Skip to main content

Advertisement

Log in

Implications of Phosphoinositide 3-Kinase-Akt (PI3K-Akt) Pathway in the Pathogenesis of Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the foremost type of dementia that afflicts considerable morbidity and mortality in aged population. Several transcription molecules, pathways, and molecular mechanisms such as oxidative stress, inflammation, autophagy, and immune system interact in a multifaceted way that disrupt physiological processes (cell growth, differentiation, survival, lipid and energy metabolism, endocytosis) leading to apoptosis, tauopathy, β-amyloidopathy, neuron, and synapse loss, which play an important role in AD pathophysiology. Despite of stupendous advancements in pathogenic mechanisms, treatment of AD is still a nightmare in the field of medicine. There is compelling urgency to find not only symptomatic but effective disease-modifying therapies. Recently, phosphoinositide 3-kinase (PI3K) and Akt are identified as a pathway triggered by diverse stimuli, including insulin, growth factors, cytokines, and cellular stress, that link amyloid-β, neurofibrillary tangles, and brain atrophy. The present review aims to explore and analyze the role of PI3K-Akt pathway in AD and agents which may modulate Akt and have therapeutic prospects in AD. The literature was researched using keywords “PI3K-Akt” and “Alzheimer’s disease” from PubMed, Web of Science, Bentham, Science Direct, Springer Nature, Scopus, and Google Scholar databases including books. Articles published from 1992 to 2021 were prioritized and analyzed for their strengths and limitations, and most appropriate ones were selected for the purpose of review. PI3K-Akt pathway regulates various biological processes such as cell proliferation, motility, growth, survival, and metabolic functions, and inhibits many neurotoxic mechanisms. Furthermore, experimental data indicate that PI3K-Akt signaling might be an important therapeutic target in treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

ACh:

Acetylcholine

AChE:

Acetylcholinesterase

AD:

Alzheimer’s disease

AGE:

Advanced glycation end-products

APOE:

Apolipoprotein E

APP:

Amyloid precursor protein

Aβ :

Amyloid-beta

BACE-1:

Beta-site amyloid precursor protein cleaving enzyme 1 (β-secretase)

Bad:

Bcl-2-associated death promoter (BAD) protein

Bax:

Bcl-2-associated X protein

BCAP:

B-cell adaptor protein for phosphoinositide 3-kinase

Bcl-2:

B-cell lymphoma 2

BCR (BR):

B cell receptor

Bcl-XL :

B cell lymphoma-extra large

BDNF:

Brain-derived neurotrophic factor

Bim:

Bcl-2-Like Protein 11

CA:

Cornu Ammonis

CD:

Complement derived

ChAT:

Choline-acetyl transferase

CREB:

CAMP response element binding protein

CRMP:

Collapsin response mediator protein

DNA:

Deoxyribonucleic acid

4EBP1:

Eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1

EGF:

Epidermal growth factor

eNOS:

Endothelial nitric oxide synthase

ERK:

Extracellular signal-regulated kinase

FoxO1:

Forkhead box protein O1

FYVE:

Fab 1, YOTB, Vac 1, EEA1

GAB-1:

GRB2-associated-binding protein 1

GABA:

Gamma amino butyric acid

GLUT:

Glucose transporter

GPCR:

G-protein coupled receptor

GSK-3:

Glycogen synthase kinse-3

HECT:

E3 ligases of the homologous to the E6AP carboxyl terminus

HIF:

Hypoxia inducible factor

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

IR:

Insulin receptor

IRS:

Insulin receptor substrate

JAK:

Janus kinases

JNK:

C-Jun (ju-nana) N-terminal kinases

LTβR:

Lymphotoxin-β receptor

LTD:

Long-term depression

LTP:

Long-term potentiation

mAChR:

Muscarinic acetylcholine receptors

MAPK:

Mitogen-activated protein kinase

MCI:

Mild cognitive impairment

Mcl-1:

Myeloid cell leukemia 1

MDA:

Malondialdehyde

mTOR:

Mammalian target of rapamycin

nAChR:

Nicotinic acetylcholine receptors

NEMO:

NFκB essential modulator

NFTs:

Neurofibrillary tangles

NFκB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NGF:

Nerve growth factor

NMDA:

N-Methyl-D-aspartate

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

NOX family:

NADPH oxidase [NOX2/gp91(phox)] family

Nrf2:

Nuclear factor (erythroid-derived 2)-like 2

p-Akt:

Phosphorylated Akt

PAMPs:

Pathogen-associated microbial patterns

PARP:

Poly ADP ribose polymerase

PDGF:

Platelet-derived growth factor

PDK1:

3-Phosphoinositide-dependent protein kinase-1

p-GSK-3:

Phosphorylated GSK-3

PH-Domain:

Pleckstrin homology domain

PHFs:

Paired helical filaments

PI3K:

Phosphoinositide 3-kinase

PIs:

Phosphoinositide

PP2A:

Protein phosphatase 2A

PS:

Presenilin

PTEN:

Phosphatase and tensin homolog

RAGE:

Receptors for advanced glycation end-products

Rheb:

Ras homolog enriched in brain

Rho-kinase:

Rho-associated coiled-coil-containing protein kinase

ROS:

Reactive oxygen species

RTK:

Receptor tyrosine kinase

S6K1:

S6 kinase 1

Ser:

Serine (S)

SHIP:

Src-homology 2 containing inositol (poly)phosphate-5-phosphatases

Thr:

Threonine (T)

t1/2 :

Half-life

TLR:

Toll-like receptor

TNFR:

Tumor necrosis factor receptor

TNF-α :

Tumor necrosis factor-α

TRAF6:

Tumor necrosis factor receptor (TNFR)-associated factor 6

TSC:

Tuberous sclerosis complex

Vps 34:

Vacuolar protein-sorting defective 34

References

  1. Scott KR, Barrett AM (2007) Dementia syndromes: Evaluation and treatment. Expert Rev Neurother 7(4):407–422. https://doi.org/10.1586/14737175.7.4.407

    Article  PubMed  PubMed Central  Google Scholar 

  2. Naj AC, Schellenberg GD (2017) Genomic variants, genes, and pathways of Alzheimer’s disease: An overview. Am J Med Genet Part B Neuropsychiatr Genet 174(1):5–26. https://doi.org/10.1002/ajmg.b.32499

    Article  Google Scholar 

  3. Hippius H, Neundörfer G (2003) The discovery of Alzheimer’s disease. Dialogues Clin Neurosci 5(1):101–108. https://doi.org/10.31887/dcns.2003.5.1/hhippius

  4. Šimić G, Babić Leko M, Wray S et al (2016) Tau protein hyperphosphorylation and aggregation in alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules 6(1):2–28. https://doi.org/10.3390/biom6010006

    Article  CAS  Google Scholar 

  5. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112(4):389–404. https://doi.org/10.1007/s00401-006-0127-z

    Article  PubMed  PubMed Central  Google Scholar 

  6. Laurent C, Buée L, Blum D (2018) Tau and neuroinflammation: What impact for Alzheimer’s Disease and Tauopathies? Biomed J 41(1):21–33. https://doi.org/10.1016/j.bj.2018.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kalaria RN, Maestre GE, Arizaga R et al (2008) Alzheimer’s disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol 7(9):812–826. https://doi.org/10.1016/S1474-4422(08)70169-8

    Article  PubMed  PubMed Central  Google Scholar 

  8. Folch J, Petrov D, Ettcheto M et al (2016) Current research therapeutic strategies for Alzheimer’s disease treatment. Neural Plast 2016:8501693. https://doi.org/10.1155/2016/8501693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Mufson EJ, Counts SE, Perez SE, Ginsberg SD (2008) Cholinergic system during the progression of Alzheimer’s disease: Therapeutic implications. Expert Rev Neurother 8(11):1703–1718. https://doi.org/10.1586/14737175.8.11.1703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kong J, Ren G, Jia N et al (2013) Effects of nicorandil in neuroprotective activation of PI3K/Akt pathways in a cellular model of alzheimer’s disease. Eur Neurol 70(3–4):233–241. https://doi.org/10.1159/000351247

    Article  PubMed  CAS  Google Scholar 

  11. Bazan NG (2005) Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol Neurobiol 32(1):89–103. https://doi.org/10.1385/mn:32:1:089

    Article  PubMed  CAS  Google Scholar 

  12. Heras-Sandoval D, Avila-Muñoz E, Arias C (2011) The phosphatidylinositol 3-kinase/mTOR pathway as a therapeutic target for brain aging and neurodegeneration. Pharmaceuticals 4(8):1070–1087. https://doi.org/10.3390/ph4081070

    Article  PubMed Central  CAS  Google Scholar 

  13. Mackenzie RWA, Elliott BT (2014) Akt/PKB activation and insulin signaling: A novel insulin signaling pathway in the treatment of type 2 diabetes. Diabetes, Metab Syndr Obes Targets Ther 7:55–64. https://doi.org/10.2147/DMSO.S48260

    Article  CAS  Google Scholar 

  14. Yin G, Li LY, Qu M, Bin LH, Wang JZ, Zhou XW (2011) Upregulation of AKT attenuates amyloid-β-induced cell apoptosis. J Alzheimer’s Dis 25(2):337–345. https://doi.org/10.3233/JAD-2011-110104

    Article  CAS  Google Scholar 

  15. Jolivalt CG, Lee CA, Beiswenger KK et al (2008) Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: Parallels with Alzheimer’s disease and correction by insulin. J Neurosci Res 86(15):3265–3274. https://doi.org/10.1002/jnr.21787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Horwood JM, Dufour F, Laroche S, Davis S (2006) Signalling mechanisms mediated by the phosphoinositide 3-kinase/Akt cascade in synaptic plasticity and memory in the rat. Eur J Neurosci 23(12):3375–3384. https://doi.org/10.1111/j.1460-9568.2006.04859.x

    Article  PubMed  Google Scholar 

  17. Shu Y, Zhang H, Kang T et al (2013) PI3K/Akt signal pathway involved in the cognitive impairment caused by chronic cerebral hypoperfusion in rats. PLoS ONE 8(12):e81901. https://doi.org/10.1371/journal.pone.0081901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Bandaru SS, Lin K, Roming SL, Vellipuram R, Harney JP (2010) Effects of PI3K inhibition and low docosahexaenoic acid on cognition and behavior. Physiol Behav 100(3):239–244. https://doi.org/10.1016/j.physbeh.2009.10.019

    Article  PubMed  CAS  Google Scholar 

  19. Li H, Kang T, Qi B et al (2016) Neuroprotective effects of ginseng protein on PI3K/Akt signaling pathway in the hippocampus of D-galactose/AlCl3 inducing rats model of Alzheimer’s disease. J Ethnopharmacol 179:162–169. https://doi.org/10.1016/j.jep.2015.12.020

