Skip to main content

Advertisement

Log in

Differential Expression and Distinct Roles of Proteinase-Activated Receptor 2 in Microglia and Neurons in Neonatal Mouse Brain After Hypoxia-Ischemic Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Regulation of microglial activation and neuroinflammation are critical factors in the pathogenesis of ischemic brain injury. Interest in protease-activated receptor 2 (PAR2) as a pharmaceutical target for various diseases is creasing. However, it is unclear the expression and functions of PAR2 in hypoxia-ischemic (HI) brain injury. Mice with HI and cells with oxygen–glucose deprivation and reoxygenation (OGD/R) were studied. Immunoblot and qRT-PCR were used to study the differential gene expression in cultured microglia and neurons. Immunofluorescent staining was used to study the expression pattern of PAR2 in the HI brain and phagocytotic activity of microglia after OGD/R. In neonatal mice brain after HI, we found PAR2 expression was abundant in neurons, but barely in microglia from the contralateral side of cortex and hippocampus. Conversely, PAR2 expression was barely in neurons while significantly increased in activated microglia from the ipsilateral side of cortex and hippocampus. The activations of PAR2 were increased in both microglia and neuron in a cell model of OGD/R. PAR2 activation mediated the cross-talk between microglia and neurons including the following: microglial PAR2 mediated inflammatory responses that induced neuronal damage; neuronal PAR2 regulated chemokines that recruited activated microglia to damage area; microglia PAR2 controlled the phagocytosis of degenerating neurons. These data suggested differential expression and distinct roles of PAR2 in microglia and neurons after HI injury; thereby, interventions targeting PAR2 may provide insights into the inflammatory-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data used in this study are available from the corresponding authors upon reasonable request.

Abbreviations

CatB:

Cathepsin B

CCK-8:

Cell-Counting Kit

CCL2:

C–C motif chemokine ligand 2

CLSM:

Confocal laser scanning microscope

CNS:

Central nervous system

CXCL1:

C-X-C motif chemokine ligand 1

DDW:

Double-distilled water

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

FSR:

FSLLRY-NH2

HAND:

HIV-associated neurocognitive disorders

HE:

Hematoxylin–eosin

HI:

Hypoxia–ischemia

HRP:

Horseradish peroxidase

IL-1β:

Interleukin-1β

MCM:

Microglia-conditioned medium

NF-κB:

Nuclear factor kappa B

OGD/R:

Oxygen–glucose deprivation and reoxygenation

PAR2:

Protease-activated receptor 2

PBS:

Phosphate buffer saline

PEI:

Polyethyleneimine

PFA:

Paraformaldehyde

SD:

Standard deviation

SDS:

Sodium dodecyl sulfate

TNF-α:

Tumor necrosis factor-α

References

  1. Al Ahmad A, Gassmann M, Ogunshola OO (2012) Involvement of oxidative stress in hypoxia-induced blood-brain barrier breakdown. Microvasc Res 84(2):222–225. https://doi.org/10.1016/j.mvr.2012.05.008

    Article  CAS  PubMed  Google Scholar 

  2. Muntsant A, Shrivastava K, Recasens M, Gimenez-Llort L (2019) Severe perinatal hypoxic-ischemic brain injury induces long-term sensorimotor deficits, anxiety-like behaviors and cognitive impairment in a sex-, age- and task-selective manner in C57BL/6 mice but can be modulated by neonatal handling. Front Behav Neurosci 13:7. https://doi.org/10.3389/fnbeh.2019.00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Umekawa T, Osman AM, Han W, Ikeda T, Blomgren K (2015) Resident microglia, rather than blood-derived macrophages, contribute to the earlier and more pronounced inflammatory reaction in the immature compared with the adult hippocampus after hypoxia-ischemia. Glia 63(12):2220–2230. https://doi.org/10.1002/glia.22887

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ni J, Wu Z, Peterts C, Yamamoto K, Qing H, Nakanishi H (2015) The critical role of proteolytic relay through cathepsins B and E in the phenotypic change of microglia/macrophage. J Neurosci 35(36):12488–12501. https://doi.org/10.1523/JNEUROSCI.1599-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, Kawahara N, Kuida K et al (2008) Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 172(2):454–469. https://doi.org/10.2353/ajpath.2008.070876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sheldon RA, Hall JJ, Noble LJ, Ferriero DM (2001) Delayed cell death in neonatal mouse hippocampus from hypoxia-ischemia is neither apoptotic nor necrotic. Neurosci Lett 304(3):165–168. https://doi.org/10.1016/s0304-3940(01)01788-8

    Article  CAS  PubMed  Google Scholar 

  7. Kerschensteiner M, Meinl E, Hohlfeld R (2010) Neuro-immune crosstalk in CNS diseases. Results Probl Cell Differ 51:197–216. https://doi.org/10.1007/400_2009_6

    Article  CAS  PubMed  Google Scholar 

  8. Biber K, Neumann H, Inoue K, Boddeke HW (2007) Neuronal ‘on’ and ‘off’ signals control microglia. Trends Neurosci 30(11):596–602. https://doi.org/10.1016/j.tins.2007.08.007

