Skip to main content

Advertisement

Log in

Dendritic Cell–Targeted Therapies to Treat Neurological Disorders

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Dendritic cells (DCs) are the immune system’s highly specialized antigen-presenting cells. When DCs are sluggish and mature, self-antigen presentation results in tolerance; however, when pathogen-associated molecular patterns stimulate mature DCs, antigen presentation results in the development of antigen-specific immunity. DCs have been identified in various vital organs of mammals (e.g., the skin, heart, lungs, intestines, and spleen), but the brain has long been thought to be devoid of DCs in the absence of neuroinflammation. However, neuroinflammation is becoming more recognized as a factor in a variety of brain illnesses. DCs are present in the brain parenchyma in trace amounts under healthy circumstances, but their numbers rise during neuroinflammation. New therapeutics are being developed that can reduce dendritic cell immunogenicity by inhibiting pro-inflammatory cytokine production and T cell co-stimulatory pathways. Additionally, innovative ways of regulating dendritic cell growth and differentiation and harnessing their tolerogenic capability are being explored. Herein, we described the function of dendritic cells in neurological disorders and discussed the potential for future therapeutic techniques that target dendritic cells and dendritic cell–related targets in the treatment of neurological disorders.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

All data that belongs to this work is given herein.

Not applicable.

References

  1. De Laere M, Berneman ZN, Cools N (2018) To the brain and back: migratory paths of dendritic cells in multiple sclerosis. J Neuropathol Exp Neurol 77(3):178–192

    Article  PubMed  PubMed Central  Google Scholar 

  2. Broekaart DW, Anink JJ, Baayen JC, Idema S, de Vries HE, Aronica E, … van Vliet EA (2018) Activation of the innate immune system is evident throughout epileptogenesis and is associated with blood-brain barrier dysfunction and seizure progression. Epilepsia 59(10):1931–1944

  3. Mohammad MG, Tsai VW, Ruitenberg MJ, Hassanpour M, Li H, Hart PH, … Brown DA (2014) Immune cell trafficking from the brain maintains CNS immune tolerance. J Clin Investig 124(3):1228–1241

  4. Huhn K, Engelhorn T, Linker RA, Nagel AM (2019) Potential of sodium MRI as a biomarker for neurodegeneration and neuroinflammation in multiple sclerosis. Front Neurol 10:84

    Article  PubMed  PubMed Central  Google Scholar 

  5. Clarkson BD, Walker A, Harris M, Rayasam A, Sandor M, Fabry Z (2014) Mapping the accumulation of co-infiltrating CNS dendritic cells and encephalitogenic T cells during EAE. J Neuroimmunol 277(1–2):39–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Masuda H, Mori M, Uchida T, Uzawa A, Ohtani R, Kuwabara S (2017) Soluble CD40 ligand contributes to blood–brain barrier breakdown and central nervous system inflammation in multiple sclerosis and neuromyelitis optica spectrum disorder. J Neuroimmunol 305:102–107

    Article  CAS  PubMed  Google Scholar 

  7. Cook SJ, Lee Q, Wong AC, Spann BC, Vincent JN, Wong JJ, … Roediger B (2018) Differential chemokine receptor expression and usage by pre-cDC 1 and pre-cDC 2. Immunol Cell Biol 96(10):1131–1139

  8. Collin M, Bigley V (2018) Human dendritic cell subsets: an update. Immunology 154(1):3–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kabashima K, Shiraishi N, Sugita K, Mori T, Onoue A, Kobayashi M, … Tokura Y (2007) CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am J Pathol 171(4):1249–1257

  10. Chen K, Bao Z, Tang P, Gong W, Yoshimura T, Wang JM (2018) Chemokines in homeostasis and diseases. Cell Mol Immunol 15(4):324–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bernardo D, Durant L, Mann ER, Bassity E, Montalvillo E, Man R, … Knight SC (2016) Chemokine (CC motif) receptor 2 mediates dendritic cell recruitment to the human colon but is not responsible for differences observed in dendritic cell subsets, phenotype, and function between the proximal and distal colon. Cell Mol Gastroenterol Hepatol 2(1):22–39

  12. Curato C, Bernshtein B, Zupancič E, Dufner A, Jaitin D, Giladi A, … Jung S (2019) DC respond to cognate T cell interaction in the antigen-challenged lymph node. Front Immunol 10:863

  13. Penna G, Sozzani S, Adorini L (2001) Cutting edge: selective usage of chemokine receptors by plasmacytoid dendritic cells. J Immunol 167(4):1862–1866

    Article  CAS  PubMed  Google Scholar 

  14. Collin M, McGovern N, Haniffa M (2013) Human dendritic cell subsets. Immunology 140(1):22–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV (2015) Myeloid dendritic cells: development, functions, and role in atherosclerotic inflammation. Immunobiology 220(6):833–844

    Article  CAS  PubMed  Google Scholar 

  16. Zabel BA, Silverio AM, Butcher EC (2005) Chemokine-like receptor 1 expression and chemerin-directed chemotaxis distinguish plasmacytoid from myeloid dendritic cells in human blood. J Immunol 174(1):244–251