    Article  PubMed  CAS  Google Scholar 

  20. Cantrell DA (2001) Phosphoinositide 3-kinase signalling pathways. J Cell Sci 114(8):1439–1445. https://doi.org/10.1242/jcs.114.8.1439

    Article  PubMed  CAS  Google Scholar 

  21. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7(8):606–619. https://doi.org/10.1038/nrg1879

    Article  PubMed  CAS  Google Scholar 

  22. Franke TF (2008) PI3K/Akt: Getting it right matters. Oncogene 27(50):6473–6488. https://doi.org/10.1038/onc.2008.313

    Article  PubMed  CAS  Google Scholar 

  23. Manning BD, Cantley LC (2007) AKT/PKB signaling: Navigating downstream. Cell 129(7):1261–1274. https://doi.org/10.1016/j.cell.2007.06.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Whiteman EL, Cho H, Birnbaum MJ (2002) Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab 13(10):444–451. https://doi.org/10.1016/S1043-2760(02)00662-8

    Article  PubMed  CAS  Google Scholar 

  25. Liu CM, Ma JQ, Sun YZ (2012) Puerarin protects rat kidney from lead-induced apoptosis by modulating the PI3K/Akt/eNOS pathway. Toxicol Appl Pharmacol 258(3):330–342. https://doi.org/10.1016/j.taap.2011.11.015

    Article  PubMed  CAS  Google Scholar 

  26. Guha M, Mackman N (2002) The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J Biol Chem 277(35):32124–32132. https://doi.org/10.1074/jbc.M203298200

    Article  PubMed  CAS  Google Scholar 

  27. Uranga RM, Katz S, Salvador GA (2013) Enhanced phosphatidylinositol 3-kinase (PI3K)/Akt signaling has pleiotropic targets in hippocampal neurons exposed to iron-induced oxidative stress. J Biol Chem 288(27):19773–19784. https://doi.org/10.1074/jbc.M113.457622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Tyagi E, Agrawal R, Nath C, Shukla R (2010) Cholinergic protection via α7 nicotinic acetylcholine receptors and PI3K-Akt pathway in LPS-induced neuroinflammation. Neurochem Int 56(1):135–142. https://doi.org/10.1016/j.neuint.2009.09.011

    Article  PubMed  CAS  Google Scholar 

  29. Yao ES, Tang Y, Liu XH, Wang MH (2016) TPPU protects tau from H2O2-induced hyperphosphorylation in HEK293/tau cells by regulating PI3K/AKT/GSK-3β pathway. J Huazhong Univ Sci Technol - Med Sci 36(6):785–790. https://doi.org/10.1007/s11596-016-1662-z

    Article  CAS  Google Scholar 

  30. Hawkins PT (1851) Stephens LR (2015) PI3K signalling in inflammation. Biochim Biophys Acta - Mol Cell Biol Lipids 6:882–897. https://doi.org/10.1016/j.bbalip.2014.12.006

    Article  CAS  Google Scholar 

  31. Choi H, Park HH, Koh SH et al (2012) Coenzyme Q10 protects against amyloid beta-induced neuronal cell death by inhibiting oxidative stress and activating the PI3K pathway. Neurotoxicology 33(1):85–90. https://doi.org/10.1016/j.neuro.2011.12.005

    Article  PubMed  CAS  Google Scholar 

  32. Foster FM, Traer CJ, Abraham SM, Fry MJ (2003) The phosphoinositide (PI) 3-kinase family. J Cell Sci 116(15):3037–3040. https://doi.org/10.1242/jcs.00609

    Article  PubMed  CAS  Google Scholar 

  33. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD (2001) Cellular function of phosphoinositide 3-Kinase: Implications for development, immunity, homeostasis, and cancer. Annu Rev Cell Dev Biol 17:615–675. https://doi.org/10.1146/annurev.cellbio.17.1.615

    Article  PubMed  CAS  Google Scholar 

  34. Wymann MP, Björklöf K, Calvez R et al (2003) Phosphoinositide 3-kinase γ: A key modulator in inflammation and allergy. Biochem Soc Trans 31(Pt 1):275–280. https://doi.org/10.1042/bst0310275

    Article  PubMed  CAS  Google Scholar 

  35. Brown RA, Shepherd PR (2001) Growth factor regulation of the novel class II phosphoinositide 3-kinases. Biochem Soc Trans 29:535–537. https://doi.org/10.1042/BST0290535

    Article  PubMed  CAS  Google Scholar 

  36. Vieira OV, Botelho RJ, Rameh L et al (2001) Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol 155(1):19–25. https://doi.org/10.1083/jcb.200107069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Roggo L, Bernard V, Kovacs AL et al (2002) Membrane transport in Caenorhabditis elegans: An essential role for VPS34 at the nuclear membrane. EMBO J 21(7):1673–1683. https://doi.org/10.1093/emboj/21.7.1673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Jean S, Kiger AA (2014) Classes of phosphoinositide 3-kinases at a glance. J Cell Sci 127(5):923–928. https://doi.org/10.1242/jcs.093773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Fresno Vara JÁ, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M (2004) P13K/Akt signalling pathway and cancer. Cancer Treat Rev 30(2):193–204. https://doi.org/10.1016/j.ctrv.2003.07.007

    Article  PubMed  CAS  Google Scholar 

  40. Thomas CC, Deak M, Alessi DR, Van Aalten DMF (2002) High-resolution structure of the pleckstrin homology domain of protein kinase B/Akt bound to phosphatidylinositol (3,4,5)-trisphosphate. Curr Biol 12(14):1256–1262. https://doi.org/10.1016/S0960-9822(02)00972-7

    Article  PubMed  CAS  Google Scholar 

  41. Milburn CC, Deak M, Kelly SM, Price NC, Alessi DR, Van Aalten DMF (2003) Binding of phosphatidylinositol 3,4,5-trisphosphate to the pleckstrin homology domain of protein kinase B induces a conformational change. Biochem J 375(3):531–538. https://doi.org/10.1042/BJ20031229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Toker A, Newton AC (2000) Cellular signaling: Pivoting around PDK-1. Cell 103(2):185–188. https://doi.org/10.1016/S0092-8674(00)00110-0

    Article  PubMed  CAS  Google Scholar 

  43. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101. https://doi.org/10.1126/science.1106148

    Article  PubMed  CAS  Google Scholar 

  44. Gan X, Wang J, Su B, Wu D (2011) Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 286(13):10998–11002. https://doi.org/10.1074/jbc.M110.195016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Liao Y, Hung MC (2010) Physiological regulation of Akt activity and stability. Am J Transl Res 2(1):19–42. www.ajtr.org/AJTR910005

  46. Dimmeler S, Dernbach E, Zeiher AM (2000) Phosphorylation of the endothelial nitric oxide synthase at Ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett 477(3):258–262. https://doi.org/10.1016/S0014-5793(00)01657-4

    Article  PubMed  CAS  Google Scholar 

  47. Maehama T, Taylor GS, Dixon JE (2001) PTEN and myotubularin: Novel phosphoinositide phosphatases. Annu Rev Biochem 70:247–279. https://doi.org/10.1146/annurev.biochem.70.1.247

    Article  PubMed  CAS  Google Scholar 

  48. Prestwich GD (2004) Phosphoinositide signaling: From affinity probes to pharmaceutical targets. Chem Biol 11(5):619–637. https://doi.org/10.1016/j.chembiol.2004.03.025

    Article  PubMed  CAS  Google Scholar 

  49. Sasaki T, Takasuga S, Sasaki J et al (2009) Mammalian phosphoinositide kinases and phosphatases. Prog Lipid Res 48(6):307–343. https://doi.org/10.1016/j.plipres.2009.06.001

    Article  PubMed  CAS  Google Scholar 

  50. Sonoda Y, Mukai H, Matsuo K et al (2010) Accumulation of tumor-suppressor PTEN in Alzheimer neurofibrillary tangles. Neurosci Lett 471(1):20–24. https://doi.org/10.1016/j.neulet.2009.12.078

    Article  PubMed  CAS  Google Scholar 

  51. Liu K, Lu Y, Lee JK et al (2010) PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13(9):1075–1081. https://doi.org/10.1038/nn.2603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Tan L, Chen X, Wang W et al (2017) Pharmacological inhibition of PTEN attenuates cognitive deficits caused by neonatal repeated exposures to isoflurane via inhibition of NR2B-mediated tau phosphorylation in rats. Neuropharmacology 114:135–145. https://doi.org/10.1016/j.neuropharm.2016.11.008

    Article  PubMed  CAS  Google Scholar 

  53. Li Z, Dong X, Wang Z et al (2005) Regulation of PTEN by Rho small GTPases. Nat Cell Biol 7(4):399–404. https://doi.org/10.1038/ncb1236

    Article  PubMed  CAS  Google Scholar 

  54. Meili R, Sasaki AT, Firtel RA (2005) Rho rocks PTEN. Nat Cell Biol 7(4):334–335. https://doi.org/10.1038/ncb0405-334

    Article  PubMed  CAS  Google Scholar 

  55. Huentelman MJ, Stephan DA, Talboom J et al (2009) Peripheral delivery of a ROCK inhibitor improves learning and working memory. Behav Neurosci 123(1):218–223. https://doi.org/10.1037/a0014260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Song Y, Chen X, Wang LY, Gao W, Zhu MJ (2013) Rho kinase inhibitor fasudil protects against β-amyloid-induced hippocampal neurodegeneration in rats. CNS Neurosci Ther 19(8):603–610. https://doi.org/10.1111/cns.12116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Pan P, Shen M, Yu H, Li Y, Li D, Hou T (2013) Advances in the development of Rho-associated protein kinase (ROCK) inhibitors. Drug Discov Today 18(23–24):1323–1333. https://doi.org/10.1016/j.drudis.2013.09.010

    Article  PubMed  CAS  Google Scholar 

  58. Zhu L, Chen T, Chang X et al (2016) Salidroside ameliorates arthritis-induced brain cognition deficits by regulating Rho/ROCK/NF-κB pathway. Neuropharmacology 103:134–142. https://doi.org/10.1016/j.neuropharm.2015.12.007

    Article  PubMed  CAS  Google Scholar 

  59. Chen Y, Wei G, Nie H et al (2014) β-Asarone prevents autophagy and synaptic loss by reducing ROCK expression in asenescence-accelerated prone 8 mice. Brain Res 1552:41–54. https://doi.org/10.1016/j.brainres.2014.01.005

    Article  PubMed  CAS  Google Scholar 

  60. Hamano T, Yen SH, Gendron T, Ko L wen, Kuriyama M (2012) Pitavastatin decreases tau levels via the inactivation of Rho/ROCK. Neurobiol Aging 33(10):2306-2320. https://doi.org/10.1016/j.neurobiolaging.2011.10.020

  61. Ingham RJ, Gish G, Pawson T (2004) The Nedd4 family of E3 ubiquitin ligases: Functional diversity within a common modular architecture. Oncogene 23(11):1972–1984. https://doi.org/10.1038/sj.onc.1207436