    Article  CAS  PubMed  Google Scholar 

  9. Marinelli S, Basilico B, Marrone MC, Ragozzino D (2019) Microglia-neuron crosstalk: signaling mechanism and control of synaptic transmission. Semin Cell Dev Biol 94:138–151. https://doi.org/10.1016/j.semcdb.2019.05.017

    Article  PubMed  Google Scholar 

  10. Vu TK, Hung DT, Wheaton VI, Coughlin SR (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64(6):1057–1068. https://doi.org/10.1016/0092-8674(91)90261-v

    Article  CAS  PubMed  Google Scholar 

  11. Gerszten RE, Chen J, Ishii M, Ishii K, Wang L, Nanevicz T, Turck CW, Vu TK et al (1994) Specificity of the thrombin receptor for agonist peptide is defined by its extracellular surface. Nature 368(6472):648–651. https://doi.org/10.1038/368648a0

    Article  CAS  PubMed  Google Scholar 

  12. Noorbakhsh F, Tsutsui S, Vergnolle N, Boven LA, Shariat N, Vodjgani M, Warren KG, Andrade-Gordon P et al (2006) Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J Exp Med 203(2):425–435. https://doi.org/10.1084/jem.20052148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bushell TJ, Cunningham MR, McIntosh KA, Moudio S, Plevin R (2016) Protease-activated receptor 2: are common functions in glial and immune cells linked to inflammation-related CNS disorders? Curr Drug Targets 17(16):1861–1870. https://doi.org/10.2174/1389450117666151209115232

    Article  CAS  PubMed  Google Scholar 

  14. Liu Y, Wu Z, Nakanishi Y, Ni J, Hayashi Y, Takayama F, Zhou Y, Kadowaki T et al (2017) Infection of microglia with Porphyromonas gingivalis promotes cell migration and an inflammatory response through the gingipain-mediated activation of protease-activated receptor-2 in mice. Sci Rep 7(1):11759. https://doi.org/10.1038/s41598-017-12173-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jin G, Hayashi T, Kawagoe J, Takizawa T, Nagata T, Nagano I, Syoji M, Abe K (2005) Deficiency of PAR-2 gene increases acute focal ischemic brain injury. J Cereb Blood Flow Metab 25(3):302–313. https://doi.org/10.1038/sj.jcbfm.9600021

    Article  CAS  PubMed  Google Scholar 

  16. Noorbakhsh F, Vergnolle N, McArthur JC, Silva C, Vodjgani M, Andrade-Gordon P, Hollenberg MD, Power C (2005) Proteinase-activated receptor-2 induction by neuroinflammation prevents neuronal death during HIV infection. J Immunol 174(11):7320–7329. https://doi.org/10.4049/jimmunol.174.11.7320

    Article  CAS  PubMed  Google Scholar 

  17. Svensson KJ, Kucharzewska P, Christianson HC, Skold S, Lofstedt T, Johansson MC, Morgelin M, Bengzon J et al (2011) Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proc Natl Acad Sci U S A 108(32):13147–13152. https://doi.org/10.1073/pnas.1104261108

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vannucci RC, Vannucci SJ (1997) A model of perinatal hypoxic-ischemic brain damage. Ann N Y Acad Sci 835:234–249. https://doi.org/10.1111/j.1749-6632.1997.tb48634.x

    Article  CAS  PubMed  Google Scholar 

  19. Rice JE 3rd, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9(2):131–141. https://doi.org/10.1002/ana.410090206

    Article  PubMed  Google Scholar 

  20. Ni J, Wu Z, Stoka V, Meng J, Hayashi Y, Peters C, Qing H, Turk V et al (2019) Increased expression and altered subcellular distribution of cathepsin B in microglia induce cognitive impairment through oxidative stress and inflammatory response in mice. Aging Cell 18(1):e12856. https://doi.org/10.1111/acel.12856

    Article  CAS  PubMed  Google Scholar 

  21. Meng J, Liu Y, Xie Z, Qing H, Lei P, Ni J (2020) Nucleus distribution of cathepsin B in senescent microglia promotes brain aging through degradation of sirtuins. Neurobiol Aging 96:255–266. https://doi.org/10.1016/j.neurobiolaging.2020.09.001

    Article  CAS  PubMed  Google Scholar 

  22. Jiang M, Meng J, Zeng F, Qing H, Hook G, Hook V, Wu Z, Ni J (2020) Cathepsin B inhibition blocks neurite outgrowth in cultured neurons by regulating lysosomal trafficking and remodeling. J Neurochem 155(3):300–312. https://doi.org/10.1111/jnc.15032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ni J, Zhao J, Zhang X, Reinheckel T, Turk V, Nakanishi H (2021) Cathepsin H deficiency decreases hypoxia-ischemia-induced hippocampal atrophy in neonatal mice through attenuated TLR3/IFN-beta signaling. J Neuroinflammation 18(1):176. https://doi.org/10.1186/s12974-021-02227-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang X, Wu Z, Hayashi Y, Okada R, Nakanishi H (2014) Peripheral role of cathepsin S in Th1 cell-dependent transition of nerve injury-induced acute pain to a chronic pain state. J Neurosci 34(8):3013–3022. https://doi.org/10.1523/JNEUROSCI.3681-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hamdy N, Eide S, Sun HS, Feng ZP (2020) Animal models for neonatal brain injury induced by hypoxic ischemic conditions in rodents. Exp Neurol 334:113457. https://doi.org/10.1016/j.expneurol.2020.113457

