Skip to main content
Log in

The Possible Protective Role of Dark Chocolate Against Acrylamide Neurotoxicity in Weaning Rats Cerebellum

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Acrylamide (ACR) is selective neurotoxicity, could be found in foods processed by high temperature. This work aimed to evaluate the protective role of the dark chocolate (DC) against cerebellar neurotoxicity induced by subchronic ACR exposure in recently weaned rat pups and to propose it as protective supplement against dietary ACR hazards. Eighteen weaning pups were used in the current study and divided into three groups, six rats in each group; group 1 (control group), group 2 (ACR group), and group 3 (ACR + DC group). The pups were sacrificed after 21 days and the cerebellums were removed for light microscope using H&E stain, ultrastructural study, morphometric analysis of the neurons count, biochemical analysis of oxidant and antioxidant markers and real-time quantitative PCR to evaluate the nuclear receptor subfamily 4, group A, member 2 (Nr4a2) gene expression. Pups with ACR consumption showed signs of neuronal degeneration and reduced Nr4a2 expression. On the other hand, pups with ACR + DC consumption showed relative signs of neuronal restoration and enhanced Nr4a2 expression. In conclusion, DC can be used as effective supplement to decrease the dietary ACR cerebellar neuronal risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Mendel F (2003) Chemistry, biochemistry and safety of acrylamide: a review. J Agric Food Chem 51(16):4504–4526. https://doi.org/10.1021/jf030204+

    Article  CAS  Google Scholar 

  2. Dybing E, Sanner T (2003) Risk assessment of acrylamide in foods. Toxicol Sci 75(1):7–15. https://doi.org/10.1201/9781439824283.ch13

    Article  CAS  PubMed  Google Scholar 

  3. Richard ML (2004) The changing view of acrylamide neurotoxicity. Neurotoxicology 25(4):617–630. https://doi.org/10.1016/j.neuro.2004.01.004

    Article  CAS  Google Scholar 

  4. Hai D, Fengsheng H, Shoulin Z, Carl JC, Lucio GC (1993) Quantitative measurements of vibration threshold in healthy adults and acrylamide workers. Int Arch Occup Environ Health 65(1):53–56. https://doi.org/10.1007/bf00586059

    Article  Google Scholar 

  5. Richard ML, David SB, Deke H, Soma D (2006) Acrylamide inhibits dopamine uptake in rat striatal synaptic vesicles. Toxicol Sci 89(1):224–234. https://doi.org/10.1093/toxsci/kfj005

    Article  CAS  Google Scholar 

  6. Pinar E, Terken B (2014) Acrylamide neurotoxicity. Nutr Neurosci 17(2):49–57. https://doi.org/10.1179/1476830513y.0000000065

    Article  Google Scholar 

  7. Lioyd HD, Yan Y, Insiya YA, Gulnaz B, Julia D, Yan C, Edward Dixon, Dandan S (2015): Administration of DHA reduces endoplasmic reticulum stress-associated inflammation and alters microglial or macrophage activation in traumatic brain injury. ASN Neuro, 7(6):1759091415618969. https://doi.org/10.1177/1759091415618969

  8. Ying-Jian Z, Tao Z, Ying-Biao Z, Su-Fang Y, Qing-Shan W, Li-Ping Z, Xin G, Ke-Qin X (2008) Effects of acrylamide on the nervous tissue antioxidant system and sciatic nerve electrophysiology in the rat. Neurochem Res 33:2310–2317. https://doi.org/10.1007/s11064-008-9730-9

    Article  CAS  Google Scholar 

  9. James R, Rod F, Graeme H, Humphrey R (2016): Rang & Dale’s Pharmacology, 8th edition, Elsevier, Churchil Livingstone, 23; Atherosclerosis and lipoprotein metabolism, 285–292

  10. Marta K, Norbert L, Edyta K, Grzegorz F (2015) Acrylamide influence on activity of acetylcholinesterase, thiol groups, and malondialdehyde content in the brain of swiss mice. J Biochem Mol Toxicol 29(10):472–478. https://doi.org/10.1002/jbt.21717