    Article  PubMed  CAS  Google Scholar 

  62. Kwak YD, Wang B, Pan W, Xu H, Jiang X, Liao FF (2010) Functional interaction of phosphatase and tensin homologue (PTEN) with the E3 ligase NEDD4-1 during neuronal response to zinc. J Biol Chem 285(13):9847–9857. https://doi.org/10.1074/jbc.M109.091637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Xia Q, Ali S, Liu L et al (2020) Role of Ubiquitination in PTEN cellular homeostasis and its implications in GB drug resistance. Front Oncol 10:1569. https://doi.org/10.3389/fonc.2020.01569

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ahn Y, Hwang CY, Lee SR, Kwon KS, Lee C (2008) The tumour suppressor PTEN mediates a negative regulation of the E3 ubiquitin-protein ligase NEDD4. Biochem J 412(2):331–338. https://doi.org/10.1042/BJ20071403

    Article  PubMed  CAS  Google Scholar 

  65. Wang X, Shi Y, Wang J, Huang G, Jiang X (2008) Crucial role of the C-terminus of PTEN in antagonizing NEDD4-1-mediated PTEN ubiquitination and degradation. Biochem J 414(2):221–229. https://doi.org/10.1042/BJ20080674

    Article  PubMed  CAS  Google Scholar 

  66. Boase NA, Kumar S (2015) NEDD4: The founding member of a family of ubiquitin-protein ligases. Gene 557(2):113–122. https://doi.org/10.1016/j.gene.2014.12.020

    Article  PubMed  CAS  Google Scholar 

  67. Mulholland DJ, Kobayashi N, Ruscetti M et al (2012) Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res 72(7):1878–1889. https://doi.org/10.1158/0008-5472.CAN-11-3132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Carracedo A, Pandolfi PP (2008) The PTEN-PI3K pathway: Of feedbacks and cross-talks. Oncogene 27(41):5527–5541. https://doi.org/10.1038/onc.2008.247

    Article  PubMed  CAS  Google Scholar 

  69. Schroeter H, Boyd C, Spencer JPE, Williams RJ, Cadenas E, Rice-Evans C (2002) MAPK signaling in neurodegeneration: Influences of flavonoids and of nitric oxide. Neurobiol Aging 23(5):861–880. https://doi.org/10.1016/S0197-4580(02)00075-1

    Article  PubMed  CAS  Google Scholar 

  70. Giese KP, Mizuno K (2013) The roles of protein kinases in learning and memory. Learn Mem 20(10):540–552. https://doi.org/10.1101/lm.028449.112

    Article  PubMed  CAS  Google Scholar 

  71. Mazzucchelli C, Brambilla R (2000) Ras-related and MAPK signalling in neuronal plasticity and memory formation. Cell Mol Life Sci 57(4):604–611. https://doi.org/10.1007/PL00000722

    Article  PubMed  CAS  Google Scholar 

  72. Ramin M, Azizi P, Motamedi F, Haghparast A, Khodagholi F (2011) Inhibition of JNK phosphorylation reverses memory deficit induced by β-amyloid (1–42) associated with decrease of apoptotic factors. Behav Brain Res 217(2):424–431. https://doi.org/10.1016/j.bbr.2010.11.017

    Article  PubMed  CAS  Google Scholar 

  73. Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT (2018) Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dement Transl Res Clin Interv 4:575–590. https://doi.org/10.1016/j.trci.2018.06.014

    Article  Google Scholar 

  74. Decourt B, Lahiri DK, Sabbagh MN (2016) Targeting Tumor Necrosis Factor Alpha for Alzheimer’s Disease. Curr Alzheimer Res 14(4):412–425. https://doi.org/10.2174/1567205013666160930110551

    Article  CAS  Google Scholar 

  75. Chang R, Yee K-L, Sumbria RK (2017) Tumor necrosis factor α Inhibition for Alzheimer’s Disease. J Cent Nerv Syst Dis 9:117957351770927. https://doi.org/10.1177/1179573517709278

    Article  CAS  Google Scholar 

  76. Simpson DSA, Oliver PL (2020) Ros generation in microglia: Understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants 9(8):1–27. https://doi.org/10.3390/antiox9080743

    Article  CAS  Google Scholar 

  77. Sedger LM, McDermott MF (2014) TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants - past, present and future. Cytokine Growth Factor Rev 25(4):453–472. https://doi.org/10.1016/j.cytogfr.2014.07.016

    Article  PubMed  CAS  Google Scholar 

  78. Barros DM, Mello E Souza T, De Souza MM et al (2001) LY294002, an inhibitor of phosphoinositide 3-kinase given into rat hippocampus impairs acquisition, consolidation and retrieval of memory for one-trial step-down inhibitory avoidance. Behav Pharmacol 12(8):629-634. https://doi.org/10.1097/00008877-200112000-00007

  79. Yang PC, Yang CH, Huang CC, Sen HK (2008) Phosphatidylinositol 3-kinase activation is required for stress protocol-induced modification of hippocampal synaptic plasticity. J Biol Chem 283(5):2631–2643. https://doi.org/10.1074/jbc.M706954200

    Article  PubMed  CAS  Google Scholar 

  80. Xing G, Dong M, Li X et al (2011) Neuroprotective effects of puerarin against beta-amyloid-induced neurotoxicity in PC12 cells via a PI3K-dependent signaling pathway. Brain Res Bull 85(3–4):212–218. https://doi.org/10.1016/j.brainresbull.2011.03.024

    Article  PubMed  CAS  Google Scholar 

  81. Lou H, Fan P, Perez RG, Lou H (2011) Neuroprotective effects of linarin through activation of the PI3K/Akt pathway in amyloid-β-induced neuronal cell death. Bioorganic Med Chem 19(13):4021–4027. https://doi.org/10.1016/j.bmc.2011.05.021

    Article  CAS  Google Scholar 

  82. Gur C, Kandemir FM, Darendelioglu E et al (2021) Morin protects against acrylamide-induced neurotoxicity in rats: an investigation into different signal pathways. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-14049-4

    Article  Google Scholar 

  83. Yang W, Liu Y, Xu QQ, Xian YF, Lin ZX (2020) Sulforaphene ameliorates neuroinflammation and hyperphosphorylated tau protein via regulating the PI3K/Akt/GSK-3 β pathway in experimental models of Alzheimer’s disease. Oxid Med Cell Longev 2020:4754195. https://doi.org/10.1155/2020/4754195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Zhang HB, Tu XK, Chen Q, Shi SS (2019) Propofol reduces inflammatory brain injury after subarachnoid hemorrhage: Involvement of PI3K/Akt pathway. J Stroke Cerebrovasc Dis 28(12):104375. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104375

    Article  PubMed  Google Scholar 

  85. Yang L, Dong X, Zhang W (2020) Astragaloside IV alleviates the brain damage induced by subarachnoid hemorrhage via PI3K/Akt signaling pathway. Neurosci Lett 735:135227. https://doi.org/10.1016/j.neulet.2020.135227

    Article  PubMed  CAS  Google Scholar 

  86. Bathina S, Gundala NKV, Rhenghachar P et al (2020) Resolvin D1 ameliorates nicotinamide-streptozotocin-induced type 2 diabetes mellitus by its anti-inflammatory action and modulating PI3K/Akt/mTOR pathway in the brain. Arch Med Res 51(6):492–503. https://doi.org/10.1016/j.arcmed.2020.05.002

    Article  PubMed  CAS  Google Scholar 

  87. Hankittichai P, Lou HJ, Wikan N, Smith DR, Potikanond S, Nimlamool W (2020) Oxyresveratrol inhibits IL-1β-induced inflammation via suppressing AKT and ERK1/2 activation in human microglia, HMC3. Int J Mol Sci 21(17):1–19. https://doi.org/10.3390/ijms21176054

    Article  CAS  Google Scholar 

  88. Wu Y, Wang Z, Fu X, Lin Z, Yu K (2020) Geraniol-mediated osteoarthritis improvement by down-regulating PI3K/Akt/NF-κB and MAPK signals: In vivo and in vitro studies. Int Immunopharmacol 86:106713. https://doi.org/10.1016/j.intimp.2020.106713

    Article  PubMed  CAS  Google Scholar 

  89. Hoesel B, Schmid JA (2013) The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 12(1):1–15. https://doi.org/10.1186/1476-4598-12-86

    Article  CAS  Google Scholar 

  90. Zhang Q, Lenardo MJ, Baltimore D (2017) 30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology. Cell 168(1–2):37–57. https://doi.org/10.1016/j.cell.2016.12.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Shih RH, Wang CY, Yang CM (2015) NF-kappaB signaling pathways in neurological inflammation: A mini review. Front Mol Neurosci 8:77. https://doi.org/10.3389/fnmol.2015.00077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Bai D, Ueno L, Vogt PK (2009) Akt-mediated regulation of NFκB and the essentialness of NFκB for the oncogenicity of PI3K and Akt. Int J Cancer 125(12):2863–2870. https://doi.org/10.1002/ijc.24748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Gustin JA, Ozes ON, Akca H et al (2004) Cell type-specific expression of the IκB kinases determines the significance of phosphatidylinositol 3-kinase/Akt signaling to NF-κB activation. J Biol Chem 279(3):1615–1620. https://doi.org/10.1074/jbc.M306976200

    Article  PubMed  CAS  Google Scholar 

  94. Burow ME, Weldon CB, Melnik LI et al (2000) PI3-K/AKT regulation of NF-κB signaling events in suppression of TNF-induced apoptosis. Biochem Biophys Res Commun 271(2):342–345. https://doi.org/10.1006/bbrc.2000.2626

    Article  PubMed  CAS  Google Scholar 

  95. Koo JW, Russo SJ, Ferguson D, Nestler EJ, Duman RS (2010) Nuclear factor-κB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc Natl Acad Sci U S A 107(6):2669–2674. https://doi.org/10.1073/pnas.0910658107

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rolls A, Shechter R, London A et al (2007) Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol 9(9):1081–1088. https://doi.org/10.1038/ncb1629

    Article  PubMed  CAS  Google Scholar 

  97. O’Neill LAJ, Kaltschmidt C (1997) NF-κB: A crucial transcription factor for glial and neuronal cell function. Trends Neurosci 20(6):252–258. https://doi.org/10.1016/S0166-2236(96)01035-1

    Article  PubMed  Google Scholar 

  98. Lukasiuk K, Kaczmarek L, Condorelli DF (1995) Inducible and constitutive transcription factor NF-κB-like DNA binding activities in rat brain cells cultured in vitro. Neurochem Int 26(2):173–178. https://doi.org/10.1016/0197-0186(94)00121-A

