Skip to main content

Advertisement

Log in

Dysregulated miR-29a-3p/PMP22 Modulates Schwann Cell Proliferation and Migration During Peripheral Nerve Regeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Schwann cells switch to a repair phenotype following peripheral nerve injury and create a favorable microenvironment to drive nerve repair. Many microRNAs (miRNAs) are differentially expressed in the injured peripheral nerves and play essential roles in regulating Schwann cell behaviors. Here, we examine the temporal expression patterns of miR-29a-3p after peripheral nerve injury and demonstrate significant up-regulation of miR-29a-3p in injured sciatic nerves. Elevated miR-29a-3p inhibits Schwann cell proliferation and migration, while suppressed miR-29a-3p executes reverse effects. In vivo injection of miR-29a-3p agomir to rat sciatic nerves hinders the proliferation and migration of Schwann cells, delays the elongation and myelination of axons, and retards the functional recovery of injured nerves. Mechanistically, miR-29a-3p modulates Schwann cell activities via negatively regulating peripheral myelin protein 22 (PMP22), and PMP22 extensively affects Schwann cell metabolism. Our results disclose the vital role of miR-29a-3p/PMP22 in regulating Schwann cell phenotype following sciatic nerve injury and shed light on the mechanistic basis of peripheral nerve regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Allodi I, Udina E, Navarro X (2012) Specificity of peripheral nerve regeneration: interactions at the axon level. Prog Neurobiol 98(1):16–37. https://doi.org/10.1016/j.pneurobio.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  2. Gu X, Ding F, Williams DF (2014) Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 35(24):6143–6156. https://doi.org/10.1016/j.biomaterials.2014.04.064

    Article  CAS  PubMed  Google Scholar 

  3. Blesch A, Lu P, Tsukada S, Alto LT, Roet K, Coppola G, Geschwind D, Tuszynski MH (2012) Conditioning lesions before or after spinal cord injury recruit broad genetic mechanisms that sustain axonal regeneration: superiority to camp-mediated effects. Exp Neurol 235(1):162–173. https://doi.org/10.1016/j.expneurol.2011.12.037

    Article  PubMed  Google Scholar 

  4. Arthur-Farraj PJ, Morgan CC, Adamowicz M, Gomez-Sanchez JA, Fazal SV, Beucher A, Razzaghi B, Mirsky R, Jessen KR, Aitman TJ (2017) Changes in the coding and non-coding transcriptome and dna methylome that define the Schwann cell repair phenotype after nerve injury. Cell Rep 20(11):2719–2734. https://doi.org/10.1016/j.celrep.2017.08.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nocera G, Jacob C (2020) Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol Life Sci 77(20):3977–3989. https://doi.org/10.1007/s00018-020-03516-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594(13):3521–3531. https://doi.org/10.1113/JP270874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Min Q, Parkinson DB, Dun XP (2021) Migrating Schwann cells direct axon regeneration within the peripheral nerve bridge. Glia 69(2):235–254. https://doi.org/10.1002/glia.23892

    Article  PubMed  Google Scholar 

  8. Stierli S, Imperatore V, Lloyd AC (2019) Schwann cell plasticity-roles in tissue homeostasis, regeneration, and disease. Glia 67(11):2203–2215. https://doi.org/10.1002/glia.23643

    Article  PubMed  Google Scholar 

  9. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. https://doi.org/10.1038/nature02871

    Article  CAS  PubMed  Google Scholar 

  10. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  11. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610. https://doi.org/10.1038/nrg2843

    Article  CAS  PubMed  Google Scholar 

  12. Yu B, Zhou S, Yi S, Gu X (2015) The regulatory roles of non-coding RNAs in nerve injury and regeneration. Prog Neurobiol 134:122–139. https://doi.org/10.1016/j.pneurobio.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  13. Yi S, Yuan Y, Chen Q, Wang X, Gong L, Liu J, Gu X, Li S (2016) Regulation of Schwann cell proliferation and migration by miR-1 targeting brain-derived neurotrophic factor after peripheral nerve injury. Sci Rep 6:29121. https://doi.org/10.1038/srep29121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li S, Zhang R, Yuan Y, Yi S, Chen Q, Gong L, Liu J, Ding F, Cao Z, Gu X (2017) MiR-340 regulates fibrinolysis and axon regrowth following sciatic nerve injury. Mol Neurobiol 54(6):4379–4389. https://doi.org/10.1007/s12035-016-9965-4

