Skip to main content

Advertisement

Log in

Interleukin-13 Affects the Recovery Processes in a Mouse Model of Hemorrhagic Stroke with Bilateral Tibial Fracture

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

As one form of stroke, intracerebral hemorrhage (ICH) is a fatal cerebrovascular disease, which has high morbidity and mortality and lacks effective medical treatment. Increased infiltration of inflammatory cytokines coupled with pyroptotic cell death is involved in the pathophysiological process of ICH. However, little is known about whether concomitant fracture patients have the same progression of inflammation and pyroptosis. Hence, we respectively established the mouse ICH model and ICH with bilateral tibial fracture model (MI) to explore the potential cross-talk between the above two injuries. We found that MI obviously reversed the expressions of pyroptosis-associated proteins, which were remarkably up-regulated at the acute phase after ICH. Similar results were observed in neuronal expressions via double immunostaining. Furthermore, brain edema was also significantly alleviated in mice who suffered MI, when compared with ICH alone. To better clarify the potential mechanisms that mediated this cross-talk, recombinant mouse interleukin-13 (IL-13) was used to investigate its effect on pyroptosis in the mouse MI model, in which a lower level of IL-13 was observed. Remarkably, IL-13 administration re-awakened cell death, which was mirrored by the re-upregulation of pyroptosis-associated proteins and PI-positive cell counts. The results of hemorrhage volume and behavioral tests further confirmed its critical role in regulating neurological functions. Besides, the IL-13-treated MI group showed poor outcomes of fracture healing. To sum up, our research indicates that controlling the IL-13 content in the acute phase would be a promising target in influencing the outcomes of brain injury and fracture, and meanwhile, provides new evidence in repairing compound injuries in clinics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Wartenberg KE, Mayer SA (2007) Reducing the risk of ICH enlargement. J Neurol Sci 261(1–2):99–107. https://doi.org/10.1016/j.jns.2007.04.044

    Article  CAS  PubMed  Google Scholar 

  2. Provencio JJ, Da Silva IR, Manno EM (2013) Intracerebral hemorrhage: new challenges and steps forward. Neurosurg Clin N Am 24(3):349–359. https://doi.org/10.1016/j.nec.2013.03.002

    Article  PubMed  Google Scholar 

  3. van Asch CJJ, Luitse MJA, Rinkel GJE, van der Tweel I, Algra A, Klijn CJM (2010) Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol 9(2):167–176. https://doi.org/10.1016/s1474-4422(09)70340-0

    Article  PubMed  Google Scholar 

  4. Qureshi AI, Mendelow AD, Hanley DF (2009) Intracerebral haemorrhage. Lancet 373(9675):1632–1644. https://doi.org/10.1016/s0140-6736(09)60371-8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aronowski J, Zhao X (2011) Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 42(6):1781–1786. https://doi.org/10.1161/STROKEAHA.110.596718

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yuan ZC, Mo H, Guan J, He JL, Wu ZJ (2016) Risk of hip fracture following stroke, a meta-analysis of 13 cohort studies. Osteoporos Int 27(9):2673–2679. https://doi.org/10.1007/s00198-016-3603-x

    Article  CAS  PubMed  Google Scholar 

  7. Benzinger P, Rapp K, Konig HH, Bleibler F, Globas C, Beyersmann J, Jaensch A, Becker C et al (2015) Risk of osteoporotic fractures following stroke in older persons. Osteoporos Int 26(4):1341–1349. https://doi.org/10.1007/s00198-014-3005-x

    Article  CAS  PubMed  Google Scholar 

  8. Kanis J, Oden A, Johnell O (2001) Acute and long-term increase in fracture risk after hospitalization for stroke. Stroke 32(3):702–706. https://doi.org/10.1161/01.str.32.3.702

    Article  CAS  PubMed  Google Scholar 

  9. Kapral MK, Fang J, Alibhai SM, Cram P, Cheung AM, Casaubon LK, Prager M, Stamplecoski M et al (2017) Risk of fractures after stroke: results from the Ontario Stroke Registry. Neurology 88(1):57–64. https://doi.org/10.1212/wnl.0000000000003457