    Article  CAS  PubMed  Google Scholar 

  17. Zabel BA, Allen SJ, Kulig P, Allen JA, Cichy J, Handel TM, Butcher EC (2005) Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J Biol Chem 280(41):34661–34666

    Article  CAS  PubMed  Google Scholar 

  18. de la Rosa G, Longo N, Rodríguez-Fernández JL, Puig-Kroger A, Pineda A, Corbí ÁL, Sánchez-Mateos P (2003) Migration of human blood dendritic cells across endothelial cell monolayers: adhesion molecules and chemokines involved in subset-specific transmigration. J Leukoc Biol 73(5):639–649

    Article  PubMed  Google Scholar 

  19. Zozulya AL, Ortler S, Lee J, Weidenfeller C, Sandor M, Wiendl H, Fabry Z (2009) Intracerebral dendritic cells critically modulate encephalitogenic versus regulatory immune responses in the CNS. J Neurosci 29(1):140–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sagar D, Lamontagne A, Foss CA, Khan ZK, Pomper MG, Jain P (2012) Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood–brain barrier through paracellular transmigration and ERK activation. J Neuroinflamm 9(1):1–15

    Article  Google Scholar 

  21. Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, … Becher B (2005) Dendritic cells permit immune invasion of the CNS during experimental autoimmune encephalomyelitis. Nat Med 11:328–334

  22. Wagner CA, Roqué PJ, Mileur TR, Liggitt D, Goverman JM (2020) Myelin-specific CD8+ T cells exacerbate brain inflammation in CNS autoimmunity. J Clin Investig 130(1):203–213

    Article  CAS  PubMed  Google Scholar 

  23. González-Guevara E, Cárdenas G, Pérez-Severiano F, Martínez-Lazcano JC (2020) Dysregulated brain cholesterol metabolism is linked to neuroinflammation in Huntington’s disease. Mov Disord 35(7):1113–1127

    Article  PubMed  Google Scholar 

  24. D’Agostino PM, Gottfried-Blackmore A, Anandasabapathy N, Bulloch K (2012) Brain dendritic cells: biology and pathology. Acta Neuropathol 124(5):599–614

    Article  PubMed  PubMed Central  Google Scholar 

  25. Iijima N, Mattei LM, Iwasaki A (2011) Recruited inflammatory monocytes stimulate antiviral Th1 immunity in infected tissue. Proc Natl Acad Sci 108(1):284–289

    Article  PubMed  Google Scholar 

  26. Ji Q, Castelli L, Goverman JM (2013) MHC class I–restricted myelin epitopes are cross-presented by Tip-DCs that promote determinant spreading to CD8+ T cells. Nat Immunol 14(3):254–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Segura E, Valladeau-Guilemond J, Donnadieu MH, Sastre-Garau X, Soumelis V, Amigorena S (2012) Characterization of resident and migratory dendritic cells in human lymph nodes. J Exp Med 209(4):653–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553

    Article  CAS  PubMed  Google Scholar 

  29. Prodinger C, Bunse J, Krüger M, Schiefenhövel F, Brandt C, Laman JD, … Bechmann I (2011) CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system. Acta Neuropathol 121(4):445–458

  30. Lee E, Eo JC, Lee C, Yu JW (2021) Distinct features of brain-resident macrophages: microglia and non-parenchymal brain macrophages. Mol Cells 44(5):281–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hatterer E, Touret M, Belin MF, Honnorat J, Nataf S (2008) Cerebrospinal fluid dendritic cells infiltrate the brain parenchyma and target the cervical lymph nodes under neuroinflammatory conditions. PloS one 3(10):e3321

    Article  PubMed  PubMed Central  Google Scholar 

  32. Colton CA (2013) Immune heterogeneity in neuroinflammation: dendritic cells in the brain. J Neuroimmune Pharmacol 8(1):145–162

    Article  PubMed  Google Scholar 

  33. Lambotin M, Raghuraman S, Stoll-Keller F, Baumert TF, Barth H (2010) A look behind closed doors: interaction of persistent viruses with dendritic cells. Nat Rev Microbiol 8(5):350–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kalincik T (2015) Multiple sclerosis relapses: epidemiology, outcomes and management. A systematic review. Neuroepidemiology 44(4):199–214

    Article  PubMed  Google Scholar 

  35. Williams GP, Marmion DJ, Schonhoff AM, Jurkuvenaite A, Won WJ, Standaert DG, … Harms AS (2020) T cell infiltration in both human multiple system atrophy and a novel mouse model of the disease. Acta Neuropathol 139(5):855–874

  36. Bando Y (2020) Mechanism of demyelination and remyelination in multiple sclerosis. Clin Exp Neuroimmunol 11:14–21

    Article  Google Scholar 

  37. Basak J, Majsterek I (2021) MiRNA-dependent CD4+ T cell differentiation in the pathogenesis of multiple sclerosis. Multiple Sclerosis Int 2021

  38. Fransen NL, Hsiao CC, van der Poel M, Engelenburg HJ, Verdaasdonk K, Vincenten MC, … Huitinga I (2020) Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions. Brain 143(6):1714–1730

  39. Srivastava, N., Bishnoi, A., Parsad, D., Kumaran, M. S., Vinay, K., & Gupta, S. (2021). Dendritic cells sub-sets are associated with inflammatory cytokine production in progressive vitiligo disease. Archives of Dermatological Research, 1–9.