    Article  CAS  PubMed  Google Scholar 

  15. Yi S, Wang QH, Zhao LL, Qin J, Wang YX, Yu B, Zhou SL (2017) miR-30c promotes Schwann cell remyelination following peripheral nerve injury. Neural Regen Res 12(10):1708–1715. https://doi.org/10.4103/1673-5374.217351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang X, Chen Q, Yi S, Liu Q, Zhang R, Wang P, Qian T, Li S (2019) The microRNAs let-7 and miR-9 down-regulate the axon-guidance genes Ntn1 and Dcc during peripheral nerve regeneration. J Biol Chem 294(10):3489–3500. https://doi.org/10.1074/jbc.RA119.007389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. RNA 9(3):277–279. https://doi.org/10.1261/rna.2183803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu B, Zhou S, Wang Y, Ding G, Ding F, Gu X (2011) Profile of microRNAs following rat sciatic nerve injury by deep sequencing: implication for mechanisms of nerve regeneration. PLoS ONE 6(9):e24612. https://doi.org/10.1371/journal.pone.0024612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Verrier JD, Lau P, Hudson L, Murashov AK, Renne R, Notterpek L (2009) Peripheral myelin protein 22 is regulated post-transcriptionally by miRNA-29a. Glia 57(12):1265–1279. https://doi.org/10.1002/glia.20846

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yi S, Zhang H, Gong L, Wu J, Zha G, Zhou S, Gu X, Yu B (2015) Deep sequencing and bioinformatic analysis of lesioned sciatic nerves after crush injury. PLoS ONE 10(12):e0143491. https://doi.org/10.1371/journal.pone.0143491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee HH, Yaros K, Veraart J, Pathan JL, Liang FX, Kim SG, Novikov DS, Fieremans E (2019) Along-axon diameter variation and axonal orientation dispersion revealed with 3D electron microscopy: implications for quantifying brain white matter microstructure with histology and diffusion MRI. Brain Struct Funct 224(4):1469–1488. https://doi.org/10.1007/s00429-019-01844-6

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang X, Hu W, Cao Y, Yao J, Wu J, Gu X (2005) Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/PGA artificial nerve graft. Brain : a journal of neurology 128(Pt 8):1897–1910. https://doi.org/10.1093/brain/awh517

    Article  Google Scholar 

  23. Huang W, Xiao F, Huang W, Wei Q, Li X (2021) MicroRNA-29a-3p strengthens the effect of dexmedetomidine on improving neurologic damage in newborn rats with hypoxic-ischemic brain damage by inhibiting HDAC4. Brain Res Bull 167:71–79. https://doi.org/10.1016/j.brainresbull.2020.11.011

    Article  CAS  PubMed  Google Scholar 

  24. Shioya M, Obayashi S, Tabunoki H, Arima K, Saito Y, Ishida T, Satoh J (2010) Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathol Appl Neurobiol 36(4):320–330. https://doi.org/10.1111/j.1365-2990.2010.01076.x

    Article  CAS  PubMed  Google Scholar 

  25. Zong Y, Yu P, Cheng H, Wang H, Wang X, Liang C, Zhu H, Qin Y, Qin C (2015) miR-29c regulates NAV3 protein expression in a transgenic mouse model of Alzheimer’s disease. Brain Res 1624:95–102. https://doi.org/10.1016/j.brainres.2015.07.022

    Article  CAS  PubMed  Google Scholar 

  26. Sun Q, Zeng J, Liu Y, Chen J, Zeng QC, Chen YQ, Tu LL, Chen P, Yang F, Zhang M (2020) microRNA-9 and -29a regulate the progression of diabetic peripheral neuropathy via ISL1-mediated sonic hedgehog signaling pathway. Aging (Albany NY) 12(12):11446–11465. https://doi.org/10.18632/aging.103230

    Article  CAS  Google Scholar 

  27. Li H, Mao S, Wang H, Zen K, Zhang C, Li L (2014) MicroRNA-29a modulates axon branching by targeting doublecortin in primary neurons. Protein Cell 5(2):160–169. https://doi.org/10.1007/s13238-014-0022-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zou H, Ding Y, Wang K, Xiong E, Peng W, Du F, Zhang Z, Liu J, Gong A (2015) MicroRNA-29A/PTEN pathway modulates neurite outgrowth in PC12 cells. Neuroscience 291:289–300. https://doi.org/10.1016/j.neuroscience.2015.01.055

