.02.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gillespie AK, Jones EA, Lin Y-H et al (2016) Apolipoprotein E4 causes age-dependent disruption of slow gamma oscillations during hippocampal sharp-wave ripples. Neuron 90:740–751. https://doi.org/10.1016/j.neuron.2016.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lu CB, Vreugdenhil M, Toescu EC (2012) The effect of aging-associated impaired mitochondrial status on kainate-evoked hippocampal gamma oscillations. Neurobiol Aging 33:2692–2703. https://doi.org/10.1016/j.neurobiolaging.2012.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Whittaker RG, Turnbull DM, Whittington MA, Cunningham MO (2011) Impaired mitochondrial function abolishes gamma oscillations in the hippocampus through an effect on fast-spiking interneurons. Brain 134:e180. https://doi.org/10.1093/brain/awr018

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kann O, Huchzermeyer C, Kovacs R et al (2011) Gamma oscillations in the hippocampus require high complex I gene expression and strong functional performance of mitochondria. Brain 134:345–358. https://doi.org/10.1093/brain/awq333

    Article  PubMed  Google Scholar 

  77. Malinska D, Kulawiak B, Kudin AP et al (2010) Complex III-dependent superoxide production of brain mitochondria contributes to seizure-related ROS formation. Biochim Biophys Acta. https://doi.org/10.1016/j.bbabio.2010.03.001

    Article  PubMed  Google Scholar 

  78. Malinska D, Mirandola SR, Kunz WS (2010) Mitochondrial potassium channels and reactive oxygen species. FEBS Lett. https://doi.org/10.1016/j.febslet.2010.01.013

    Article  PubMed  Google Scholar 

  79. Szewczyk A, Kajma A, Malinska D et al (2010) Pharmacology of mitochondrial potassium channels: dark side of the field. FEBS Lett. https://doi.org/10.1016/j.febslet.2010.02.048

    Article  PubMed  Google Scholar 

  80. Busija DW, Katakam P, Rajapakse NC et al (2005) Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria. Brain Res Bull 66:85–90. https://doi.org/10.1016/j.brainresbull.2005.03.022

    Article  CAS  PubMed  Google Scholar 

  81. Ardehali H, Chen Z, Ko Y et al (2004) Multiprotein complex containing succinate dehydrogenase confers mitochondrial ATP-sensitive K+ channel activity. Proc Natl Acad Sci 101:11880–11885. https://doi.org/10.1073/pnas.0401703101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wojtovich AP, Brookes PS (2008) The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: implications for ischemic. BBA-Bioenerg 1777:882–889. https://doi.org/10.1016/j.bbabio.2008.03.025

    Article  CAS  Google Scholar 

  83. Wojtovich AP, Nehrke KW, Brookes PS (2010) The mitochondrial complex II and ATP-sensitive potassium channel interaction: quantitation of the channel in heart mitochondria. Acta Biochim Pol 57:431 (PMID: 21103454)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kowaltowski AJ, Seetharaman S, Paucek P, Garlid KD (2001) Bioenergetic consequences of opening the ATP-sensitive K+ channel of heart mitochondria. Am J Physiol Heart Circ Physiol 280:H649–H657. https://doi.org/10.1152/ajpheart.2001.280.2.H649

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by a grant from the Neurophysiology Research Center of Shahid Beheshti University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

M.N.: investigation, formal analysis, resources, writing original draft; T.V-S.: software, resources; NT: formal analysis, resources; J.F-B: formal analysis; R.S.: resources; F.K.: resources, project administration; A.E.: conceptualization, supervision, writing—review and editing, project administration.

Corresponding author

Correspondence to Afsaneh Eliassi.

Ethics declarations

Ethics Approval

All experiments were conducted according to the Guide for Care and Use of Laboratory Animals (National Institutes of Health Publication No. 80–23, revised 1996). Additionally, all procedures were reviewed and confirmed by the Research and Ethics Committee of Shahid Beheshti University of Medical Sciences (IR.SBMU.MSP.REC.1398.109).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Structure–function of brain mitoKATP channel is severely damaged in an Aβ toxicity model.

• Our study suggests certain mechanisms account for the effects of Aβ toxicity on mitochondria.

• Forty-Hertz white light therapy modifies mitoKATP structure–function in Aβ toxicity rats.

• Forty-Hertz white light improves respiratory chain activity, ROS, and ΔΨm in Aβ toxicity rats.

• Our study suggests a mechanism for the efficacy of 40-Hz light therapy in Aβ toxicity rats.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari, M., Vajed-Samiei, T., Torabi, N. et al. The 40-Hz White Light-Emitting Diode (LED) Improves the Structure–Function of the Brain Mitochondrial KATP Channel and Respiratory Chain Activities in Amyloid Beta Toxicity. Mol Neurobiol 59, 2424–2440 (2022). https://doi.org/10.1007/s12035-021-02681-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02681-7

Keywords

Navigation