    Article  PubMed  CAS  Google Scholar 

  99. Shukla S, MacLennan GT, Marengo SR, Resnick MI, Gupta S (2005) Constitutive activation of PI3K-Akt and NF-κB during prostate cancer progression in autochthonous transgenic mouse model. Prostate 64(3):224–239. https://doi.org/10.1002/pros.20217

    Article  PubMed  CAS  Google Scholar 

  100. Cahill KE, Morshed RA, Yamini B (2016) Nuclear factor-κB in glioblastoma: Insights into regulators and targeted therapy. Neuro Oncol 18(3):329–339. https://doi.org/10.1093/neuonc/nov265

    Article  PubMed  CAS  Google Scholar 

  101. Maurer U, Preiss F, Brauns-Schubert P, Schlicher L, Charvet C (2014) GSK-3 -at the crossroads of cell death and survival. J Cell Sci 127(7):1369–1378. https://doi.org/10.1242/jcs.138057

    Article  PubMed  CAS  Google Scholar 

  102. Zhao L, Lee JY, Hwang DH (2008) The phosphatidylinositol 3-kinase/Akt pathway negatively regulates NOD2-mediated NF-κB pathway. Biochem Pharmacol 75(7):1515–1525. https://doi.org/10.1016/j.bcp.2007.12.014

    Article  PubMed  CAS  Google Scholar 

  103. Martin M, Rehani K, Jope RS, Michalek SM (2005) Toll-like receptor - mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 6(8):777–784. https://doi.org/10.1038/ni1221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Molnarfi N, Gruaz L, Dayer J-M, Burger D (2007) Opposite regulation of IL-1β and secreted IL-1 receptor antagonist production by phosphatidylinositide-3 kinases in human monocytes activated by lipopolysaccharides or contact with T cells. J Immunol 178(1):446–454. https://doi.org/10.4049/jimmunol.178.1.446

    Article  PubMed  CAS  Google Scholar 

  105. Koistinaho J, Malm T, Goldsteins G (2011) Glycogen synthase kinase-3β: A mediator of inflammation in Alzheimer’s disease? Int J Alzheimers Dis 2011:129753. https://doi.org/10.4061/2011/129753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Yuskaitis CJ, Jope RS (2009) Glycogen synthase kinase-3 regulates microglial migration, inflammation, and inflammation-induced neurotoxicity. Cell Signal 21(2):264–273. https://doi.org/10.1016/j.cellsig.2008.10.014

    Article  PubMed  CAS  Google Scholar 

  107. Matioli MNPS, Nitrini R (2015) Mechanisms linking insulin cerebral resistance to Alzheimer’s disease: A brief review. Dement Neuropsychol 9(2):96–102. https://doi.org/10.1590/1980-57642015DN92000003

    Article  PubMed  PubMed Central  Google Scholar 

  108. Boucher J, Kleinridders A, Ronald Kahn C (2014) Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 6(1):a009191. https://doi.org/10.1101/cshperspect.a009191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Zhao Y, Hu X, Liu Y et al (2017) ROS signaling under metabolic stress: Cross-talk between AMPK and AKT pathway. Mol Cancer 16(1):79. https://doi.org/10.1186/s12943-017-0648-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Koundouros N, Poulogiannis G (2018) Phosphoinositide 3-Kinase/Akt signaling and redox metabolism in cancer. Front Oncol 8:160. https://doi.org/10.3389/fonc.2018.00160

    Article  PubMed  PubMed Central  Google Scholar 

  111. Serwach K, Gruszczynska-Biegala J (2020) Target molecules of STIM proteins in the central nervous system. Front Mol Neurosci 13:617422. https://doi.org/10.3389/fnmol.2020.617422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Henke N, Albrecht P, Pfeiffer A, Toutzaris D, Zanger K, Methner A (2012) Stromal interaction molecule 1 (STIM1) is involved in the regulation of mitochondrial shape and bioenergetics and plays a role in oxidative stress. J Biol Chem 287(50):42042–42052. https://doi.org/10.1074/jbc.M112.417212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Santoso NG, Cebotaru L, Guggino WB (2011) Polycystin-1, 2, and STIM1 interact with IP(3)R to modulate ER Ca release through the PI3K/Akt pathway. Cell Physiol Biochem 27(6):715–726. https://doi.org/10.1159/000330080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Błaszczyk JW (2020) Energy metabolism decline in the aging brain-Pathogenesis of neurodegenerative disorders. Metabolites 10(11):1–20. https://doi.org/10.3390/metabo10110450

    Article  CAS  Google Scholar 

  115. Hayes JD, Chanas SA, Henderson CJ et al (2000) The Nrf2 transcription factor contributes both to the basal expression of glutathione S-transferases in mouse liver and to their induction by the chemopreventive synthetic antioxidants, butylated hydroxyanisole and ethoxyquin. Biochem Soc Trans 28(2):33–41. https://doi.org/10.1042/bst0280033

    Article  PubMed  CAS  Google Scholar 

  116. Lu SC (2009) Regulation of glutathione synthesis. Mol Aspects Med 30(1–2):42–59. https://doi.org/10.1016/j.mam.2008.05.005

    Article  PubMed  CAS  Google Scholar 

  117. Chambers JW, LoGrasso PV (2011) Mitochondrial c-Jun N-terminal Kinase (JNK) signaling initiates physiological changes resulting in amplification of reactive oxygen species generation. J Biol Chem 286(18):16052–16062. https://doi.org/10.1074/jbc.M111.223602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Di Cristofano A (2017) SGK1: The Dark Side of PI3K Signaling. Curr Top Dev Biol 123:49–71. https://doi.org/10.1016/bs.ctdb.2016.11.006

    Article  PubMed  CAS  Google Scholar 

  119. Onyango IG, Dennis J, Khan SM (2016) Mitochondrial dysfunction in Alzheimer’s disease and the rationale for bioenergetics based therapies. Aging Dis 7(2):201–214. https://doi.org/10.14336/AD.2015.1007

  120. Moreira PI, Carvalho C, Zhu X, Smith MA (1802) Perry G (2010) Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta - Mol Basis Dis 1:2–10. https://doi.org/10.1016/j.bbadis.2009.10.006

    Article  CAS  Google Scholar 

  121. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770–776. https://doi.org/10.1038/35037710

    Article  PubMed  CAS  Google Scholar 

  122. Fu Z, Tindall DJ (2008) FOXOs, cancer and regulation of apoptosis. Oncogene 27(16):2312–2319. https://doi.org/10.1038/onc.2008.24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Kumar S, Bharti A, Mishra NC et al (2001) Targeting of the c-Abl Tyrosine Kinase to Mitochondria in the Necrotic Cell Death Response to Oxidative Stress. J Biol Chem 276(20):17281–17285. https://doi.org/10.1074/jbc.M101414200

    Article  PubMed  CAS  Google Scholar 

  124. Valentin-Vega YA, MacLean KH, Tait-Mulder J et al (2012) Mitochondrial dysfunction in ataxia-telangiectasia. Blood 119(6):1490–1500. https://doi.org/10.1182/blood-2011-08-373639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Kanninen K, White AR, Koistinaho J, Malm T (2011) Targeting glycogen synthase kinase-3β for therapeutic benefit against oxidative stress in Alzheimer’s disease: Involvement of the Nrf2-ARE pathway. Int J Alzheimers Dis 2011:985085. https://doi.org/10.4061/2011/985085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Bouzakri K, Zachrisson A, Al-Khalili L et al (2006) siRNA-based gene silencing reveals specialized roles of IRS-1/Akt2 and IRS-2/Akt1 in glucose and lipid metabolism in human skeletal muscle. Cell Metab 4(1):89–96. https://doi.org/10.1016/j.cmet.2006.04.008

    Article  PubMed  CAS  Google Scholar 

  127. Reddy PH (2013) Amyloid beta-induced glycogen synthase kinase 3β phosphorylated VDAC1 in Alzheimer’s disease: Implications for synaptic dysfunction and neuronal damage. Biochim Biophys Acta - Mol Basis Dis 1832(12):1913–1921. https://doi.org/10.1016/j.bbadis.2013.06.012

    Article  CAS  Google Scholar 

  128. Prakash A, Kumar A (2013) Lycopene protects against memory impairment and mito-oxidative damage induced by colchicine in rats: An evidence of nitric oxide signaling. Eur J Pharmacol 721(1–3):373–381. https://doi.org/10.1016/j.ejphar.2013.08.016

    Article  PubMed  CAS  Google Scholar 

  129. Dubey H, Gulati K, Ray A (2017) Effects of Nitric oxide (NO) modulators on cognitive function and brain oxidative stress in experimental model of Alzheimer’s disease in rats. J Pharmacol Rep 2:126

    Google Scholar 

  130. Gulati P, Singh N (2014) Neuroprotective effect of tadalafil, a PDE-5 inhibitor, and its modulation by L-NAME in mouse model of ischemia-reperfusion injury. J Surg Res 186(1):475–483. https://doi.org/10.1016/j.jss.2013.08.005

    Article  PubMed  CAS  Google Scholar 

  131. Gulati P, Singh N, Muthuraman A (2014) Pharmacologic evidence for role of endothelial nitric oxide synthase in neuroprotective mechanism of ischemic postconditioning in mice. J Surg Res 188(1):349–360. https://doi.org/10.1016/j.jss.2013.12.015

    Article  PubMed  CAS  Google Scholar 

  132. Yi J, Horky LL, Friedlich AL, Shi Y, Rogers JT, Huang X (2009) L-Arginine and Alzheimer’s disase. Int J Clin Exp Pathol 2(3):211–238. www.ijcep.com/IJCEP808005

  133. Rajasekar N, Nath C, Hanif K, Shukla R (2017) Intranasal insulin improves cerebral blood flow, Nrf-2 expression and BDNF in STZ (ICV)-induced memory impaired rats. Life Sci 173:1–10. https://doi.org/10.1016/j.lfs.2016.09.020

    Article  PubMed  CAS  Google Scholar 

  134. Wink DA, Miranda KM, Espey MG et al (2001) Mechanisms of the antioxidant effects of nitric oxide. Antioxidants Redox Signal 3(2):203–213. https://doi.org/10.1089/152308601300185179

    Article  CAS  Google Scholar 

  135. Kolesnik B, Palten K, Schrammel A et al (2013) Efficient nitrosation of glutathione by nitric oxide. Free Radic Biol Med 63:51–64. https://doi.org/10.1016/j.freeradbiomed.2013.04.034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Xu L, Zhu J, Yin W, Ding X (2015) Astaxanthin improves cognitive deficits from oxidative stress, nitric oxide synthase and inflammation through upregulation of PI3K/Akt in diabetes rat. Int J Clin Exp Pathol 8(6):6083–6094. www.ijcep.com/