    Article  CAS  PubMed  Google Scholar 

  29. Zhao M, Gao J, Zhang Y, Jiang X, Tian Y, Zheng X, Wang K, Cui J (2020) Elevated miR-29a contributes to axonal outgrowth and neurological recovery after intracerebral hemorrhage via targeting PTEN/PI3K/Akt pathway. Cellular and molecular neurobiology. https://doi.org/10.1007/s10571-020-00945-9

  30. Ma R, Wang M, Gao S, Zhu L, Yu L, Hu D, Zhu L, Huang W, Zhang W, Deng J, Pan J, He H, Gao Z, Xu J, Han X (2020) miR-29a promotes the neurite outgrowth of rat neural stem cells by targeting extracellular matrix to repair brain injury. Stem Cells Dev 29(9):599–614. https://doi.org/10.1089/scd.2019.0174

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Wang S, He JH (2021) Transcriptomic analysis reveals essential microRNAs after peripheral nerve injury. Neural Regen Res 16(9):1865–1870. https://doi.org/10.4103/1673-5374.306092

    Article  PubMed  PubMed Central  Google Scholar 

  32. Snipes GJ, Suter U, Welcher AA, Shooter EM (1992) Characterization of a novel peripheral nervous system myelin protein (PMP-22/SR13). J Cell Biol 117(1):225–238. https://doi.org/10.1083/jcb.117.1.225

    Article  CAS  PubMed  Google Scholar 

  33. Adlkofer K, Martini R, Aguzzi A, Zielasek J, Toyka KV, Suter U (1995) Hypermyelination and demyelinating peripheral neuropathy in Pmp22-deficient mice. Nat Genet 11(3):274–280. https://doi.org/10.1038/ng1195-274

    Article  CAS  PubMed  Google Scholar 

  34. Monczak A, Ji Y, Soueidan J, Montie EW (2019) Automatic detection, classification, and quantification of sciaenid fish calls in an estuarine soundscape in the Southeast United States. PLoS ONE 14(1):e0209914. https://doi.org/10.1371/journal.pone.0209914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hou J, Zhuo H, Chen X, Cheng J, Zheng W, Zhong M, Cai J (2020) MiR-139-5p negatively regulates PMP22 to repress cell proliferation by targeting the NF-kappaB signaling pathway in gastric cancer. Int J Biol Sci 16(7):1218–1229. https://doi.org/10.7150/ijbs.40338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cai W, Chen G, Luo Q, Liu J, Guo X, Zhang T, Ma F, Yuan L, Li B, Cai J (2017) PMP22 regulates self-renewal and chemoresistance of gastric cancer cells. Mol Cancer Ther 16(6):1187–1198. https://doi.org/10.1158/1535-7163.MCT-16-0750

    Article  CAS  PubMed  Google Scholar 

  37. Liu S, Chen Z (2015) The functional role of PMP22 gene in the proliferation and invasion of osteosarcoma. Med Sci Monit 21:1976–1982. https://doi.org/10.12659/MSM.893430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Winslow S, Leandersson K, Larsson C (2013) Regulation of PMP22 mRNA by G3BP1 affects cell proliferation in breast cancer cells. Mol Cancer 12(1):156. https://doi.org/10.1186/1476-4598-12-156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qian T, Fan C, Liu Q, Yi S (2018) Systemic functional enrichment and ceRNA network identification following peripheral nerve injury. Mol Brain 11(1):73. https://doi.org/10.1186/s13041-018-0421-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou Y, Borchelt D, Bauson JC, Fazio S, Miles JR, Tavori H, Notterpek L (2020) Subcellular diversion of cholesterol by gain- and loss-of-function mutations in PMP22. Glia 68(11):2300–2315. https://doi.org/10.1002/glia.23840