  40. van Wageningen, T. A., Gerrits, E., Geleijnse, A., Brouwer, N., Geurts, J. J., Eggen, B. J., ... & van Dam, A. M. (2020). Distinct gene expression profiles in leukocortical demyelinated white and grey matter areas of multiple sclerosis patients. bioRxiv.

  41. Patsopoulos NA, De Jager PL (2020) Genetic and gene expression signatures in multiple sclerosis. Mult Scler J 26(5):576–581

    Article  Google Scholar 

  42. Enz, L. S., Zeis, T., Schmid, D., Geier, F., van der Meer, F., Steiner, G., ... & Schaeren-Wiemers, N. (2020). Increased HLA-DR expression and cortical demyelination in MS links with HLA-DR15. Neurology-Neuroimmunology Neuroinflammation7(2).

  43. Pavelek, Z., Angelucci, F., Souček, O., Krejsek, J., Sobíšek, L., Klímová, B., ... & Vališ, M. (2020). Innate immune system and multiple sclerosis. Granulocyte numbers are reduced in patients affected by relapsing-remitting multiple sclerosis during the remission phase. Journal of Clinical Medicine9(5), 1468.

  44. Cilingir V, Batur M (2020) Axonal degeneration independent of inflammatory activity: is it more intense in the early stages of relapsing-remitting multiple sclerosis disease? Eur Neurol 83(4):442–450

    Google Scholar 

  45. Jazayeri MH, Nedaeinia R, Aghaie T, Motallebnezhad M (2020) Human placental extract attenuates neurological symptoms in the experimental autoimmune encephalomyelitis model of multiple sclerosis-a putative approach in MS disease? Autoimmunity Highlights 11(1):1–9

    Article  Google Scholar 

  46. Rouhi F, Mohammadpour Z, Noureini SK, Abbastabar H, Harirchian MH, Bitarafan S (2020) The effects and side effects of laquinimod for the treatment of multiple sclerosis patients: a systematic review and meta-analysis of clinical trials. Eur J Clin Pharmacol 76(5):611–622

    Article  CAS  PubMed  Google Scholar 

  47. Engel, S., Jolivel, V., Kraus, S. H. P., Zayoud, M., Rosenfeld, K., Tumani, H., ... & Luessi, F. (2021). Laquinimod dampens IL-1β signaling and Th17-polarizing capacity of monocytes in patients with MS. Neurology-Neuroimmunology Neuroinflammation8(1).

  48. Giovannoni G, Knappertz V, Steinerman JR, Tansy AP, Li T, Krieger S, … Barkhof F (2020) A randomized, placebo-controlled, phase 2 trial of laquinimod in primary progressive multiple sclerosis. Neurology 95(8):e1027–e1040

  49. Karampoor S, Zahednasab H, Amini R, Esghaei M, Sholeh M, Keyvani H (2020) Maraviroc attenuates the pathogenesis of experimental autoimmune encephalitis. Int Immunopharmacol 80:106138

    Article  CAS  PubMed  Google Scholar 

  50. Yang P, Tian H, Zou YR, Chambon P, Ichinose H, Honig G, ... Kim SJ (2021) Epinephrine production in Th17 cells and experimental autoimmune encephalitis. Front Immunol 12

  51. Yang L, Han X, Yuan J, Xing F, Hu Z, Huang F, … Wu X (2020) Early astragaloside IV administration attenuates experimental autoimmune encephalomyelitis in mice by suppressing the maturation and function of dendritic cells. Life sciences 249

  52. Luu T, Cheung JF, Baccon J, Waldner H (2021) Priming of myelin-specific T cells in the absence of dendritic cells results in accelerated development of experimental autoimmune encephalomyelitis. PloS one 16(4):e0250340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Letscher H, Agbogan VA, Korniotis S, Gastineau P, Tejerina E, Gras C, … Zavala F (2021) Toll-like receptor-9 stimulated plasmacytoid dendritic cell precursors suppress autoimmune neuroinflammation in a murine model of multiple sclerosis. Sci Rep 11(1):1–17

  54. Castenmiller C, Keumatio-Doungtsop BC, van Ree R, de Jong EC, van Kooyk Y (2021) Tolerogenic immunotherapy: targeting DC surface receptors to induce antigen-specific tolerance. Front Immunol 12:422

    Article  Google Scholar 

  55. McIntyre LL, Greilach SA, Othy S, Sears-Kraxberger I, Wi B, Ayala-Angulo J, … Walsh CM (2020) Regulatory T cells promote remyelination in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis following human neural stem cell transplant. Neurobiol Dis 140:104868