  137. Nan W, Zhonghang X, Keyan C, Tongtong L, Wanshu G, Zhongxin X (2018) Epigallocatechin-3-gallate reduces neuronal apoptosis in rats after middle cerebral artery occlusion injury via PI3K/AKT/eNOS signaling pathway. Biomed Res Int 2018:6473580. https://doi.org/10.1155/2018/6473580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Garabadu D, Verma J (2019) Exendin-4 attenuates brain mitochondrial toxicity through PI3K/Akt-dependent pathway in amyloid beta (1–42)-induced cognitive deficit rats. Neurochem Int 128:39–49. https://doi.org/10.1016/j.neuint.2019.04.006

    Article  PubMed  CAS  Google Scholar 

  139. Magrané J, Rosen KM, Smith RC, Walsh K, Gouras GK, Querfurth HW (2005) Intraneuronal β-amyloid expression downregulates the Akt survival pathway and blunts the stress response. J Neurosci 25(47):10960–10969. https://doi.org/10.1523/JNEUROSCI.1723-05.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2018) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 14:450–464. https://doi.org/10.1016/j.redox.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  141. Austin SA, Santhanam AV, Katusic ZS (2010) Endothelial nitric oxide modulates expression and processing of amyloid precursor protein. Circ Res 107(12):1498–1502. https://doi.org/10.1161/CIRCRESAHA.110.233080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Dewachter I, Van Dorpe J, Smeijers L et al (2000) Aging increased amyloid peptide and caused amyloid plaques in brain of old APP/V717I transgenic mice by a different mechanism than mutant presenilin1. J Neurosci 20(17):6452–6458. https://doi.org/10.1523/jneurosci.20-17-06452.2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Böger RH, Bode-Böger SM (2001) The clinical pharmacology of L-arginine. Annu Rev Pharmacol Toxicol 41:79–99. https://doi.org/10.1146/annurev.pharmtox.41.1.79

    Article  PubMed  Google Scholar 

  144. Gad MZ (2010) Anti-aging effects of L-arginine. J Adv Res 1(3):169–177. https://doi.org/10.1016/j.jare.2010.05.001

    Article  Google Scholar 

  145. Austin SA, Santhanam AV, Hinton DJ, Choi DS, Katusic ZS (2013) Endothelial nitric oxide deficiency promotes Alzheimer’s disease pathology. J Neurochem 127(5):691–700. https://doi.org/10.1111/jnc.12334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Zhang B, Wang Y, Li H et al (2016) Neuroprotective effects of salidroside through PI3K/Akt pathway activation in Alzheimer’s disease models. Drug Des Devel Ther 10:1335–1343. https://doi.org/10.2147/DDDT.S99958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Chen TJ, Wang DC, Chen SS (2009) Amyloid-β interrupts the PI3K-Akt-mTOR signaling pathway that could be involved in brain-derived neurotrophic factor-induced Arc expression in rat cortical neurons. J Neurosci Res 87(10):2297–2307. https://doi.org/10.1002/jnr.22057

    Article  PubMed  CAS  Google Scholar 

  148. Sanati M, Aminyavari S, Khodagholi F et al (2021) PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) ameliorate learning and memory deficit in a rat model of Alzheimer’s disease: Potential participation of STIMs. Neurotoxicology 85:145–159. https://doi.org/10.1016/j.neuro.2021.05.013

    Article  PubMed  CAS  Google Scholar 

  149. Kachooei E, Moosavi-Movahedi AA, Khodagholi F et al (2014) Inhibition study on insulin fibrillation and cytotoxicity by paclitaxel. J Biochem 155(6):361–373. https://doi.org/10.1093/jb/mvu012

    Article  PubMed  CAS  Google Scholar 

  150. Kachooei E, Mozaffarian F, Khodagholi F et al (2018) Paclitaxel inhibited lysozyme fibrillation by increasing colloidal stability through formation of “off-pathway” oligomers. Int J Biol Macromol 111:870–879. https://doi.org/10.1016/j.ijbiomac.2018.01.072

    Article  PubMed  CAS  Google Scholar 

  151. Lackie RE, Maciejewski A, Ostapchenko VG et al (2017) The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases. Front Neurosci 11:254. https://doi.org/10.3389/fnins.2017.00254

    Article  PubMed  PubMed Central  Google Scholar 

  152. Alani B, Salehi R, Sadeghi P et al (2015) Silencing of Hsp70 intensifies 6-OHDA-induced apoptosis and Hsp90 upregulation in PC12 cells. J Mol Neurosci 55(1):174–183. https://doi.org/10.1007/s12031-014-0298-3

    Article  PubMed  CAS  Google Scholar 

  153. Alani B, Salehi R, Sadeghi P et al (2014) Silencing of Hsp90 chaperone expression protects against 6-hydroxydopamine toxicity in PC12 cells. J Mol Neurosci 52(3):392–402. https://doi.org/10.1007/s12031-013-0163-9

    Article  PubMed  CAS  Google Scholar 

  154. Zhou J, Schmid T, Frank R, Brüne B (2004) PI3K/Akt is required for heat shock proteins to protect hypoxia-inducible factor 1alpha from pVHL-independent degradation. J Biol Chem 279(14):13506–13513. https://doi.org/10.1074/jbc.M310164200

    Article  PubMed  CAS  Google Scholar 

  155. Chatterjee M, Andrulis M, Stühmer T et al (2013) The PI3K/Akt signaling pathway regulates the expression of Hsp70, which critically contributes to Hsp90-chaperone function and tumor cell survival in multiple myeloma. Haematologica 98(7):1132–1141. https://doi.org/10.3324/haematol.2012.066175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Sen QuZ, Li L, Sun XJ et al (2014) Glycogen synthase kinase-3 regulates production of amyloid-β peptides and tau phosphorylation in diabetic rat brain. Sci World J 2014:878123. https://doi.org/10.1155/2014/878123

    Article  CAS  Google Scholar 

  157. Avrahami L, Farfara D, Shaham-Kol M, Vassar R, Frenkel D, Eldar-Finkelman H (2013) Inhibition of glycogen synthase kinase-3 ameliorates β-amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the alzheimer disease mouse model: In vivo and in vitro studies. J Biol Chem 288(2):1295–1306. https://doi.org/10.1074/jbc.M112.409250

    Article  PubMed  CAS  Google Scholar 

  158. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368(9533):387–403. https://doi.org/10.1016/S0140-6736(06)69113-7

    Article  PubMed  CAS  Google Scholar 

  159. Götz J, Chen F, Van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ42 fibrils. Science 293(5534):1491–1495. https://doi.org/10.1126/science.1062097

    Article  PubMed  Google Scholar 

  160. Ma QL, Lim GP, Harris-White ME et al (2006) Antibodies against β-amyloid reduce Aβ oligomers, glycogen synthase kinase-3β activation and τ phosphorylation in vivo and in vitro. J Neurosci Res 83(3):374–384. https://doi.org/10.1002/jnr.20734

    Article  PubMed  CAS  Google Scholar 

  161. Twomey C, McCarthy JV (2006) Presenilin-1 is an unprimed glycogen synthase kinase-3β substrate. FEBS Lett 580(17):4015–4020. https://doi.org/10.1016/j.febslet.2006.06.035

    Article  PubMed  CAS  Google Scholar 

  162. Phiel CJ, Wilson CA, Lee VMY, Klein PS (2003) GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature 423(6938):435–439. https://doi.org/10.1038/nature01640

    Article  PubMed  CAS  Google Scholar 

  163. Siman R, Reaume AG, Savage MJ et al (2000) Presenilin-1 P264L knock-in mutation: Differential effects on Aβ production, amyloid deposition, and neuronal vulnerability. J Neurosci 20(23):8717–8726. https://doi.org/10.1523/jneurosci.20-23-08717.2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Lee HK, Kumar P, Fu Q, Rosen KM, Querfurth HW (2009) The insulin/Akt signaling pathway is targeted by intracellular β-amyloid. Mol Biol Cell 20(5):1533–1544. https://doi.org/10.1091/mbc.E08-07-0777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Yao Y, Wang Y, Kong L, Chen Y, Yang J (2019) Osthole decreases tau protein phosphorylation via PI3K/AKT/GSK-3β signaling pathway in Alzheimer’s disease. Life Sci 217:16–24. https://doi.org/10.1016/j.lfs.2018.11.038

    Article  PubMed  CAS  Google Scholar 

  166. Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104(6):1433–1439. https://doi.org/10.1111/j.1471-4159.2007.05194.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Hooper C, Markevich V, Plattner F et al (2007) Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur J Neurosci 25(1):81–86. https://doi.org/10.1111/j.1460-9568.2006.05245.x

    Article  PubMed  Google Scholar 

  168. Hansen TVO, Rehfeld JF, Nielsen FC (2004) GSK-3β reduces cAMP-induced cholecystokinin gene expression by inhibiting CREB binding. NeuroReport 15(5):841–845. https://doi.org/10.1097/00001756-200404090-00021

    Article  PubMed  CAS  Google Scholar 

  169. Baki L, Shioi J, Wen P et al (2004) PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation: Effects of FAD mutations. EMBO J 23(13):2586–2596. https://doi.org/10.1038/sj.emboj.7600251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Cedazo-Mínguez A, Popescu BO, Blanco-Millán JM et al (2003) Apolipoprotein E and β-amyloid (1–42) regulation of glycogen synthase kinase-3β. J Neurochem 87(5):1152–1164. https://doi.org/10.1046/j.1471-4159.2003.02088.x

    Article  PubMed  CAS  Google Scholar 

  171. Kitagishi Y, Nakanishi A, Ogura Y, Matsuda S (2014) Dietary regulation of PI3K/AKT/GSK-3β pathway in Alzheimer’s disease. Alzheimer’s Res Ther 6(3):1–7. https://doi.org/10.1186/alzrt265

    Article  Google Scholar 

  172. Takeuchi M, Kikuchi S, Sasaki N et al (2005) Involvement of advanced glycation end-products (AGEs) in Alzheimers disease. Curr Alzheimer Res 1(1):39–46. https://doi.org/10.2174/1567205043480582

    Article  Google Scholar 

  173. Li XH, Lv BL, Xie JZ, Liu J, Zhou XW, Wang JZ (2012) AGEs induce Alzheimer-like tau pathology and memory deficit via RAGE-mediated GSK-3 activation. Neurobiol Aging 33(7):1400–1410. https://doi.org/10.1016/j.neurobiolaging.2011.02.003

    Article  PubMed  CAS  Google Scholar 

  174. Resende RR, Adhikari A (2009) Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation. Cell Commun Signal 7(1):1–20. https://doi.org/10.1186/1478-811X-7-20

    Article  CAS  Google Scholar 

  175. Marte BM, Downward J (1997) PKB/Akt: Connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci 22(9):355–358. https://doi.org/10.1016/S0968-0004(97)01097-9

    Article  PubMed  CAS  Google Scholar 

  176. Murga C, Laguinge L, Wetzker R, Cuadrado A, Gutkind JS (1998) Activation of Akt/protein kinase B by G protein-coupled receptors: A role for α and βγ subunits of heterotrimeric G proteins acting through phosphatidylinositol-3-OH kinaseγ. J Biol Chem 273(30):19080–19085. https://doi.org/10.1074/jbc.273.30.19080

