Skip to main content

Advertisement

Log in

Interface of Aging and Acute Peripheral Neuropathy Induced by Oxaliplatin in Mice: Target-Directed Approaches for Na+, K+—ATPase, Oxidative Stress, and 7-Chloro-4-(phenylselanyl) quinoline Therapy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Almost 90% of patients develop pain immediately after oxaliplatin (OXA) treatment. Here, the impact of aging on OXA-induced acute peripheral neuropathy and the potential of 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) as a new therapeutic strategy were evaluated. In Swiss mice, the oxidative damage and its influence on Mg2+—ATPase and Na+, K+—ATPase activities were investigated. The relationship between the reactive oxygen species (ROS) and nitrate and nitrite (NOx) levels, the activity of glutathione peroxidase (GPx), and superoxide dismutase (SOD) with the development of OXA-induced acute peripheral neuropathy was also studied. In this study, it was evidenced that OXA-induced acute peripheral neuropathy was exacerbated by aging through increased oxidative damage as well as Na+, K+—ATPase, and Mg+2—ATPase inhibition. 4-PSQ reversed hypersensitivity induced by OXA and aging-aggravated by reducing ROS and NOx levels, through modulation of GPx and SOD activities. 4-PSQ partially reestablish Na+, K+—ATPase activity, but not Mg 2+—ATPase activity. Locomotor and exploratory activities were not affected. This study is the first of its kind, providing new insight into the aging impact on mechanisms involved in OXA-induced acute peripheral neuropathy. Also, it provides evidence on promising 4-PSQ effects on this condition, mainly on aging.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

All data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable.

Abbreviations

4-PSQ:

7-Chloro-4-(phenylselanyl) quinoline

OXA:

Oxaliplatin

NMDA:

N-Methyl-D-aspartate

ROS:

Reactive oxygen species

GPx:

Glutathione peroxidase

SOD:

Superoxide dismutase

NOx:

Nitrate and nitrite

CNS:

Central nervous system

NADPH:

β-Nicotinamide adenine dinucleotide 2′-phosphate reduced tetrasodium salt hydrate

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

References

  1. Nichetti F, Falvella FS, Miceli R et al (2019) Is a pharmacogenomic panel useful to estimate the risk of oxaliplatin-related neurotoxicity in colorectal cancer patients? Pharmacogenomics J. https://doi.org/10.1038/s41397-019-0078-0

    Article  PubMed  Google Scholar 

  2. Rimola V, Hahnefeld L, Zhao J et al (2020) Lysophospholipids contribute to oxaliplatin-induced acute peripheral pain. J Neurosci 40:9519–9532. https://doi.org/10.1523/JNEUROSCI.1223-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cavaletti G, Marmiroli P (2020) Management of oxaliplatin-induced peripheral sensory neuropathy. Cancers (Basel) 12(6):1370. https://doi.org/10.3390/cancers12061370

    Article  CAS  Google Scholar 

  4. Kawashiri T, Mine K, Kobayashi D et al (2021) Therapeutic agents for oxaliplatin-induced peripheral neuropathy; experimental and clinical evidence. Int J Mol Sci 22:1–25

    Google Scholar 

  5. Yildirim N, Cengiz M (2020) Predictive clinical factors of chronic peripheral neuropathy induced by oxaliplatin. Support Care Cancer 28:4781–4788

    Article  PubMed  Google Scholar 

  6. Kang L, Tian Y, Xu S, Chen H (2020) Oxaliplatin-induced peripheral neuropathy: clinical features, mechanisms, prevention and treatment. J Neurol. https://doi.org/10.1007/s00415-020-09942-w

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bennett GJ, Doyle T, Salvemini D (2014) Mitotoxicity in distal symmetrical sensory peripheral neuropathies. Nat Rev Neurol 10:326–336. https://doi.org/10.1038/NRNEUROL.2014.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reis AS, Paltian JJ, Domingues WB et al (2020) Advances in the understanding of oxaliplatin-induced peripheral neuropathy in mice: 7-chloro-4-(phenylselanyl) quinoline as a promising therapeutic agent. Mol Neurobiol 57:5219–5234. https://doi.org/10.1007/s12035-020-02048-4