  56. Stinear CM, Lang CE, Zeiler S, Byblow WD (2020) Advances and challenges in stroke rehabilitation. The Lancet Neurology 19(4):348–360

    Article  CAS  PubMed  Google Scholar 

  57. Essig F, Kollikowski AM, Müllges W, Stoll G, Haeusler KG, Schuhmann MK, Pham M (2021) Local cerebral recombinant tissue plasminogen activator concentrations during acute stroke. JAMA Neurol

  58. Boese AC, Eckert A, Hamblin MH, Lee JP (2020) Human neural stem cells improve early stage stroke outcome in delayed tissue plasminogen activator-treated aged stroke brains. Exp Neurol 329:113275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xue Y, Nie D, Wang LJ, Qiu HC, Ma L, Dong MX, … Zhao J (2021) Microglial polarization: novel therapeutic strategy against ischemic stroke. Aging Dis 12(2):466

  60. Miró-Mur F, Urra X, Ruiz-Jaén F, Pedragosa J, Chamorro Á, Planas AM (2020) Antigen-dependent T cell response to neural peptides after human ischemic stroke. Front Cell Neurosci 14:206

    Article  PubMed  PubMed Central  Google Scholar 

  61. Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, … Yona S (2014) Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 14(8):571–578

  62. Gelderblom M, Gallizioli M, Ludewig P, Thom V, Arunachalam P, Rissiek B, … Magnus T (2018) IL-23 (interleukin-23)–producing conventional dendritic cells control the detrimental IL-17 (interleukin-17) response in stroke. Stroke 49(1):155–164

  63. Yilmaz A, Fuchs T, Dietel B, Altendorf R, Cicha I, Stumpf C, … Kollmar R (2010) Transient decrease in circulating dendritic cell precursors after acute stroke: potential recruitment into the brain. Clin Sci 118(2):147–157

  64. Filippini G (2012) Epidemiology of primary central nervous system tumors. Handb Clin Neurol 104:3–22

    Article  PubMed  Google Scholar 

  65. Northcott PA, Pfister SM, Jones DT (2015) Next-generation (epi) genetic drivers of childhood brain tumours and the outlook for targeted therapies. Lancet Oncol 16(6):e293–e302

    Article  PubMed  Google Scholar 

  66. Dhodapkar MV, Dhodapkar KM, Palucka AK (2008) Interactions of tumor cells with dendritic cells: balancing immunity and tolerance. Cell Death Differ 15(1):39–50

    Article  CAS  PubMed  Google Scholar 

  67. Imperato JN, Xu D, Romagnoli PA, Qiu Z, Perez P, Khairallah C, … Sheridan BS (2020) Mucosal CD8 T cell responses are shaped by Batf3-DC after foodborne Listeria monocytogenes infection. Front Immunol 11:2306

  68. Demoulin S, Herfs M, Delvenne P, Hubert P (2013) Tumor microenvironment converts plasmacytoid dendritic cells into immunosuppressive/tolerogenic cells: insight into the molecular mechanisms. J Leukoc Biol 93(3):343–352

    Article  CAS  PubMed  Google Scholar 

  69. Guéry L, Dubrot J, Lippens C, Brighouse D, Malinge P, Irla M, … Hugues S (2014) Ag-presenting CpG-activated pDCs prime Th17 cells that induce tumor regression. Can Res 74(22):6430–6440

  70. Wang R, Zhang JL, Wei B, Tian Y, Li ZH, Wang L, Du C (2014) Upregulation of plasmacytoid dendritic cells in glioma. Tumor Biology 35(10):9661–9666

    Article  CAS  PubMed  Google Scholar 

  71. McEwen BS, Bulloch K (2019) Epigenetic impact of the social and physical environment on brain and body. Metabolism 100:153941

    Article  CAS  Google Scholar 

  72. Ludewig P, Gallizioli M, Urra X, Behr S, Brait VH, Gelderblom M, ...Planas AM (2016) Dendritic cells in brain diseases. Biochim Biophys Acta (BBA) Mol Basis Dis 1862(3):352–367

  73. Roth P, Eisele G, Weller M (2012) Immunology of brain tumors. Handb Clin Neurol 104:45–51

    Article  PubMed  Google Scholar 

  74. Akasaki Y, Liu G, Chung NH, Ehtesham M, Black KL, John SY (2004) Induction of a CD4+ T regulatory type 1 response by cyclooxygenase-2-overexpressing glioma. J Immunol 173(7):4352–4359

    Article  CAS  PubMed  Google Scholar 

  75. Espuny-Camacho I, Arranz AM, Fiers M, Snellinx A, Ando K, Munck S, … De Strooper B (2017) Hallmarks of Alzheimer’s disease in stem-cell-derived human neurons transplanted into mouse brain. Neuron 93(5):1066–1081

  76. Eimer WA, Kumar DKV, Shanmugam NKN, Rodriguez AS, Mitchell T, Washicosky KJ, … Moir RD (2018) Alzheimer’s disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron 99(1):56–63