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kristensen J, Birn I, Mechlenburg I (2020) Fractures after stroke-A Danish register-based study of 106 001 patients. Acta Neurol Scand 141(1):47–55. https://doi.org/10.1111/ane.13172

    Article  PubMed  Google Scholar 

  11. Degos V, Maze M, Vacas S, Hirsch J, Guo Y, Shen F, Jun K, van Rooijen N et al (2013) Bone fracture exacerbates murine ischemic cerebral injury. Anesthesiology 118(6):1362–1372. https://doi.org/10.1097/ALN.0b013e31828c23f8

    Article  CAS  PubMed  Google Scholar 

  12. Li Z, Wei M, Lyu H, Huo K, Wang L, Zhang M, Su H (2020) Fracture shortly before stroke in mice leads to hippocampus inflammation and long-lasting memory dysfunction. J Cereb Blood Flow Metab 40(2):446–455. https://doi.org/10.1177/0271678X19825785

    Article  CAS  PubMed  Google Scholar 

  13. Chen G, Gao C, Yan Y, Wang T, Luo C, Zhang M, Chen X, Tao L (2020) Inhibiting ER Stress Weakens Neuronal Pyroptosis in a Mouse Acute Hemorrhagic Stroke Model. Mol Neurobiol 57(12):5324–5335. https://doi.org/10.1007/s12035-020-02097-9

    Article  CAS  PubMed  Google Scholar 

  14. Yuan B, Zhou XM, You ZQ, Xu WD, Fan JM, Chen SJ, Han YL, Wu Q et al (2020) Inhibition of AIM2 inflammasome activation alleviates GSDMD-induced pyroptosis in early brain injury after subarachnoid haemorrhage. Cell Death Dis 11(1):76. https://doi.org/10.1038/s41419-020-2248-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao C, Yan Y, Chen G, Wang T, Luo C, Zhang M, Chen X, Tao L (2020) Autophagy activation represses pyroptosis through the IL-13 and JAK1/STAT1 pathways in a mouse model of moderate traumatic brain injury. ACS Chem Neurosci 11(24):4231–4239. https://doi.org/10.1021/acschemneuro.0c00517

    Article  CAS  PubMed  Google Scholar 

  16. Zhu X, Zhang K, Lu K, Shi T, Shen S, Chen X, Dong J, Gong W et al (2019) Inhibition of pyroptosis attenuates Staphylococcus aureus-induced bone injury in traumatic osteomyelitis. Ann Transl Med 7(8):170. https://doi.org/10.21037/atm.2019.03.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu C, Zhang C, Kuang Z, Zheng Q (2020) The role of NLRP3 inflammasome activities in bone diseases and vascular calcification. Inflammation. https://doi.org/10.1007/s10753-020-01357-z

    Article  PubMed  Google Scholar 

  18. Kovacs SB, Miao EA (2017) Gasdermins: effectors of pyroptosis. Trends Cell Biol 27(9):673–684. https://doi.org/10.1016/j.tcb.2017.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42(4):245–254. https://doi.org/10.1016/j.tibs.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  20. Zhu X, Tao L, Tejima-Mandeville E, Qiu J, Park J, Garber K, Ericsson M, Lo EH et al (2012) Plasmalemma permeability and necrotic cell death phenotypes after intracerebral hemorrhage in mice. Stroke 43(2):524–531. https://doi.org/10.1161/STROKEAHA.111.635672

    Article  PubMed  Google Scholar 

  21. Huang R, Zong X, Nadesan P, Huebner JL, Kraus VB, White JP, White PJ, Baht GS (2019) Lowering circulating apolipoprotein E levels improves aged bone fracture healing. JCI Insight 4 (18). https://doi.org/10.1172/jci.insight.129144

  22. Wang T, Zhang L, Zhang M, Bao H, Liu W, Wang Y, Wang L, Dai D et al (2013) [Gly14]-Humanin reduces histopathology and improves functional outcome after traumatic brain injury in mice. Neuroscience 231:70–81. https://doi.org/10.1016/j.neuroscience.2012.11.019