    Article  CAS  PubMed  Google Scholar 

  9. Cavaletti G, Marmiroli P (2020) Management of oxaliplatin-induced peripheral sensory neuropathy. Cancers (Basel) 12(6):1370. https://doi.org/10.3390/cancers12061370

  10. Fane M, Weeraratna AT (2020) How the ageing microenvironment influences tumour progression. Nat Rev Cancer 20:89–106

    Article  CAS  PubMed  Google Scholar 

  11. Ferlay J, Colombet M, Soerjomataram I et al (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144:1941–1953

    Article  CAS  PubMed  Google Scholar 

  12. Bhadra M, Howell P, Dutta S et al (2020) Alternative splicing in aging and longevity. Hum Genet 139:357–369. https://doi.org/10.1007/s00439-019-02094-6

    Article  PubMed  Google Scholar 

  13. Nguyen LD, Ehrlich BE Cellular mechanisms and treatments for chemobrain: insight from aging and neurodegenerative diseases. https://doi.org/10.15252/emmm.202012075

  14. Liguori I, Russo G, Curcio F et al (2018) Oxidative stress, aging, and diseases. Clin Interv Aging 13:757–772. https://doi.org/10.2147/CIA.S158513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kinoshita PF, Leite JA, Orellana AMM et al (2016) The influence of Na+, K+-ATPase on glutamate signaling in neurodegenerative diseases and senescence. Front Physiol 7:1–19. https://doi.org/10.3389/fphys.2016.00195

    Article  Google Scholar 

  16. Shrivastava AN, Triller A, Melki R (2020) Cell biology and dynamics of Neuronal Na+/K+-ATPase in health and diseases. Neuropharmacology 169. https://doi.org/10.1016/j.neuropharm.2018.12.008

  17. Reis AS, Paltian JJ, Domingues WB et al (2020) Pharmacological modulation of Na+, K+-ATPase as a potential target for OXA-induced neurotoxicity: Correlation between anxiety and cognitive decline and beneficial effects of 7-chloro-4-(phenylselanyl) quinoline. Brain Res Bull 162:282–290. https://doi.org/10.1016/j.brainresbull.2020.06.021

    Article  CAS  PubMed  Google Scholar 

  18. Rodrigues KC, Bortolatto CF, da Motta KP et al (2021) The neurotherapeutic role of a selenium-functionalized quinoline in hypothalamic obese rats. Psychopharmacology. https://doi.org/10.1007/s00213-021-05821-y

    Article  PubMed  Google Scholar 

  19. Vogt AG, Voss GT, de Oliveira RL et al (2018) Organoselenium group is critical for antioxidant activity of 7-chloro-4-phenylselenyl-quinoline. Chem Biol Interact 282:7–12. https://doi.org/10.1016/j.cbi.2018.01.003

    Article  CAS  PubMed  Google Scholar 

  20. Voss GT, Oliveira RL, de Souza JF et al (2018) Therapeutic and technological potential of 7-chloro-4-phenylselanyl quinoline for the treatment of atopic dermatitis-like skin lesions in mice. Mater Sci Eng C 84:90–98. https://doi.org/10.1016/j.msec.2017.11.026

    Article  CAS  Google Scholar 

  21. Barth A, Vogt AG, dos Reis AS et al (2019) 7-Chloro-4-(phenylselanyl) quinoline with memory enhancer action in aging rats: modulation of neuroplasticity, acetylcholinesterase activity, and cholesterol levels. Mol Neurobiol. https://doi.org/10.1007/s12035-019-1530-5

    Article  PubMed  Google Scholar 

  22. da Motta KP, Lemos BB, Paltian JJ et al (2021) 7-Chloro-4-(phenylselanyl) quinoline reduces renal oxidative stress induced by oxaliplatin in mice. Can J Physiol Pharmacol. https://doi.org/10.1139/CJPP-2021-0090

  23. Lemos BB, Motta KP da, Paltian JJ, et al (2020) Role of 7-chloro-4-(phenylselanyl) quinoline in the treatment of oxaliplatin-induced hepatic toxicity in mice. Can J Physiol Pharmacol 1–11. https://doi.org/10.1139/cjpp-2020-0134