  77. Sundaram JR, Poore CP, Sulaimee NHB, Pareek T, Cheong WF, Wenk MR, … Kesavapany S (2017) Curcumin ameliorates neuroinflammation, neurodegeneration, and memory deficits in p25 transgenic mouse model that bears hallmarks of Alzheimer’s disease. J Alzheimers Dis 60(4):1429–1442

  78. Amor S, Woodroofe MN (2014) Innate and adaptive immune responses in neurodegeneration and repair. Immunology 141(3):287–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gil-Pulido J, Zernecke A (2017) Antigen-presenting dendritic cells in atherosclerosis. Eur J Pharmacol 816:25–31

    Article  CAS  PubMed  Google Scholar 

  80. Li H, Zhu X, Hu L, Li Q, Ma J, Yan J (2019) Loss of exosomal MALAT1 from ox-LDL-treated vascular endothelial cells induces maturation of dendritic cells in atherosclerosis development. Cell Cycle 18(18):2255–2267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Greenwood J, Heasman SJ, Alvarez JI, Prat A, Lyck R, Engelhardt B (2011) Leucocyte–endothelial cell crosstalk at the blood–brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol Appl Neurobiol 37(1):24–39

    Article  CAS  PubMed  Google Scholar 

  82. Preston JE (2001) Ageing choroid plexus-cerebrospinal fluid system. Microsc Res Tech 52(1):31–37

    Article  CAS  PubMed  Google Scholar 

  83. Farrall AJ, Wardlaw JM (2009) Blood–brain barrier: ageing and microvascular disease–systematic review and meta-analysis. Neurobiol Aging 30(3):337–352

    Article  CAS  PubMed  Google Scholar 

  84. Hohsfield LA, Humpel C (2015) Migration of blood cells to β-amyloid plaques in Alzheimer’s disease. Exp Gerontol 65:8–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Perry VH, Newman TA, Cunningham C (2003) The impact of systemic infection on the progression of neurodegenerative disease. Nat Rev Neurosci 4(2):103–112

    Article  CAS  PubMed  Google Scholar 

  86. Ciaramella A, Bizzoni F, Salani F, Vanni D, Spalletta G, Sanarico N, … Bossù P (2010) Increased pro-inflammatory response by dendritic cells from patients with Alzheimer’s disease. J Alzheimers Dis 19(2):559–572

  87. Ciaramella A, Sanarico N, Bizzoni F, Moro ML, Salani F, Scapigliati G, … Bossu P (2009) Amyloid β peptide promotes differentiation of pro-inflammatory human myeloid dendritic cells. Neurobiol Aging 30(2):210–221

  88. Olson M, Lockhart TE, Lieberman A (2019) Motor learning deficits in Parkinson’s disease (PD) and their effect on training response in gait and balance: a narrative review. Front Neurol 10:62

    Article  PubMed  PubMed Central  Google Scholar 

  89. McGeer PL, McGeer EG (2004) Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat Disord 10:S3–S7

    Article  PubMed  Google Scholar 

  90. Ren M, Guo Y, Wei X, Yan S, Qin Y, Zhang X, … Lou H (2018) TREM2 overexpression attenuates neuroinflammation and protects dopaminergic neurons in experimental models of Parkinson’s disease. Exp Neurol 302:205–213

  91. Dardiotis E, Rikos D, Siokas V, Aloizou AM, Tsouris Z, Sakalakis E, … Hadjigeorgiou GM (2020) Assessment of TREM2 rs75932628 variant’s association with Parkinson’s disease in a Greek population and Meta-analysis of current data. Int J Neurosci 1–5

  92. O’Donovan SM, Crowley EK, Brown JRM, O’Sullivan O, O’Leary OF, … Timmons S, O’Neill C (2020) Nigral overexpression of α-synuclein in a rat Parkinson’s disease model indicates alterations in the enteric nervous system and the gut microbiome. Neurogastroenterol Motil 32(1):e13726

  93. Faustini G, Longhena F, Varanita T, Bubacco L, Pizzi M, Missale C, … Bellucci A (2018) Synapsin III deficiency hampers α-synuclein aggregation, striatal synaptic damage and nigral cell loss in an AAV-based mouse model of Parkinson’s disease. Acta Neuropathol 136(4):621–639

  94. George S, Rey NL, Tyson T, Esquibel C, Meyerdirk L, Schulz E, … Brundin P (2019) Microglia affect α-synuclein cell-to-cell transfer in a mouse model of Parkinson’s disease. Mol Neurodegener 14(1):1–22

  95. Ciaramella A, Salani F, Bizzoni F, Pontieri FE, Stefani A, Pierantozzi M, … Bossu P (2013) Blood dendritic cell frequency declines in idiopathic Parkinson’s disease and is associated with motor symptom severity. PLoS One 8(6):e65352

  96. Schutt CR, Gendelman HE, Mosley RL (2018) Tolerogenic bone marrow-derived dendritic cells induce neuroprotective regulatory T cells in a model of Parkinson’s disease. Mol Neurodegener 13(1):1–17