    Article  CAS  PubMed  Google Scholar 

  23. Wang ZF, Gao C, Chen W, Gao Y, Wang HC, Meng Y, Luo CL, Zhang MY et al (2019) Salubrinal offers neuroprotection through suppressing endoplasmic reticulum stress, autophagy and apoptosis in a mouse traumatic brain injury model. Neurobiol Learn Mem 161:12–25. https://doi.org/10.1016/j.nlm.2019.03.002

    Article  PubMed  Google Scholar 

  24. Wu Y, He F, Zhang C, Zhang Q, Su X, Zhu X, Liu A, Shi W et al (2021) Melatonin alleviates titanium nanoparticles induced osteolysis via activation of butyrate/GPR109A signaling pathway. 19 (1):170. https://doi.org/10.1186/s12951-021-00915-3

  25. Chen S, Zuo Y, Huang L, Sherchan P, Zhang J, Yu Z, Peng J, Zhang J et al (2019) The MC4 receptor agonist RO27-3225 inhibits NLRP1-dependent neuronal pyroptosis via the ASK1/JNK/p38 MAPK pathway in a mouse model of intracerebral haemorrhage. Br J Pharmacol 176(9):1341–1356. https://doi.org/10.1111/bph.14639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sennerby U, Melhus H, Gedeborg R, Byberg L, Garmo H, Ahlbom A, Pedersen NL, Michaëlsson K (2009) Cardiovascular diseases and risk of hip fracture. JAMA 302(15):1666–1673. https://doi.org/10.1001/jama.2009.1463

    Article  CAS  PubMed  Google Scholar 

  27. Barrington J, Lemarchand E, Allan SM (2017) A brain in flame; do inflammasomes and pyroptosis influence stroke pathology? Brain Pathol 27(2):205–212. https://doi.org/10.1111/bpa.12476

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10(12):826–837. https://doi.org/10.1038/nri2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fu Q, Wu J, Zhou XY, Ji MH, Mao QH, Li Q, Zong MM, Zhou ZQ et al (2019) NLRP3/Caspase-1 pathway-induced pyroptosis mediated cognitive deficits in a mouse model of sepsis-associated encephalopathy. Inflammation 42(1):306–318. https://doi.org/10.1007/s10753-018-0894-4

    Article  CAS  PubMed  Google Scholar 

  30. Dempsey C, Rubio Araiz A, Bryson KJ, Finucane O, Larkin C, Mills EL, Robertson AAB, Cooper MA et al (2017) Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-beta and cognitive function in APP/PS1 mice. Brain Behav Immun 61:306–316. https://doi.org/10.1016/j.bbi.2016.12.014

    Article  CAS  PubMed  Google Scholar 

  31. Ma Q, Chen S, Hu Q, Feng H, Zhang JH, Tang J (2014) NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage. Ann Neurol 75(2):209–219. https://doi.org/10.1002/ana.24070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lenart N, Brough D, Denes A (2016) Inflammasomes link vascular disease with neuroinflammation and brain disorders. J Cereb Blood Flow Metab 36(10):1668–1685. https://doi.org/10.1177/0271678X16662043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Genet GF, Bentzer P, Ostrowski SR, Johansson PI (2017) Resuscitation with pooled and pathogen-reduced plasma attenuates the increase in brain water content following traumatic brain injury and hemorrhagic shock in rats. J Neurotrauma 34(5):1054–1062. https://doi.org/10.1089/neu.2016.4574

    Article  PubMed  Google Scholar 

  34. Yang X, Tang X, Sun P, Shi Y, Liu K, Hassan SH, Stetler RA, Chen J et al (2017) MicroRNA-15a/16-1 antagomir ameliorates ischemic brain injury in experimental stroke. Stroke 48(7):1941–1947. https://doi.org/10.1161/STROKEAHA.117.017284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang L, Kang S, Zou D, Zhan L, Li Z, Zhu W, Su H (2016) Bone fracture pre-ischemic stroke exacerbates ischemic cerebral injury in mice. PLoS One 11(4):e0153835. https://doi.org/10.1371/journal.pone.0153835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jeong JY, Chung YC, Jin BK (2019) Interleukin-4 and interleukin-13 exacerbate neurotoxicity of prothrombin kringle-2 in cortex in vivo via oxidative stress. Int J Mol Sci 20 (8). https://doi.org/10.3390/ijms20081927