  24. Luchese C, Vogt AG, Pinz MP et al (2020) Amnesia-ameliorative effect of a quinoline derivative through regulation of oxidative/cholinergic systems and Na+/K+-ATPase activity in mice. Metab Brain Dis 35:589–600. https://doi.org/10.1007/s11011-020-00535-0

    Article  CAS  PubMed  Google Scholar 

  25. Paltian JJ, dos Reis AS, de Oliveira RL, et al (2020) The anxiolytic effect of a promising quinoline containing selenium with the contribution of the serotonergic and GABAergic pathways: modulation of parameters associated with anxiety in mice. Behav Brain Res 393. https://doi.org/10.1016/j.bbr.2020.112797

  26. Pinz M, Reis AS, Duarte V et al (2016) 4-Phenylselenyl-7-chloroquinoline, a new quinoline derivative containing selenium, has potential antinociceptive and anti-inflammatory actions. Eur J Pharmacol 780:122–128. https://doi.org/10.1016/j.ejphar.2016.03.039

    Article  CAS  PubMed  Google Scholar 

  27. Savegnago L, Vieira AI, Seus N et al (2013) Synthesis and antioxidant properties of novel quinoline-chalcogenium compounds. Tetrahedron Lett 54:40–44. https://doi.org/10.1016/j.tetlet.2012.10.067

    Article  CAS  Google Scholar 

  28. Duarte LFB, Barbosa ES, Oliveira RL et al (2017) A simple method for the synthesis of 4-arylselanyl-7-chloroquinolines used as in vitro acetylcholinesterase inhibitors and in vivo memory improvement. Tetrahedron Lett 58:3319–3322. https://doi.org/10.1016/j.tetlet.2017.07.039

    Article  CAS  Google Scholar 

  29. Salgueiro WG, Goldani BS, Peres TV et al (2017) Insights into the differential toxicological and antioxidant effects of 4-phenylchalcogenil-7-chloroquinolines in Caenorhabditis elegans. Free Radic Biol Med 110:133–141. https://doi.org/10.1016/j.freeradbiomed.2017.05.020

    Article  CAS  PubMed  Google Scholar 

  30. de Freitas CS, Araujo SM, Bortolotto VC et al (2019) 7-chloro-4-(phenylselanyl) quinoline prevents dopamine depletion in a Drosophila melanogaster model of Parkinson’s-like disease. J Trace Elem Med Biol 54:232–243. https://doi.org/10.1016/j.jtemb.2018.10.015

    Article  CAS  Google Scholar 

  31. de Aquino Silva D, Silva MRP, Guerra GP, et al (2021) 7-chloro-4-(phenylselanyl) quinoline co-treatment prevent oxidative stress in diabetic-like phenotype induced by hyperglycidic diet in Drosophila melanogaster. Comp Biochem Physiol Part - C Toxicol Pharmacol 239. https://doi.org/10.1016/j.cbpc.2020.108892

  32. Guide for the Care and Use of Laboratory Animals (2011) National research council (US) committee for the update of the guide for the care and use of laboratory animals. 8th edition. National Academies Press (US), Washington (DC)

  33. Brusco I, Justino AB, Silva CR et al (2019) Kinins and their B1 and B2 receptors are involved in fibromyalgia-like pain symptoms in mice. Biochem Pharmacol 168:119–132. https://doi.org/10.1016/j.bcp.2019.06.023

    Article  CAS  PubMed  Google Scholar 

  34. Bobinski F, Teixeira JM, Sluka KA et al (2019) HHS public access. 159:437–450. https://doi.org/10.1097/j.pain.0000000000001109.IL-4

  35. Alamri FF, Al SA, Biggers A et al (2018) Applicability of the grip strength and automated von Frey tactile sensitivity tests in the mouse photothrombotic model of stroke. Behav Brain Res 336:250–255. https://doi.org/10.1016/j.bbr.2017.09.008

    Article  PubMed  Google Scholar 

  36. Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504. https://doi.org/10.1037/0033-2909.83.3.482