    Article  Google Scholar 

  97. Yanamandra K, Gruden MA, Casaite V, Meskys R, Forsgren L, Morozova-Roche LA (2011) α-Synuclein reactive antibodies as diagnostic biomarkers in blood sera of Parkinson’s disease patients. PloS one 6(4):e18513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Double KL, Rowe DB, Carew-Jones FM, Hayes M, Chan DKY, Blackie J, … Halliday GM (2009) Anti-melanin antibodies are increased in sera in Parkinson’s disease. Exp Neurol 217(2):297–301

  99. Zappia M, Crescibene L, Bosco D, Arabia G, Nicoletti G, Bagala A, … Quattrone A (2002) Anti-GM1 ganglioside antibodies in Parkinson’s disease. Acta Neurol Scand 106(1):54–57

  100. Chen S, Le WD, Xie WJ, Alexianu ME, Engelhardt JI, Siklós L, Appel SH (1998) Experimental destruction of substantia nigra initiated by Parkinson disease immunoglobulins. Arch Neurol 55(8):1075–1080

    Article  CAS  PubMed  Google Scholar 

  101. Jiang T, Li G, Xu J, Gao S, Chen X (2018) The challenge of the pathogenesis of Parkinson’s disease: is autoimmunity the culprit? Front Immunol 9:2047

    Article  PubMed  PubMed Central  Google Scholar 

  102. Campolo M, Filippone A, Biondo C, Mancuso G, Casili G, Lanza M, … Paterniti I (2020) TLR7/8 in the pathogenesis of Parkinson’s disease. Int J Mol Sci 21(24):9384

  103. Vezzani A (2014) Epilepsy and inflammation in the brain: overview and pathophysiology: epilepsy and inflammation in the brain. Epilepsy Curr 14(2_suppl):3–7

    Article  PubMed  PubMed Central  Google Scholar 

  104. Librizzi L, Regondi MC, Pastori C, Frigerio S, Frassoni C, De Curtis M (2007) Expression of adhesion factors induced by epileptiform activity in the endothelium of the isolated guinea pig brain in vitro. Epilepsia 48(4):743–751

    Article  CAS  PubMed  Google Scholar 

  105. Vezzani A (2015) Anti-inflammatory drugs in epilepsy: does it impact epileptogenesis? Expert Opin Drug Saf 14(4):583–592

    Article  CAS  PubMed  Google Scholar 

  106. Li XW, Yang F, Wang YG, Wang JC, Ma L, Jiang W (2013) Brain recruitment of dendritic cells following Li-pilocarpine induced status epilepticus in adult rats. Brain Res Bull 91:8–13

    Article  CAS  PubMed  Google Scholar 

  107. Bulloch K, Miller MM, Gal-Toth J, Milner TA, Gottfried-Blackmore A, Waters EM, … McEwen BS (2008) CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain. J Comp Neurol 508(5):687–710

  108. Iyer A, Zurolo E, Spliet WG, Van Rijen PC, Baayen JC, Gorter JA, Aronica E (2010) Evaluation of the innate and adaptive immunity in type I and type II focal cortical dysplasias. Epilepsia 51(9):1763–1773

    Article  CAS  PubMed  Google Scholar 

  109. Boer K, Troost D, Jansen F, Nellist M, Van Den Ouweland AM, Geurts JJ, … Aronica E (2008) Clinicopathological and immunohistochemical findings in an autopsy case of tuberous sclerosis complex. Neuropathology 28(6):577–590

  110. Becker AJ, Blümcke I, Urbach H, Hans V, Majores M (2006) Molecular neuropathology of epilepsy-associated glioneuronal malformations. J Neuropathol Exp Neurol 65(2):99–108

    Article  CAS  PubMed  Google Scholar 

  111. Sathaliyawala T, O’Gorman WE, Greter M, Bogunovic M, Konjufca V, Hou ZE, … Reizis B (2010) Mammalian target of rapamycin controls dendritic cell development downstream of Flt3 ligand signaling. Immunity 33(4):597–606

  112. Comabella M, Montalban X, Münz C, Lünemann JD (2010) Targeting dendritic cells to treat multiple sclerosis. Nat Rev Neurol 6(9):499–507

    Article  CAS  PubMed  Google Scholar 

  113. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550

    Article  CAS  PubMed  Google Scholar 

  114. Veenbergen S, Li P, Raatgeep HC, Lindenbergh-Kortleve DJ, Simons-Oosterhuis Y, Farrel A, … Samsom JN (2019) IL-10 signaling in dendritic cells controls IL-1β-mediated IFNγ secretion by human CD4+ T cells: relevance to inflammatory bowel disease. Mucosal Immunol 12(5):1201–1211

  115. Cavalli G, Dinarello CA (2018) Anakinra therapy for non-cancer inflammatory diseases. Front Pharmacol 9:1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Heink S, Yogev N, Garbers C, Herwerth M, Aly L, Gasperi C, … Korn T (2017) Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH 17 cells. Nat Immunol 18(1):74–85