    Article  CAS  Google Scholar 

  11. Suzanne MS, Qin F, Ameeta KA, El-Alfy AT (2012) Neurobehavioral and transcriptional effects of acrylamide in juvenile rats. Pharmacol Biochem Behav 101(1):77–84. https://doi.org/10.1016/j.pbb.2011.12.006

    Article  CAS  Google Scholar 

  12. Jankovic J, Chen S, Le W (2005) The role of Nurr1 in the development of dopaminergic neurons and Parkinson’s disease. Prog Neurobiol 77(1–2):128–138. https://doi.org/10.1016/j.pneurobio.2005.09.001

    Article  CAS  PubMed  Google Scholar 

  13. Donald AW (2001) Natural phenolic compounds 1900–2000: a bird’s eye view of a century’s chemistry. Nat Prod Rep 18(6):583–606. https://doi.org/10.1039/b003686m

    Article  CAS  Google Scholar 

  14. Nand KS, Manjoo R, Sharmila RT, Alok KY (2017) Flavonoids in food and their health benefits. MOJ Food Process Technol 4(3):96–99. https://doi.org/10.15406/mojfpt.2017.04.00095

    Article  Google Scholar 

  15. Cristina AL, Barbara SH, Rachel LG, Olga J, Rosa ML-R, James AJ (2013) Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr Neurosci 8(2):111–120. https://doi.org/10.1080/10284150500078117

    Article  CAS  Google Scholar 

  16. Dong HK, Su J, Kun H, Ji WJ, Seungjoo L, Byung HY, Ji WC, Jae HC, Kwang H, Jong HR (2006) Effect of the flavonoid, oroxylin A, on transient cerebral hypoperfusion-induced memory impairment in mice. Pharmacol Biochem Behav 85(5):658–668. https://doi.org/10.1016/j.pbb.2006.10.025

    Article  CAS  Google Scholar 

  17. Hagen S, Christian H, Jan B, Petra K, Carl LK, Norman KH, Helmut S, Catherine KU, Harold HS, Malte K (2006) (−)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci USA 103(4):1024–1029. https://doi.org/10.1073/pnas.0510168103

    Article  CAS  Google Scholar 

  18. Lee B, Kristin B, Warren P, Peter B, Evertt L, Gurinder B, Jesusa A, Steve C (2018): Dark chocolate (70% cacao) effects human gene expression: cacao regulates cellular immune response, neural signaling, and sensory perception. The faseb journal, 32(1): 755.1 -755.1. https://doi.org/10.1096/fasebj.2018.32.1_supplement.755.1

  19. Rakesh D, Rausan H, Hasan M, Prahlad KS (1981) Effect of acrylamide on biogenic amine levels, monoamine oxidase, and cathepsin D activity of rat brain. Environ Res 26(1):168–173. https://doi.org/10.1016/0013-9351(81)90195-X

    Article  Google Scholar 

  20. Sowmya M, Vijaya KK, Bindu MK, Sarada S (2016) The neuroprotective effect of dark chocolate in monosodium glutamate-induced nontransgenic Alzheimer disease model rats: biochemical, behavioral, and histological studies. Journal of Dietary Supplements 13(4):449–460. https://doi.org/10.3109/19390211.2015.1108946

    Article  CAS  Google Scholar 

  21. Kenneth JL, Thomas DS (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔ CT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  22. Bancroft J, Gamble M (2008): Theory and Practice of Histological Techniques. 5th ed. P.: 126–127,150,171 & 601–612. Churchill-Livingstone, London, Edinburgh, New york, Philadelphia, St Louis, Sydney and Toronto

  23. John D (2008): Theory and Practice of Histological Techniques, 6th edition. Elsevier Health Sciences, p. 121–134

  24. Jim EB, Roxanne NK, Chintan KS, Ogbochi M, Gina SS (2015) Mental health and food consumption among California children 5–11 years of age. Nutr Health 22(3–4):237–253. https://doi.org/10.1177/0260106015599511

    Article  Google Scholar 

  25. Allal O, Marwan A, Ishita G, Yahya A (2014) Potato chips and childhood: what does the science say? An unrecognized threat? Nutrition 30(10):1110–1112. https://doi.org/10.1016/j.nut.2014.01.008