    Article  PubMed  CAS  Google Scholar 

  177. Budd DC, McDonald J, Emsley N, Cain K, Tobin AB (2003) The C-terminal tail of the M3-muscarinic receptor possesses anti-apoptotic properties. J Biol Chem 278(21):19565–19573. https://doi.org/10.1074/jbc.M211670200

    Article  PubMed  CAS  Google Scholar 

  178. Shafer SH, Williams CL (2004) Elevated Rac1 activity changes the M3 muscarinic acetylcholine receptor-mediated inhibition of proliferation to induction of cell death. Mol Pharmacol 65(5):1080–1091. https://doi.org/10.1124/mol.65.5.1080

    Article  PubMed  CAS  Google Scholar 

  179. Cui QL, Fogle E, Almazan G (2006) Muscarinic acetylcholine receptors mediate oligodendrocyte progenitor survival through Src-like tyrosine kinases and PI3K/Akt pathways. Neurochem Int 48(5):383–393. https://doi.org/10.1016/j.neuint.2005.11.014

    Article  PubMed  CAS  Google Scholar 

  180. Jin Z, Gao F, Flagg T, Deng X (2004) Nicotine induces multi-site phosphorylation of Bad in association with suppression of apoptosis. J Biol Chem 279(22):23837–23844. https://doi.org/10.1074/jbc.M402566200

    Article  PubMed  CAS  Google Scholar 

  181. Belluardo N, Mudò G, Blum M, Itoh N, Agnati L, Fuxe K (2004) Nicotine-induced FGF-2 mRNA in rat brain is preserved during aging. Neurobiol Aging 25(10):1333–1342. https://doi.org/10.1016/j.neurobiolaging.2004.01.002

    Article  PubMed  CAS  Google Scholar 

  182. Garrido R, Mattson MP, Hennig B, Toborek M (2001) Nicotine protects against arachidonic-acid-induced caspase activation, cytochrome c release and apoptosis of cultured spinal cord neurons. J Neurochem 76(5):1395–1403. https://doi.org/10.1046/j.1471-4159.2001.00135.x

    Article  PubMed  CAS  Google Scholar 

  183. Berg DK, Conroy WG (2002) Nicotinic α7 receptors: Synaptic options and downstream signaling in neurons. J Neurobiol 53(4):512–523. https://doi.org/10.1002/neu.10116

    Article  PubMed  CAS  Google Scholar 

  184. Shaw S, Bencherif M, Marrero MB (2002) Janus kinase 2, an early target of α7 nicotinic acetylcholine receptor-mediated neuroprotection against Aβ-(1–42) amyloid. J Biol Chem 277(47):44920–44924. https://doi.org/10.1074/jbc.M204610200

    Article  PubMed  CAS  Google Scholar 

  185. Kume T, Takada-Takatori Y (2018) Nicotinic acetylcholine receptor signaling: Roles in neuroprotection. In: Akaike A, Shimohama S, Misu Y (eds) Nicotinic Acetylcholine Receptor Signaling in Neuroprotection. Springer, Singapore, pp 59–71. https://doi.org/10.1007/978-981-10-8488-1_4

  186. Noh MY, Koh SH, Kim Y, Kim HY, Cho GW, Kim SH (2009) Neuroprotective effects of donepezil through inhibition of GSK-3 activity in amyloid-β-induced neuronal cell death. J Neurochem 108(5):1116–1125. https://doi.org/10.1111/j.1471-4159.2008.05837.x

    Article  PubMed  CAS  Google Scholar 

  187. Miner SES, Al-Hesayen A, Nield LE, Gori T, Parker JD (2010) Acetylcholine acutely modifies nitric oxide synthase function in the human coronary circulation. Exp Physiol 95(12):1167–1176. https://doi.org/10.1113/expphysiol.2010.053926

    Article  PubMed  CAS  Google Scholar 

  188. Prast H, Fischer H, Werner E, Werner-Felmayer G, Philippu A (1995) Nitric oxide modulates the release of acetylcholine in the ventral striatum of the freely moving rat. Naunyn Schmiedebergs Arch Pharmacol 352(1):67–73. https://doi.org/10.1007/BF00169191

    Article  PubMed  CAS  Google Scholar 

  189. Prast H, Philippu A (1992) Nitric oxide releases acetylcholine in the basal forebrain. Eur J Pharmacol 216(1):139–140. https://doi.org/10.1016/0014-2999(92)90223-Q

    Article  PubMed  CAS  Google Scholar 

  190. Ikarashi Y, Takahashi A, Ishimaru H, Shiobara T, Maruyama Y (1998) The role of nitric oxide in striatal acetylcholine release induced by N-methyl-D-aspartate. Neurochem Int 33(3):255–261. https://doi.org/10.1016/S0197-0186(98)00029-1

    Article  PubMed  CAS  Google Scholar 

  191. Zhao L, Chu CB, Li JF et al (2013) Glycogen synthase kinase-3 reduces acetylcholine level in striatum via disturbing cellular distribution of choline acetyltransferase in cholinergic interneurons in rats. Neuroscience 255:203–211. https://doi.org/10.1016/j.neuroscience.2013.10.001

    Article  PubMed  CAS  Google Scholar 

  192. Kitamura Y, Shimohama S, Kamoshima W et al (1998) Alteration of proteins regulating apoptosis, Bcl-2, Bcl-x, Bax, Bak, Bad, ICH-1 and CPP32. Alzheimer’s disease Brain Res 780(2):260–269. https://doi.org/10.1016/S0006-8993(97)01202-X

    Article  PubMed  CAS  Google Scholar 

  193. Calissano P, Matrone C, Amadoro G (2009) Apoptosis and in vitro Alzheimer disease neuronal models. Commun Integr Biol 2(2):163–169. https://doi.org/10.4161/cib.7704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Jeong SJ, Dasgupta A, Jung KJ et al (2008) PI3K/AKT inhibition induces caspase-dependent apoptosis in HTLV-1-transformed cells. Virology 370(2):264–272. https://doi.org/10.1016/j.virol.2007.09.003

    Article  PubMed  CAS  Google Scholar 

  195. Zhou H, Li XM, Meinkoth J, Pittman RN (2000) Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol 151(3):483–494. https://doi.org/10.1083/jcb.151.3.483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Sorenson CM (2004) Bcl-2 family members and disease. Biochim Biophys Acta - Mol Cell Res 1644(2–3):169–177. https://doi.org/10.1016/j.bbamcr.2003.08.010

    Article  CAS  Google Scholar 

  197. Meng Y, Wang W, Kang J, Wang X, Sun L (2017) Role of the PI3K/AKT signalling pathway in apoptotic cell death in the cerebral cortex of streptozotocin-induced diabetic rats. Exp Ther Med 13(5):2417–2422. https://doi.org/10.3892/etm.2017.4259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Gardai SJ, Hildeman DA, Frankel SK et al (2004) Phosphorylation of Bax ser184 by Akt regulates its activity and apoptosis in neutrophils. J Biol Chem 279(20):21085–21095. https://doi.org/10.1074/jbc.M400063200

    Article  PubMed  CAS  Google Scholar 

  199. Takino J, ichi, Sato T, Nagamine K, Hori T, (2019) The inhibition of Bax activation-induced apoptosis by RasGRP2 via R-Ras-PI3K-Akt signaling pathway in the endothelial cells. Sci Rep 9(1):1–11. https://doi.org/10.1038/s41598-019-53419-4

    Article  CAS  Google Scholar 

  200. Tsuruta F, Masuyama N, Gotoh Y (2002) The phosphatidylinositol 3-kinase (PI3K)-Akt pathway suppresses Bax translocation to mitochondria. J Biol Chem 277(16):14040–14047. https://doi.org/10.1074/jbc.M108975200

    Article  PubMed  CAS  Google Scholar 

  201. Bose P, Rahmani M, Grant S (2012) Coordinate PI3K pathway and Bcl-2 family disruption in AML. Oncotarget 3(12):1499–1500. https://doi.org/10.18632/oncotarget.809

  202. Le-Niculescu H, Bonfoco E, Kasuya Y, Claret F-X, Green DR, Karin M (1999) Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol Cell Biol 19(1):751–763. https://doi.org/10.1128/mcb.19.1.751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: A play in three Akts. Genes Dev 13(22):2905–2927. https://doi.org/10.1101/gad.13.22.2905

    Article  PubMed  CAS  Google Scholar 

  204. Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from age-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12(16):2488–2498. https://doi.org/10.1101/gad.12.16.2488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Porta C, Paglino C, Mosca A (2014) Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 4:64. https://doi.org/10.3389/fonc.2014.00064

    Article  PubMed  PubMed Central  Google Scholar 

  206. Zong WX, Edelstein LC, Chen C, Bash J, Gélinas C (1999) The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-κB that blocks TNFα-induced apoptosis. Genes Dev 13(4):382–387. https://doi.org/10.1101/gad.13.4.382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Jacobs KM, Bhave SR, Ferraro DJ, Jaboin JJ, Hallahan DE, Thotala D (2012) GSK-3β: A bifunctional role in cell death pathways. Int J Cell Biol 2012:11. https://doi.org/10.1155/2012/930710

    Article  CAS  Google Scholar 

  208. Beurel E, Jope RS (2006) The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol 79(4):173–189. https://doi.org/10.1016/j.pneurobio.2006.07.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Higurashi M, Iketani M, Takei K et al (2012) Localized role of CRMP1 and CRMP2 in neurite outgrowth and growth cone steering. Dev Neurobiol 72(12):1528–1540. https://doi.org/10.1002/dneu.22017

    Article  PubMed  CAS  Google Scholar 

  210. Gu Y, Ihara Y (2000) Evidence that collapsin response mediator protein-2 is involved in the dynamics of microtubules. J Biol Chem 275(24):17917–17920. https://doi.org/10.1074/jbc.C000179200

    Article  PubMed  CAS  Google Scholar 

  211. Gu Y, Hamajima N, Ihara Y (2000) Neurofibrillary tangle-associated collapsin response mediator protein-2 (CRMP-2) is highly phosphorylated on Thr-509, Ser-518, and Ser-522. Biochemistry 39(15):4267–4275. https://doi.org/10.1021/bi992323h

    Article  PubMed  CAS  Google Scholar 

  212. Brittain JM, Piekarz AD, Wang Y, Kondo T, Cummins TR, Khanna R (2009) An atypical role for collapsin response mediator protein 2 (CRMP-2) in neurotransmitter release via interaction with presynaptic voltage-gated calcium channels. J Biol Chem 284(45):31375–31390. https://doi.org/10.1074/jbc.M109.009951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Enguita M, DeGregorio-Rocasolano N, Abad A, Trullas R (2005) Glycogen synthase kinase 3 activity mediates neuronal pentraxin 1 expression and cell death induced by potassium deprivation in cerebellar granule cells. Mol Pharmacol 67(4):1237–1246. https://doi.org/10.1124/mol.104.007062