    Article  CAS  PubMed  Google Scholar 

  37. Loetchutinat C, Kothan S, Dechsupa S et al (2005) Spectrofluorometric determination of intracellular levels of reactive oxygen species in drug-sensitive and drug-resistant cancer cells using the 2′,7′-dichlorofluorescein diacetate assay. Radiat Phys Chem 72:323–331. https://doi.org/10.1016/j.radphyschem.2004.06.011

    Article  CAS  Google Scholar 

  38. Miranda KM, Espey MG, Yamada K et al (2001) Unique oxidative mechanisms for the reactive nitrogen oxide species, nitroxyl anion. J Biol Chem 276:1720–1727. https://doi.org/10.1074/JBC.M006174200

    Article  CAS  PubMed  Google Scholar 

  39. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–33. https://doi.org/10.1016/s0076-6879(81)77046-0

    Article  CAS  PubMed  Google Scholar 

  40. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    Article  CAS  PubMed  Google Scholar 

  41. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    Article  CAS  Google Scholar 

  42. Fc T, Jm G, Msp S et al (2020) Inosine protects against impairment of memory induced by experimental model of Alzheimer disease: a nucleoside with multitarget brain actions. Psychopharmacology 237:811–823. https://doi.org/10.1007/S00213-019-05419-5

    Article  Google Scholar 

  43. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/ABIO.1976.9999

    Article  CAS  PubMed  Google Scholar 

  44. Curtis MJ, Alexander S, Cirino G et al (2018) Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. Br J Pharmacol 175:987–993. https://doi.org/10.1111/bph.14153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Starobova H, Vetter I (2017) Pathophysiology of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci 10:1–21. https://doi.org/10.3389/fnmol.2017.00174

    Article  CAS  Google Scholar 

  46. Colloca L, Ludman T, Bouhassira D et al (2017) Neuropathic pain [Review]. Nat Rev Dis Prim 3:17002. https://doi.org/10.1038/nrdp.2017.2

    Article  PubMed  Google Scholar 

  47. Cruz-Almeida Y, Fillingim RB, Riley JL et al (2019) Chronic pain is associated with a brain aging biomarker in community-dwelling older adults. Pain 160:1119–1130. https://doi.org/10.1097/j.pain.0000000000001491

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cruz-Almeida Y, Cole J (2020) Pain, aging, and the brain: new pieces to a complex puzzle. Pain 161:461–463

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang H, Davies KJA, Forman HJ (2015) Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med 88:314–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Korovila I, Hugo M, Castro JP, Weber D, Höhn A, Grune T, Jung T (2017) Proteostasis, oxidative stress and aging. Redox Biol 13:550–567. https://doi.org/10.1016/j.redox.2017.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nozadze E, Arutinova N, Tsakadze L et al (2015) Molecular mechanism of Mg-ATPase activity. J Membr Biol 248:295–300. https://doi.org/10.1007/s00232-014-9769-2

    Article  CAS  PubMed  Google Scholar 

  52. Wang XJ, Li Y, Luo L et al (2014) Oxaliplatin activates the Keap1/Nrf2 antioxidant system conferring protection against the cytotoxicity of anticancer drugs. Free Radic Biol Med 70:68–77. https://doi.org/10.1016/j.freeradbiomed.2014.02.010

    Article  CAS  PubMed  Google Scholar 

  53. Ge Y, Jiao Y, Li P, Xiang Z, Li Z, Wang L, Li W, Gao H, Shao J, Wen D, Weifeng Y (2018) Coregulation of endoplasmic reticulum stress and oxidative stress in neuropathic pain and disinhibition of the spinal nociceptive circuitry. Pain 159(5):894–906. https://doi.org/10.1097/j.pain.0000000000001161

    Article  CAS  PubMed  Google Scholar 

  54. Khasabova IA, Khasabov SG, Olson JK et al (2019) Pioglitazone, a PPARγ agonist, reduces cisplatin-evoked neuropathic pain by protecting against oxidative stress. Pain 160:688–701. https://doi.org/10.1097/j.pain.0000000000001448