    Article  PubMed  Google Scholar 

  41. Zhou Y, Miles JR, Tavori H, Lin M, Khoshbouei H, Borchelt DR, Bazick H, Landreth GE, Lee S, Fazio S, Notterpek L (2019) PMP22 regulates cholesterol trafficking and ABCA1-mediated cholesterol efflux. J Neurosci 39(27):5404–5418. https://doi.org/10.1523/JNEUROSCI.2942-18.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Babetto E, Wong KM, Beirowski B (2020) A glycolytic shift in Schwann cells supports injured axons. Nat Neurosci 23(10):1215–1228. https://doi.org/10.1038/s41593-020-0689-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang Y, Ma Y, Wu G, Xie M, Luo C, Huang X, Tian F, Chen J, Li X (2021) SENP1 promotes MCL pathogenesis through regulating JAK-STAT5 pathway and SOCS2 expression. Cell Death Discov 7(1):192. https://doi.org/10.1038/s41420-021-00578-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen MC, Nhan DC, Hsu CH, Wang TF, Li CC, Ho TJ, Mahalakshmi B, Chen MC, Yang LY, Huang CY (2021) SENP1 participates in Irinotecan resistance in human colon cancer cells. J Cell Biochem. https://doi.org/10.1002/jcb.29946

  45. Hartmann B, Wai T, Hu H, MacVicar T, Musante L, Fischer-Zirnsak B, Stenzel W, Graf R, van den Heuvel L, Ropers HH, Wienker TF, Hubner C, Langer T, Kaindl AM (2016) Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation. Elife 5. https://doi.org/10.7554/eLife.16078

  46. Cesnekova J, Rodinova M, Hansikova H, Zeman J, Stiburek L (2018) Loss of mitochondrial AAA proteases AFG3L2 and YME1L Impairs mitochondrial structure and respiratory chain biogenesis. International journal of molecular sciences 19 (12). https://doi.org/10.3390/ijms19123930

  47. Shohayeb B, Mitchell N, Millard SS, Quinn LM (1867) Ng DCH (2020) Elevated levels of Drosophila Wdr62 promote glial cell growth and proliferation through AURKA signalling to AKT and MYC. Biochim Biophys Acta Mol Cell Res 7:118713. https://doi.org/10.1016/j.bbamcr.2020.118713

    Article  CAS  Google Scholar 

  48. Shohayeb B, Ho UY, Hassan H, Piper M, Ng DCH (2020) The spindle-associated microcephaly protein, WDR62, is required for neurogenesis and development of the hippocampus. Front Cell Dev Biol 8:549353. https://doi.org/10.3389/fcell.2020.549353

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang F, Yu J, Yang T, Xu D, Chi Z, Xia Y, Xu Z (2016) A novel c-Jun N-terminal kinase (JNK) signaling complex involved in neuronal migration during brain development. J Biol Chem 291(22):11466–11475. https://doi.org/10.1074/jbc.M116.716811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Postgraduate Research & Practice Innovation Program of Jiangsu Province [KYCX21_3076] and Priority Academic Program Development of Jiangsu Higher Education Institutions [PAPD].

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: S.Y. Experiment conductance and data analyses: Y.S., Z.C., S.C., Y.Z. Contributed reagents/materials/analysis tools: Q.C., S.Y. Wrote the manuscript: Q.C., S.Y.

Corresponding authors

Correspondence to Qi Chen or Sheng Yi.

Ethics declarations

Ethics Approval

Animal experiments were approved ethically by the Administration Committee of Experimental Animals, Jiangsu, China, and conducted in accordance with Institutional Animal Care Guidelines of Nantong University.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1

Immunostaining of the sciatic nerves of agomir control or miR-29a-3p agomir-injected rats underwent sham surgery. (A and B) S100 staining of the sciatic nerves of rats subjected to (A) agomir control or (B) miR-29a-3p agomir injection 2 days prior to sham surgery. (C and D) NF staining of the sciatic nerves of rats subjected to (C) agomir control or (D) miR-29a-3p agomir injection 2 days prior to sham surgery. Agomir con represents agomir control. Red color represents S100β staining, green color represents NF staining, and blue color represents nucleus staining. Scale bar represents 1000 μm

Supplementary file1 (TIF 7701 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Cheng, Z., Chen, S. et al. Dysregulated miR-29a-3p/PMP22 Modulates Schwann Cell Proliferation and Migration During Peripheral Nerve Regeneration. Mol Neurobiol 59, 1058–1072 (2022). https://doi.org/10.1007/s12035-021-02589-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02589-2

Keywords

Navigation