    Article  PubMed  CAS  Google Scholar 

  214. Xiong T, Tang J, Zhao J et al (2012) Involvement of the Akt/GSK-3β/CRMP-2 pathway in axonal injury after hypoxic-ischemic brain damage in neonatal rat. Neuroscience 216:123–132. https://doi.org/10.1016/j.neuroscience.2012.04.052

    Article  PubMed  CAS  Google Scholar 

  215. Nelson AR, Sweeney MD, Sagare AP, Zlokovic BV (2016) Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease. Biochim Biophys Acta - Mol Basis Dis 1862(5):887-900. https://doi.org/10.1016/j.bbadis.2015.12.016

  216. Tan XL, Xue YQ, Ma T et al (2015) Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment. Mol Neurodegener 10(1):24. https://doi.org/10.1186/s13024-015-0020-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Hayakawa N, Abe M, Eto R, Kato H, Araki T (2008) Age-related changes of NGF, BDNF, parvalbumin and neuronal nitric oxide synthase immunoreactivity in the mouse hippocampal CA1 sector. Metab Brain Dis 23(2):199–211. https://doi.org/10.1007/s11011-008-9084-7

    Article  PubMed  CAS  Google Scholar 

  218. Kolarow R, Kuhlmann CRW, Munsch T et al (2014) BDNF-induced nitric oxide signals in cultured rat hippocampal neurons: Time course, mechanism of generation, and effect on neurotrophin secretion. Front Cell Neurosci 8:323. https://doi.org/10.3389/fncel.2014.00323

    Article  PubMed  PubMed Central  Google Scholar 

  219. Ghavami S, Shojaei S, Yeganeh B et al (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 112:24–49. https://doi.org/10.1016/j.pneurobio.2013.10.004

    Article  PubMed  CAS  Google Scholar 

  220. Gong C, Bauvy C, Tonelli G et al (2013) Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene 32(18):2261–2272. https://doi.org/10.1038/onc.2012.252

    Article  PubMed  CAS  Google Scholar 

  221. Dunlop EA, Tee AR (2014) mTOR and autophagy: A dynamic relationship governed by nutrients and energy. Semin Cell Dev Biol 36:121–129. https://doi.org/10.1016/j.semcdb.2014.08.006

    Article  PubMed  CAS  Google Scholar 

  222. Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584(7):1287–1295. https://doi.org/10.1016/j.febslet.2010.01.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J, Pedraza-Chaverri J (2014) The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 26(12):2694–2701. https://doi.org/10.1016/j.cellsig.2014.08.019

    Article  PubMed  CAS  Google Scholar 

  224. Yamada M, Ohnishi H, Sano SI, Nakatani A, Ikeuchi T, Hatanaka H (1997) Insulin receptor substrate (IRS)-1 and IRS-2 are tyrosine- phosphorylated and associated with phosphatidylinositol 3-kinase in response to brain-derived neurotrophic factor in cultured cerebral cortical neurons. J Biol Chem 272(48):30334–30339. https://doi.org/10.1074/jbc.272.48.30334

    Article  PubMed  CAS  Google Scholar 

  225. Schratt GM, Nigh EA, Chen WG, Hu L, Greenberg ME (2004) BDNF regulates the translation of a select group of mRNAs by a mammalian target of rapamycin-phosphatidylinositol 3-kinase-dependent pathway during neuronal development. J Neurosci 24(33):7366–7377. https://doi.org/10.1523/JNEUROSCI.1739-04.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Cunha C, Brambilla R, Thomas KL (2010) A simple role for BDNF in learning and memory? Front Mol Neurosci 3:1. https://doi.org/10.3389/neuro.02.001.2010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Huang W, Zhu PJ, Zhang S et al (2013) mTORC2 controls actin polymerization required for consolidation of long-term memory. Nat Neurosci 16(4):441–448. https://doi.org/10.1038/nn.3351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Stoica L, Zhu PJ, Huang W, Zhou H, Kozma SC, Costa-Mattioli M (2011) Selective pharmacogenetic inhibition of mammalian target of Rapamycin complex I (mTORC1) blocks long-term synaptic plasticity and memory storage. Proc Natl Acad Sci U S A 108(9):3791–3796. https://doi.org/10.1073/pnas.1014715108

    Article  PubMed  PubMed Central  Google Scholar 

  229. Hamann S, Monarch ES, Goldstein FC (2002) Impaired fear conditioning in Alzheimer’s disease. Neuropsychologia 40(8):1187–1195. https://doi.org/10.1016/S0028-3932(01)00223-8

    Article  PubMed  Google Scholar 

  230. Kishimoto Y, Fukumoto K, Nagai M, Mizuguchi A, Kobashi Y (2017) Early contextual fear memory deficits in a double-transgenic amyloid- β precursor protein/Presenilin 2 mouse model of Alzheimer’s disease. Int J Alzheimers Dis 2017:8584205. https://doi.org/10.1155/2017/8584205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Ou LC, Gean PW (2006) Regulation of amygdala-dependent learning by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol-3-kinase. Neuropsychopharmacology 31(2):287–296. https://doi.org/10.1038/sj.npp.1300830

    Article  PubMed  CAS  Google Scholar 

  232. Lin CH, Yeh SH, Lin CH et al (2001) A Role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron 31(5):841–851. https://doi.org/10.1016/S0896-6273(01)00433-0

    Article  PubMed  CAS  Google Scholar 

  233. Musumeci G, Sciarretta C, Rodríguez-Moreno A et al (2009) TrkB modulates fear learning and amygdalar synaptic plasticity by specific docking sites. J Neurosci 29(32):10131–10143. https://doi.org/10.1523/JNEUROSCI.1707-09.2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Chen X, Garelick MG, Wang H, Li V, Athos J, Storm DR (2005) PI3 kinase signaling is required for retrieval and extinction of contextual memory. Nat Neurosci 8(7):925–931. https://doi.org/10.1038/nn1482

    Article  PubMed  CAS  Google Scholar 

  235. Peineau S, Bradley C, Taghibiglou C et al (2008) The role of GSK-3 in synaptic plasticity. Br J Pharmacol 153(SUPPL 1):S428–S437. https://doi.org/10.1038/bjp.2008.2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Peineau S, Taghibiglou C, Bradley C et al (2007) LTP inhibits LTD in the hippocampus via regulation of GSK3β. Neuron 53(5):703–717. https://doi.org/10.1016/j.neuron.2007.01.029

    Article  PubMed  CAS  Google Scholar 

  237. Wang Q, Liu L, Pei L et al (2003) Control of synaptic strength, a novel function of Akt. Neuron 38(6):915–928. https://doi.org/10.1016/S0896-6273(03)00356-8

    Article  CAS  PubMed  Google Scholar 

  238. Picón-Pagès P, Garcia-Buendia J (1865) Muñoz FJ (2019) Functions and dysfunctions of nitric oxide in brain. Biochim Biophys Acta - Mol Basis Dis 8:1949–1967. https://doi.org/10.1016/j.bbadis.2018.11.007

    Article  CAS  Google Scholar 

  239. Dubey H, Gulati K, Ray A (2019) Alzheimer’s disease: A contextual link with nitric oxide synthase. Curr Mol Med 20(7):505–515. https://doi.org/10.2174/1566524019666191129103117

    Article  CAS  Google Scholar 

  240. Balez R, Ooi L (2016) Getting to NO Alzheimer’s disease: Neuroprotection versus neurotoxicity mediated by nitric oxide. Oxid Med Cell Longev 2016:3806157. https://doi.org/10.1155/2016/3806157

    Article  PubMed  CAS  Google Scholar 

  241. Doreulee N, Sergeeva OA, Yanovsky Y et al (2003) Cortico-striatal synaptic plasticity in endothelial nitric oxide synthase deficient mice. Brain Res 964(1):159–163. https://doi.org/10.1016/S0006-8993(02)04121-5

    Article  PubMed  CAS  Google Scholar 

  242. Huang EP (1997) Synaptic plasticity: A role for nitric oxide in LTP. Curr Biol 7(3):R141–R143. https://doi.org/10.1016/s0960-9822(97)70073-3

    Article  PubMed  CAS  Google Scholar 

  243. Paul V, Ekambaram P (2011) Involvement of nitric oxide in learning & memory processes. Indian J Med Res 133(5):471–478

    PubMed  PubMed Central  CAS  Google Scholar 

  244. Son H, Hawkins RD, Martin K et al (1996) Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 87(6):1015–1023. https://doi.org/10.1016/S0092-8674(00)81796-1

    Article  PubMed  CAS  Google Scholar 

  245. Kantor DB, Lanzrein M, Stary SJ et al (1996) A role for endothelial NO synthase in LTP revealed by adenovirus- mediated inhibition and rescue. Science 274(5293):1744–1748. https://doi.org/10.1126/science.274.5293.1744

    Article  PubMed  CAS  Google Scholar 

  246. Provias J, Jeynes B (2008) Neurofibrillary tangles and senile plaques in Alzheimers brains are associated with reduced capillary expression of vascular endothelial growth factor and endothelial nitric oxide synthase. Curr Neurovasc Res 5(3):199–205. https://doi.org/10.2174/156720208785425729

    Article  PubMed  CAS  Google Scholar 

  247. Kumar M, Bansal N (2018) Ellagic acid prevents dementia through modulation of PI3-kinase-endothelial nitric oxide synthase signalling in streptozotocin-treated rats. Naunyn Schmiedebergs Arch Pharmacol 391(9):987–1001. https://doi.org/10.1007/s00210-018-1524-2

    Article  PubMed  CAS  Google Scholar 

  248. Santos AI, Martínez-Ruiz A, Araújo IM (2015) S-nitrosation and neuronal plasticity. Br J Pharmacol 172(6):1468–1478. https://doi.org/10.1111/bph.12827

    Article  PubMed  CAS  Google Scholar 

  249. Mysliveček J, Barcal J, Hassmannová J, Záhlava J, Žalud V (1997) Interactions between nitric oxide and dopamine in inhibitory learning and memory in newborn rats. Neuroscience 79(3):659–669. https://doi.org/10.1016/S0306-4522(97)00029-8

    Article  PubMed  Google Scholar 

  250. Okere CO, Kaba H, Higuchi T (1996) Formation of an olfactory recognition memory in mice: Reassessment of the role of nitric oxide. Neuroscience 71(2):349–354. https://doi.org/10.1016/0306-4522(95)00467-X