    Article  PubMed  Google Scholar 

  26. Sommer CJ (2017) Ischemic stroke: experimental models and reality. Acta Neuropathol 133(2):245–261. https://doi.org/10.1007/s00401-017-1667-0

    Article  PubMed  PubMed Central  Google Scholar 

  27. Neher JJ, Neniskyte U, Zhao JW, Bal-Price A, Tolkovsky AM, Brown GC (2011) Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J Immunol 186(8):4973–4983. https://doi.org/10.4049/jimmunol.1003600

    Article  CAS  PubMed  Google Scholar 

  28. Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M (2004) Microglia promote the death of developing Purkinje cells. Neuron 41(4):535–547. https://doi.org/10.1016/s0896-6273(04)00069-8

    Article  CAS  PubMed  Google Scholar 

  29. Meng J, Ni J, Wu Z, Jiang M, Zhu A, Qing H, Nakanishi H (2018) The critical role of IL-10 in the antineuroinflammatory and antioxidative effects of Rheum tanguticum on activated microglia. Oxid Med Cell Longev 2018:1083596. https://doi.org/10.1155/2018/1083596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Antoniak S, Rojas M, Spring D, Bullard TA, Verrier ED, Blaxall BC, Mackman N, Pawlinski R (2010) Protease-activated receptor 2 deficiency reduces cardiac ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol 30(11):2136–2142. https://doi.org/10.1161/ATVBAHA.110.213280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schmidlin F, Amadesi S, Dabbagh K, Lewis DE, Knott P, Bunnett NW, Gater PR, Geppetti P et al (2002) Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway. J Immunol 169(9):5315–5321. https://doi.org/10.4049/jimmunol.169.9.5315

    Article  PubMed  Google Scholar 

  32. Ferrell WR, Lockhart JC, Kelso EB, Dunning L, Plevin R, Meek SE, Smith AJ, Hunter GD et al (2003) Essential role for proteinase-activated receptor-2 in arthritis. J Clin Invest 111(1):35–41. https://doi.org/10.1172/JCI16913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jahan I, Fujimoto J, Alam SM, Sato E, Tamaya T (2008) Role of protease activated receptor-2 in lymph node metastasis of uterine cervical cancers. BMC Cancer 8:301. https://doi.org/10.1186/1471-2407-8-301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jin E, Fujiwara M, Pan X, Ghazizadeh M, Arai S, Ohaki Y, Kajiwara K, Takemura T et al (2003) Protease-activated receptor (PAR)-1 and PAR-2 participate in the cell growth of alveolar capillary endothelium in primary lung adenocarcinomas. Cancer 97(3):703–713. https://doi.org/10.1002/cncr.11087

    Article  CAS  PubMed  Google Scholar 

  35. Jahan I, Fujimoto J, Alam SM, Sato E, Sakaguchi H, Tamaya T (2007) Role of protease activated receptor-2 in tumor advancement of ovarian cancers. Ann Oncol 18(9):1506–1512. https://doi.org/10.1093/annonc/mdm190

    Article  CAS  PubMed  Google Scholar 

  36. Sachan V, Lodge R, Mihara K, Hamelin J, Power C, Gelman BB, Hollenberg MD, Cohen EA et al (2019) HIV-induced neuroinflammation: impact of PAR1 and PAR2 processing by Furin. Cell Death Differ 26(10):1942–1954. https://doi.org/10.1038/s41418-018-0264-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (32070954 and 82001167); the Beijing Natural Science Foundation (7212066); the Beijing Institute of Technology Research Fund Program (2020CX04166); and the Zhejiang Provincial Natural Science Foundation (Q20H140040).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. conducted most of the experiments, analyzed the data, and wrote the manuscript. H.L. and J.H. conducted most of the experiments and analyzed the data. Z.W., J.M., Y.H., and H.N. provided valuable advice and unpublished reagents/analytic tools. H.Q. designed part of the study. J.N. designed the whole study and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hong Qing or Junjun Ni.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yicong Liu, Hui Li, and Jiangqi Hu contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.71 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, H., Hu, J. et al. Differential Expression and Distinct Roles of Proteinase-Activated Receptor 2 in Microglia and Neurons in Neonatal Mouse Brain After Hypoxia-Ischemic Injury. Mol Neurobiol 59, 717–730 (2022). https://doi.org/10.1007/s12035-021-02594-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02594-5

Keywords

Navigation