  117. Fu Y, Zhan X, Wang Y, Jiang X, Liu M, Yang Y, Huang Y et al (2019) NLRC 3 expression in dendritic cells attenuates CD 4+ T cell response and autoimmunity. EMBO J 38(16):e101397

    Article  PubMed  PubMed Central  Google Scholar 

  118. Smolen JS, Beaulieu A, Rubbert-Roth A, Ramos-Remus C, Rovensky J, Alecock E, OPTION Investigators (2008) Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet 371(9617):987–997

  119. Li Y, Chu N, Hu A, Gran B, Rostami A, Zhang GX (2007) Increased IL-23p19 expression in multiple sclerosis lesions and its induction in microglia. Brain 130(2):490–501

    Article  PubMed  Google Scholar 

  120. Nichols JM, Kummari E, Sherman J, Yang EJ, Dhital S, Gilfeather C, … Kaplan BL (2021) CBD suppression of EAE is correlated with early inhibition of splenic IFN-γ+ CD8+ T cells and modest inhibition of neuroinflammation. J Neuroimmune Pharmacol 16:346–362

  121. Segal BM, Constantinescu CS, Raychaudhuri A, Kim L, Fidelus-Gort R, Kasper LH, Investigators UMS (2008) Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol 7(9):796–804

    Article  CAS  PubMed  Google Scholar 

  122. Lukic A, Larssen P, Fauland A, Samuelsson B, Wheelock CE, Gabrielsson S, Radmark O (2017) GM-CSF–and M-CSF–primed macrophages present similar resolving but distinct inflammatory lipid mediator signatures. FASEB J 31(10):4370–4381

    Article  CAS  PubMed  Google Scholar 

  123. Lotfi N, Thome R, Rezaei N, Zhang GX, Rezaei A, Rostami A, Esmaeil N (2019) Roles of GM-CSF in the pathogenesis of autoimmune diseases: an update. Front Immunol 10:1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu H, Qiu F, Wang Y, Zeng Q, Liu C, Chen Y, … Dai Z (2019) CD8+ CD122+ PD-1+ Tregs synergize with costimulatory blockade of CD40/cd154, but not B7/CD28, to prolong murine allograft survival. Front Immunol 10:306

  125. Song K, Xu L, Zhang W, Cai Y, Jang B, Oh J, Jin JO (2017) Laminarin promotes anti-cancer immunity by the maturation of dendritic cells. Oncotarget 8(24):38554

    Article  PubMed  PubMed Central  Google Scholar 

  126. Qian C, Cao X (2018) Dendritic cells in the regulation of immunity and inflammation. In: Seminars in immunology, vol. 35. Academic Press, pp 3–11

  127. Yanuck SF (2019) Microglial phagocytosis of neurons: diminishing neuronal loss in traumatic, infectious, inflammatory, and autoimmune CNS disorders. Front Psych 10:712

    Article  Google Scholar 

  128. Serra P, Santamaria P (2019) Antigen-specific therapeutic approaches for autoimmunity. Nat Biotechnol 37(3):238–251

    Article  CAS  PubMed  Google Scholar 

  129. Warren KG, Catz I, Ferenczi LZ, Krantz MJ (2006) Intravenous synthetic peptide MBP8298 delayed disease progression in an HLA class II-defined cohort of patients with progressive multiple sclerosis: results of a 24-month double-blind placebo-controlled clinical trial and 5 years of follow-up treatment. Eur J Neurol 13(8):887–895

    Article  CAS  PubMed  Google Scholar 

  130. Bar-Or A, Vollmer T, Antel J, Arnold DL, Bodner CA, Campagnolo D, … Garren H (2007) Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. Arch Neurol 64(10):1407–1415

  131. Menges M, Rößner S, Voigtländer C, Schindler H, Kukutsch NA, Bogdan C, … Lutz MB (2002) Repetitive injections of dendritic cells matured with tumor necrosis factor α induce antigen-specific protection of mice from autoimmunity. J Exp Med 195(1):15–22

  132. Nchinda G, Kuroiwa J, Oks M, Trumpfheller C, Park CG, Huang Y, … Steinman RM (2008) The efficacy of DNA vaccination is enhanced in mice by targeting the encoded protein to dendritic cells. J Clin Investig 118(4):1427–1436

  133. Hawiger D, Masilamani RF, Bettelli E, Kuchroo VK, Nussenzweig MC (2004) Immunological unresponsiveness characterized by increased expression of CD5 on peripheral T cells induced by dendritic cells in vivo. Immunity 20(6):695–705

    Article  CAS  PubMed  Google Scholar 

  134. Dzionek A, Sohma Y, Nagafune J, Cella M, Colonna M, Facchetti F, … Schmitz J (2001) BDCA-2, a novel plasmacytoid dendritic cell–specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon α/β induction. J Exp Med 194(12):1823–1834

  135. Tarbell KV, Petit L, Zuo X, Toy P, Luo X, Mqadmi A, … Steinman RM (2007) Dendritic cell–expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med 204(1):191–201