    Article  CAS  PubMed  Google Scholar 

  55. Huličiak M, Vacek J, Šebela M et al (2012) Covalent binding of cisplatin impairs the function of Na +/K +-ATPase by binding to its cytoplasmic part. Biochem Pharmacol 83:1507–1513. https://doi.org/10.1016/j.bcp.2012.02.015

    Article  CAS  PubMed  Google Scholar 

  56. Kubala M, Geleticova J, Huliciak M et al (2014) Na+/K+-ATPase inhibition by cisplatin and consequences for cisplatin nephrotoxicity. Biomed Pap 158:194–200. https://doi.org/10.5507/bp.2014.018

    Article  Google Scholar 

  57. Tummala R, Wolle D, Barwe SP et al (2009) Expression of Na, K-ATPase-β1 subunit increases uptake and sensitizes carcinoma cells to oxaliplatin. Cancer Chemother Pharmacol 64:1187–1194. https://doi.org/10.1007/s00280-009-0985-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Areti A, Yerra VG, Naidu VGM, Kumar A (2014) Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. Redox Biol 2:289–295. https://doi.org/10.1016/j.redox.2014.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kanat O, Ertas H, Caner B (2017) Platinum-induced neurotoxicity: a review of possible mechanisms. World J Clin Oncol 8:329–333. https://doi.org/10.5306/wjco.v8.i4.329

    Article  PubMed  PubMed Central  Google Scholar 

  60. Munhoz CD, Kawamoto EM, De Sá LL et al (2005) Glutamate modulates sodium-potassium-ATPase through cyclic GMP and cyclic GMP-dependent protein kinase in rat striatum. Cell Biochem Funct 23:115–123. https://doi.org/10.1002/cbf.1217

    Article  CAS  PubMed  Google Scholar 

  61. Reis AS, Pinz M, Duarte LFB et al (2017) 4-phenylselenyl-7-chloroquinoline, a novel multitarget compound with anxiolytic activity: contribution of the glutamatergic system. J Psychiatr Res 84:191–199. https://doi.org/10.1016/j.jpsychires.2016.10.007

    Article  PubMed  Google Scholar 

  62. Silva VDG, Reis AS, Pinz MP et al (2017) Further analysis of acute antinociceptive and anti-inflammatory actions of 4-phenylselenyl-7-chloroquinoline in mice. Fundam Clin Pharmacol 31:513–525. https://doi.org/10.1111/fcp.12295

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study received financial support and scholarships from the following Brazilian agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (429859/2018–0, 312747/2020–9), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) (PqG 17/2551–0001013-2). This study was also financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível superior – Brasil (CAPES)—Finance Code 001. C.L.; E.A.W.; D.A. are recipients of CNPq fellowship. This study also received financial assistance from L’ORÉAL-UNESCO-ABC for Women in Science.

Author information

Authors and Affiliations

Authors

Contributions

A.S.R., C.C.M., K.P.M, J.J.P., C.L., and E.A.W. conceived and designed the study. G.P.C. and D.A. performed the 4-PSQ synthesis. A.S.R. and E.A.W. wrote the manuscript. E.A.W. supervised the study. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Cristiane Luchese or Ethel Antunes Wilhelm.

Ethics declarations

Ethics Approval

Animal care and all experimental procedures were conducted in compliance with the National Institute of Health Guide for the Care and Use of Laboratory Animals (NIH publications no. 80–23, revised in 1996). Also, this study was performed in line with the principles of the Declaration of Helsinki and in accordance with the Committee on Care and Use of Experimental Animal Resources, Federal University of Pelotas, Brazil (CEEA 4506–2017). All efforts were made to minimize the number of animals used and their suffering.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reis, A.S., Martins, C.C., da Motta, K.P. et al. Interface of Aging and Acute Peripheral Neuropathy Induced by Oxaliplatin in Mice: Target-Directed Approaches for Na+, K+—ATPase, Oxidative Stress, and 7-Chloro-4-(phenylselanyl) quinoline Therapy. Mol Neurobiol 59, 1766–1780 (2022). https://doi.org/10.1007/s12035-021-02659-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02659-5

Keywords

Navigation