    Article  Google Scholar 

  26. Imen G, Ibtissem BA, Naourez K, Awatef E, Ons B, Tahia B, Najiba Z (2016) Aluminium and acrylamide disrupt cerebellum redox states, cholinergic function and membrane-bound ATPase in adult rats and their offspring. Biol Trace Elem Res 174(2):335–346. https://doi.org/10.1007/s12011-016-0716-1

    Article  CAS  Google Scholar 

  27. Lian-Jiu S, Jia-Hao Z, Hernando G, Raghavan M, Xing H, Dongxue X, Fan J, Zhi-Yong P (2019) Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative medicine and cellular longevity, 5080843, 13 pages. https://doi.org/10.1155/2019/5080843

  28. Allam A, El-Ghareeb AA, Abdul-Hamid M, Baikry A, Sabri MI (2011) Prenatal and perinatal acrylamide disrupts the development of cerebellum in rat: biochemical and morphological studies. Toxicol Ind Health 27(4):291–306. https://doi.org/10.1177/0748233710386412

    Article  CAS  PubMed  Google Scholar 

  29. Jie G, Xiaolu C, Xianmin H, Shulan L, Jun W (2020) The anti-apoptotic, antioxidant and anti-inflammatory effects of curcumin on acrylamide-induced neurotoxicity in rats. BMC Pharmacology & Toxicology 21(1):62. https://doi.org/10.21203/rs.2.16758/v1

    Article  Google Scholar 

  30. Jamshid T, Soghra M, Khalil A, Hossein H (2019) Neuroprotective effects of thymoquinone in acrylamide-induced peripheral nervous system toxicity through MAPKinase and apoptosis pathways in rat. Neurochem Res 44(5):1101–1112. https://doi.org/10.1007/s11064-019-02741-4

    Article  CAS  Google Scholar 

  31. Bahareh SY, Nasim A, Jalal P (2020) The antioxidant and neuroprotective effects of Zolpidem on acrylamide-induced neurotoxicity using Wistar rat primary neuronal cortical culture. Toxicol Rep 7:233–240. https://doi.org/10.1016/j.toxrep.2020.01.010

    Article  CAS  Google Scholar 

  32. Antonio A, Mario FM, Sandro A (2014): Lipid peroxidation: production, metabolism, and signalingmechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative medicine and cellular longevity, Article ID 360438. https://doi.org/10.1155/2014/360438

  33. Hirochika K, William JR, Helmut G, Pascale VN, Yuanjiang Y, Chih-Tai L, Shun-ichi H, Shigeaki K, Leonard PF (2007) A regulatory circuit mediating convergence between Nurr1 transcriptional regulation and Wnt signaling. Mol Cell Biol 27:7486–7496. https://doi.org/10.1128/mcb.00022-14

    Article  Google Scholar 

  34. Wanda IC, Michelle MM, Sohaira M, Jahaira F, Juan C, Monique A, Lixmar P, Nydia C, Carmen SM, de Sandra PO (2006): Knockdown of Nurr1 in the rat hippocampus: implications to spatial discrimination learning and memory. Learning & Memory, 13: 734–744. https://doi.org/10.1101/lm.407706

  35. Saijo K, Winner B, Carson C, Collier J, Boyer L, Rosenfield M, Gage F, Glass C (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation induced death. Cell 137(1):47–59. https://doi.org/10.3410/f.1158778.622271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Namik KD, Mahmood M, Sergio O (2000) Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil Steril 74(6):1200–1207. https://doi.org/10.1016/s0015-0282(00)01591-0

    Article  Google Scholar 

  37. Hye JY, Sang HL, Yong J, Jin HC, Chang HH, Mun HL (2005) Genotoxicity and toxicological effects of acrylamide on reproductive system in male rats. J Vet Sci 6(2):103–109. https://doi.org/10.4142/jvs.2005.6.2.103

    Article  Google Scholar 

  38. Ahmad B, Gerd PP (2004) Genotoxicity of acrylamide and glycidamide. Journal of the National Cancer Institute 96(13):1023–1029. https://doi.org/10.1093/jnci/djh186