  37. Cardilo-Reis L, Gruber S, Schreier SM, Drechsler M, Papac-Milicevic N, Weber C, Wagner O, Stangl H et al (2012) Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol Med 4(10):1072–1086. https://doi.org/10.1002/emmm.201201374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kolosowska N, Keuters MH, Wojciechowski S, Keksa-Goldsteine V, Laine M, Malm T, Goldsteins G, Koistinaho J et al (2019) Peripheral administration of IL-13 induces anti-inflammatory microglial/macrophage responses and provides neuroprotection in ischemic stroke. Neurotherapeutics 16(4):1304–1319. https://doi.org/10.1007/s13311-019-00761-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shin WH, Lee DY, Park KW, Kim SU, Yang MS, Joe EH, Jin BK (2004) Microglia expressing interleukin-13 undergo cell death and contribute to neuronal survival in vivo. Glia 46(2):142–152. https://doi.org/10.1002/glia.10357

    Article  PubMed  Google Scholar 

  40. Nam JH, Park KW, Park ES, Lee YB, Lee HG, Baik HH, Kim YS, Maeng S et al (2012) Interleukin-13/-4-induced oxidative stress contributes to death of hippocampal neurons in abeta1-42-treated hippocampus in vivo. Antioxid Redox Signal 16(12):1369–1383. https://doi.org/10.1089/ars.2011.4175

    Article  CAS  PubMed  Google Scholar 

  41. Park KW, Baik HH, Jin BK (2009) IL-13-induced oxidative stress via microglial NADPH oxidase contributes to death of hippocampal neurons in vivo. J Immunol 183(7):4666–4674. https://doi.org/10.4049/jimmunol.0803392

    Article  CAS  PubMed  Google Scholar 

  42. Mollahosseini M, Ahmadirad H, Goujani R, Khorramdelazad H (2021) The association between traumatic brain injury and accelerated fracture healing: a study on the effects of growth factors and cytokines. J Mol Neurosci 71(1):162–168. https://doi.org/10.1007/s12031-020-01640-6

    Article  CAS  PubMed  Google Scholar 

  43. Newman RJ, Stone MH, Mukherjee SK (1987) Accelerated fracture union in association with severe head injury. Injury 18(4):241–246. https://doi.org/10.1016/0020-1383(87)90006-4

    Article  CAS  PubMed  Google Scholar 

  44. Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9(4):259–270. https://doi.org/10.1038/nri2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Scopes J, Massey HM, Ebrahim H, Horton MA, Flanagan AM (2001) Interleukin-4 and interleukin-13: bidirectional effects on human osteoclast formation. Bone 29(3):203–208. https://doi.org/10.1016/s8756-3282(01)00500-2

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Natural Science Foundation of China (Grant Number: 81971800, 81871536, 82072110, and 82101452), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y., C.G., and G.C. contributed equally to this paper. L.T., X.C., and J.L. comprehended the study, provided critical suggestions, contributed to manuscript preparation, oversaw the research program, and wrote the main manuscript. Y.Y., C.G., and G.C. performed the Western blot and immunostaining experiments and analyzed the data. Y.Y., C.G., G.C., X.C., H.X., Z.C., C.L., M.Z., and T.W. performed the brain edema test, PI staining, bleeding volume test, ELISA test, behavioral experiment, and analyzed the data. Y.W. performed tibial fracture surgery, micro-CT scan, and analyzed the data. All the authors listed in the manuscript have agreed upon and reviewed the manuscript and provided feedback.

Corresponding authors

Correspondence to Jun Lin, Xiping Chen or Luyang Tao.

Ethics declarations

Ethics Approval

All animal procedures were approved by the Institutional Animal Use and Care Committee at Soochow University and carried out in accordance with the guidelines of Animal Use and Care of the National Institutes of Health (NIH) and the Animal Research: Reporting in Vivo Experiments (ARRIVE).

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

All the authors consent for the publication of this manuscript.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5761 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Gao, C., Chen, G. et al. Interleukin-13 Affects the Recovery Processes in a Mouse Model of Hemorrhagic Stroke with Bilateral Tibial Fracture. Mol Neurobiol 59, 3040–3051 (2022). https://doi.org/10.1007/s12035-021-02650-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02650-0

Keywords

Navigation