  136. Karni A, Abraham M, Monsonego A, Cai G, Freeman GJ, Hafler D, … Weiner HL (2006) Innate immunity in multiple sclerosis: myeloid dendritic cells in secondary progressive multiple sclerosis are activated and drive a pro-inflammatory immune response. J Immunol 177(6):4196–4202

  137. Bielekova B, Goodwin B, Richert N, Cortese I, Kondo T, Afshar G, … Martin R (2000) Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 6(10):1167–1175

  138. Benkhoucha M, Santiago-Raber ML, Schneiter G, Chofflon M, Funakoshi H, Nakamura T, Lalive PH (2010) Hepatocyte growth factor inhibits CNS autoimmunity by inducing tolerogenic dendritic cells and CD25+ Foxp3+ regulatory T cells. Proc Natl Acad Sci 107(14):6424–6429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kremer JM, Bloom BJ, Breedveld FC, Coombs JH, Fletcher MP, Gruben D, … Zwillich SH (2012) The safety and efficacy of a JAK inhibitor in patients with active rheumatoid arthritis: results of a double-blind, placebo-controlled phase IIa trial of three dosage levels of CP-690,550 versus placebo. Arthritis Rheum 64(5):1487–1487

  140. Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12(4):265–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jia J, Zhang Y, Xin Y, Jiang C, Yan B, Zhai S (2018) Interactions between nanoparticles and dendritic cells: from the perspective of cancer immunotherapy. Front Oncol 8:404

    Article  PubMed  PubMed Central  Google Scholar 

  142. Matias BF, De Oliveira TM, Rodrigues CM, Abdalla DR, Montes L, Murta EF, Michelin MA (2013) Influence of immunotherapy with autologous dendritic cells on innate and adaptive immune response in cancer. Clin Med Insights Oncol 7:CMO-S12268

    Article  Google Scholar 

  143. Wang X, Zhao HY, Zhang FC, Sun Y, Xiong ZY, Jiang XB (2014) Dendritic cell-based vaccine for the treatment of malignant glioma: a systematic review. Cancer Invest 32(9):451–457

    Article  CAS  PubMed  Google Scholar 

  144. Mitchell DA, Batich KA, Gunn MD, Huang MN, Sanchez-Perez L, Nair SK, … Sampson JH (2015) Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 519(7543):366–369

  145. Jauregui-Amezaga A, Cabezón R, Ramírez-Morros A, España C, Rimola J, Bru C, … Ricart E (2015) Intraperitoneal administration of autologous tolerogenic dendritic cells for refractory Crohn’s disease: a phase I study. J Crohns Colitis 9(12):1071–1078

  146. Works MG, Koenig JB, Sapolsky RM (2013) Soluble TNF receptor 1-secreting ex vivo-derived dendritic cells reduce injury after stroke. J Cereb Blood Flow Metab 33(9):1376–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Manley NC, Caso JR, Works MG, Cutler AB, Zemlyak I, Sun G, … Sapolsky RM (2013) Derivation of injury-responsive dendritic cells for acute brain targeting and therapeutic protein delivery in the stroke-injured rat. PLoS One 8(4):e61789

  148. Lemere CA, Masliah E (2010) Can Alzheimer disease be prevented by amyloid-β immunotherapy? Nat Rev Neurol 6(2):108–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Luo Z, Li J, Nabar NR, Lin X, Bai G, Cai J, … Wang J (2012) Efficacy of a therapeutic vaccine using mutated β-amyloid sensitized dendritic cells in Alzheimer’s mice. J Neuroimmune Pharmacol 7(3):640–655

  150. Wang F, Liu H, Shen X, Ao H, Moore N, Gao L, … Liang C (2015) The combined treatment of amyloid-β1-42-stimulated bone marrow–derived dendritic cells plus splenocytes from young mice prevents the development of Alzheimer’s disease in APPswe/PSENldE9 mice. Neurobiol Aging 36(1):111–122

  151. Romero-Ramos M, von Euler Chelpin M, Sanchez-Guajardo V (2014) Vaccination strategies for Parkinson disease: induction of a swift attack or raising tolerance? Hum Vaccin Immunother 10(4):852–867

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Consejo Nacional de Ciencia y Tecnología (CONACYT) Mexico is thankfully acknowledged for partially supporting this work under Sistema Nacional de Investigadores (SNI) program awarded to Hafiz MN Iqbal (CVU: 735340).

Author information

Authors and Affiliations

Authors

Contributions

All listed authors equally contributed from conceptualization to compilation.

Corresponding authors

Correspondence to Muhammad Bilal or Hafiz M. N. Iqbal.

Ethics declarations

Research Involving Human Participants and/or Animals

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, A., Rafeeq, H., Munir, N. et al. Dendritic Cell–Targeted Therapies to Treat Neurological Disorders. Mol Neurobiol 59, 603–619 (2022). https://doi.org/10.1007/s12035-021-02622-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02622-4

Keywords

Navigation