    Article  PubMed  CAS  Google Scholar 

  251. Yamada K, Noda Y, Nakayama S et al (1995) Role of nitric oxide in learning and memory and in monoamine metabolism in the rat brain. Br J Pharmacol 115(5):852–858. https://doi.org/10.1111/j.1476-5381.1995.tb15011.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. Ali T, Kim T, Rehman SU et al (2018) Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer’s disease. Mol Neurobiol 55(7):6076–6093. https://doi.org/10.1007/s12035-017-0798-6

    Article  PubMed  CAS  Google Scholar 

  253. Zang G, Fang L, Chen L, Wang C (2018) Ameliorative effect of nicergoline on cognitive function through the PI3K/AKT signaling pathway in mouse models of Alzheimer’s disease. Mol Med Rep 17(5):7293–7300. https://doi.org/10.3892/mmr.2018.8786

    Article  PubMed  CAS  Google Scholar 

  254. Srivastava P, Dhuriya YK, Kumar V et al (2018) PI3K/Akt/GSK3β induced CREB activation ameliorates arsenic mediated alterations in NMDA receptors and associated signaling in rat hippocampus: Neuroprotective role of curcumin. Neurotoxicology 67:190–205. https://doi.org/10.1016/j.neuro.2018.04.018

    Article  PubMed  CAS  Google Scholar 

  255. Scheffel MJ, Scurti G, Wyatt MM et al (2018) N-acetyl cysteine protects anti-melanoma cytotoxic T cells from exhaustion induced by rapid expansion via the downmodulation of Foxo1 in an Akt-dependent manner. Cancer Immunol Immunother 67(4):691–702. https://doi.org/10.1007/s00262-018-2120-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Ma S, Chen J, Chen C et al (2018) Erythropoietin rescues memory impairment in a rat model of chronic cerebral hypoperfusion via the EPO-R/JAK2/STAT5/PI3K/Akt/GSK-3β pathway. Mol Neurobiol 55(4):3290–3299. https://doi.org/10.1007/s12035-017-0568-5

    Article  PubMed  CAS  Google Scholar 

  257. Jeong J-H, Kang E-B (2018) Effects of treadmill exercise on PI3K/AKT/GSK-3β pathway and tau protein in high-fat diet-fed rats. J Exerc Nutr Biochem 22(1):9–14. https://doi.org/10.20463/jenb.2018.0002

  258. Moniruzzaman M, Chin YW, Cho J (2018) HO-1 dependent antioxidant effects of ethyl acetate fraction from Physalis alkekengi fruit ameliorates scopolamine-induced cognitive impairments. Cell Stress Chaperones 23(4):763–772. https://doi.org/10.1007/s12192-018-0887-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  259. Jiang W, Guo M, Gong M et al (2018) Vitamin A bio-modulates apoptosis via the mitochondrial pathway after hypoxic-ischemic brain damage. Mol Brain 11(1):14. https://doi.org/10.1186/s13041-018-0360-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Kamel AS, Abdelkader NF, Abd El-Rahman SS, Emara M, Zaki HF, Khattab MM (2018) Stimulation of ACE2/ANG(1–7)/Mas Axis by diminazene ameliorates Alzheimer’s disease in the D-galactose-ovariectomized rat model: Role of PI3K/Akt pathway. Mol Neurobiol 55(10):8188–8202. https://doi.org/10.1007/s12035-018-0966-3

    Article  PubMed  CAS  Google Scholar 

  261. Lai Z, Zhang L, Su J, Cai D, Xu Q (2016) Sevoflurane postconditioning improves long-term learning and memory of neonatal hypoxia-ischemia brain damage rats via the PI3K/Akt-mPTP pathway. Brain Res 1630:25–37. https://doi.org/10.1016/j.brainres.2015.10.050

    Article  PubMed  CAS  Google Scholar 

  262. Bellusci L, Laurino A, Sabatini M et al (2017) New insights into the potential roles of 3-Iodothyronamine (T1AM) and newly developed thyronamine-like TAAR1 agonists in neuroprotection. Front Pharmacol 8:905. https://doi.org/10.3389/fphar.2017.00905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  263. Ding ML, Ma H, Man YG, Lv HY (2017) Protective effects of a green tea polyphenol, epigallocatechin- 3-gallate, against sevoflurane-induced neuronal apoptosis involve regulation of CREB/BDNF/TrkB and PI3K/Akt/mTOR signalling pathways in neonatal mice. Can J Physiol Pharmacol 95(12):1396–1405. https://doi.org/10.1139/cjpp-2016-0333

    Article  PubMed  CAS  Google Scholar 

  264. Lao-Peregrín C, Ballesteros JJ, Fernández M et al (2017) Caffeine-mediated BDNF release regulates long-term synaptic plasticity through activation of IRS2 signaling. Addict Biol 22(6):1706–1718. https://doi.org/10.1111/adb.12433

    Article  PubMed  CAS  Google Scholar 

  265. Heidari S, Mehri S, Hosseinzadeh H (2017) Memory enhancement and protective effects of crocin against D-galactose aging model in the hippocampus of wistar rats. Iran J Basic Med Sci 20(11):1250–1259. https://doi.org/10.22038/IJBMS.2017.9541

  266. Jiang T, Wang XQ, Ding C, Du XL (2017) Genistein attenuates isoflurane-induced neurotoxicity and improves impaired spatial learning and memory by regulating cAMP/CREB and BDNF-TrkB-PI3K/Akt signaling. Korean J Physiol Pharmacol 21(6):579–589. https://doi.org/10.4196/kjpp.2017.21.6.579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  267. Chen Q, Mo R, Wu N et al (2017) Berberine ameliorates diabetes-associated cognitive decline through modulation of aberrant inflammation response and insulin signaling pathway in DM rats. Front Pharmacol 8:334. https://doi.org/10.3389/fphar.2017.00334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Zhang T, Gu J, Wu L et al (2017) Neuroprotective and axonal outgrowth-promoting effects of tetramethylpyrazine nitrone in chronic cerebral hypoperfusion rats and primary hippocampal neurons exposed to hypoxia. Neuropharmacology 118:137–147. https://doi.org/10.1016/j.neuropharm.2017.03.022

    Article  PubMed  CAS  Google Scholar 

  269. Zhang J, Wei SY, Yuan L et al (2017) Davunetide improves spatial learning and memory in Alzheimer’s disease-associated rats. Physiol Behav 174:67–73. https://doi.org/10.1016/j.physbeh.2017.02.038

    Article  PubMed  CAS  Google Scholar 

  270. Ahmad A, Ali T, Park HY, Badshah H, Rehman SU, Kim MO (2017) Neuroprotective effect of Fisetin against amyloid-beta-induced cognitive/synaptic dysfunction, neuroinflammation, and neurodegeneration in adult mice. Mol Neurobiol 54(3):2269–2285. https://doi.org/10.1007/s12035-016-9795-4

    Article  PubMed  CAS  Google Scholar 

  271. Neri-Gómez T, Espinosa-Raya J, Díaz-Cintra S et al (2017) Tibolone modulates neuronal plasticity through regulating Tau, GSK3β/Akt/PI3K pathway and CDK5 p35/p25 complexes in the hippocampus of aged male mice. Neural Regen Res 12(4):588–595. https://doi.org/10.4103/1673-5374.205098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  272. Baral S, Pariyar R, Kim J, Lee HS, Seo J (2017) Quercetin-3-O-glucuronide promotes the proliferation and migration of neural stem cells. Neurobiol Aging 52:39–52. https://doi.org/10.1016/j.neurobiolaging.2016.12.024

    Article  PubMed  CAS  Google Scholar 

  273. Qi Y, Dou DQ, Jiang H et al (2017) Arctigenin attenuates learning and memory deficits through PI3k/Akt/GSK-3 β pathway reducing tau hyperphosphorylation in Aβ-induced AD mice. Planta Med 83(1–2):51–56. https://doi.org/10.1055/s-0042-107471

    Article  PubMed  CAS  Google Scholar 

  274. Qi DS, Tao J, hao, Zhang LQ, et al (2016) Neuroprotection of Cilostazol against ischemia/reperfusion-induced cognitive deficits through inhibiting JNK3/caspase-3 by enhancing Akt1. Brain Res 1653:67–74. https://doi.org/10.1016/j.brainres.2016.10.017

    Article  PubMed  CAS  Google Scholar 

  275. Deng M, Huang L, Ning B et al (2016) β-asarone improves learning and memory and reduces acetyl cholinesterase and beta-amyloid 42 levels in APP/PS1 transgenic mice by regulating Beclin-1-dependent autophagy. Brain Res 1652:188–194. https://doi.org/10.1016/j.brainres.2016.10.008

    Article  PubMed  CAS  Google Scholar 

  276. Zhang ZX, Zhao RP, Wang DS, Wang AN (2016) Fuzhisan ameliorates Aβ production and tau phosphorylation in hippocampal of 11 month old APP/PS1 transgenic mice: A Western blot study. Exp Gerontol 84:88–95. https://doi.org/10.1016/j.exger.2016.09.003

    Article  PubMed  CAS  Google Scholar 

  277. Hua FZ, Ying J, Zhang J et al (2016) Naringenin pre-treatment inhibits neuroapoptosis and ameliorates cognitive impairment in rats exposed to isoflurane anesthesia by regulating the PI3/Akt/PTEN signalling pathway and suppressing NF-B-mediated inflammation. Int J Mol Med 38(4):1271–1280. https://doi.org/10.3892/ijmm.2016.2715

    Article  PubMed  CAS  Google Scholar 

  278. Ramalingam M, Kim SJ (2016) Pharmacological activities and applications of spicatoside A. Biomol Ther 24(5):469–474. https://doi.org/10.4062/biomolther.2015.214

    Article  CAS  Google Scholar 

  279. Chen X, Du YM, Xu F, Liu D, Wang YL (2016) Propofol prevents hippocampal neuronal loss and memory impairment in cerebral ischemia injury through promoting PTEN degradation. J Mol Neurosci 60(1):63–70. https://doi.org/10.1007/s12031-016-0791-y

    Article  PubMed  CAS  Google Scholar 

  280. Wang Y, Wu C, Han B et al (2016) Dexmedetomidine attenuates repeated propofol exposure-induced hippocampal apoptosis, PI3K/Akt/Gsk-3β signaling disruption, and juvenile cognitive deficits in neonatal rats. Mol Med Rep 14(1):769–775. https://doi.org/10.3892/mmr.2016.5321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to I.K.G. Punjab Technical University, Jalandhar (Punjab) and Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar (Punjab).

Author information

Authors and Affiliations

Authors

Contributions

MK and NB wrote and critically revised the manuscript.

Corresponding author

Correspondence to Manish Kumar.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All the authors agreed to publish this review.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Bansal, N. Implications of Phosphoinositide 3-Kinase-Akt (PI3K-Akt) Pathway in the Pathogenesis of Alzheimer’s Disease. Mol Neurobiol 59, 354–385 (2022). https://doi.org/10.1007/s12035-021-02611-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02611-7

Keywords

Navigation