    Article  Google Scholar 

  39. Wesam A, Ashraf H, Amal I, Hanan M (2019) Effect of acrylamide on development of cerebellum in albino rat. Egyptian Journal of Histology 42(4):798–814. https://doi.org/10.21608/ejh.2019.7866.1079

    Article  Google Scholar 

  40. Imam RA, Gadallah HN (2019) Effect of sub-acute exposure to acrylamide-induced adverse cerebellar changes in rats: possible oligodendrogenic effect of omega 3 and green tea. Folia Morphol 78(3):564–574. https://doi.org/10.5603/fm.a2018.0105

    Article  CAS  Google Scholar 

  41. David SB, Richard M (2004) Proteomic analysis of acrylamide protein adduct formation in rat brain synaptosomes. Toxicol Appl Pharmacol 201(2):120–136. https://doi.org/10.1016/j.taap.2004.05.008

    Article  CAS  Google Scholar 

  42. Allyson EV, Mohanish D (2008) Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat Cell Biol 10:1477–1483. https://doi.org/10.1038/ncb1807

    Article  CAS  Google Scholar 

  43. Yousef MI, El-Demerdash FM (2006) Acrylamide-induced oxidative stress and biochemical perturbations in rats. Toxicology 219(1–3):133–141. https://doi.org/10.1016/j.tox.2005.11.008

    Article  CAS  PubMed  Google Scholar 

  44. Jong-Hang C, Cheng-Hsien Y, Yan-Shiu W, Jiann G, Chiung-Hsiang C, Chin-Cheng C (2013) Acrylamide-induced mitochondria collapse and apoptosis in human astrocytoma cells. Food Chem Toxicol 51:446–452. https://doi.org/10.1016/j.fct.2012.10.025

    Article  CAS  Google Scholar 

  45. Francene MS, Monica MB, Carl LK (2003) Cocoa and chocolate flavonoids: implications for cardiovascular health. J Am Diet Assoc 103(2):215–223. https://doi.org/10.1053/jada.2003.50028

    Article  Google Scholar 

  46. Georgina EC, Merrill FE, Ala’a A (2016) Chocolate intake is associated with better cognitive function: The Maine- Syracuse Longitudinal Study. Appetite 1(100):126–132. https://doi.org/10.1016/j.appet.2016.02.010

    Article  Google Scholar 

  47. Maria F, Cayley S, Ken L (2016): Epicatechin a component of dark chocolate, enhances memory formation if applied during the memory consolidation period. Communicative & integrative biology, 27; 9(4): e1205772. https://doi.org/10.1080/19420889.2016.1205772

  48. Pamela M. (2019): The potential of flavonoids for the treatment of neurodegenerative diseases. International journal of molecular sciences, 22;20(12):3056. https://doi.org/10.3390/ijms20123056

  49. Ivan MP, Klochkov VA, Chalyk NE, Pristensky DV, Chernyshova MP, Kyle NH, Bashmakov YK (2018) Markers of hypoxia and oxidative stress in aging volunteers ingesting lycosomal formulation of dark chocolate containing astaxanthin. J Nutr Health Aging 22(9):1092–1098. https://doi.org/10.1007/s12603-018-1063-z

    Article  CAS  Google Scholar 

  50. Hassan M, Akram N, Javad Z, Faezeh P (2016) The effects of dark chocolate consumption on oxidative stress and blood pressure in patients with metabolic syndrome: a randomized clinical trial. Journal of nutrition and food security, 1(1): 1–8. jnfs.ssu.ac.ir/article-1–21-en.html

  51. Tatiane FM, Olga MP, David Á, María AM, Sonia R, Luis G (2020) Cocoa flavanols protect human endothelial cells from oxidative stress. Plant Foods Hum Nutr 75(2):161–168. https://doi.org/10.1007/s11130-020-00807-1

    Article  CAS  Google Scholar 

  52. María AM, Sonia R, Raquel M, Ana BGS, María IP, Laura B, Luis G (2008) Protection of human HepG2 cells against oxidative stress by cocoa phenolic extract. J Agric Food Chem 56:7765–7772. https://doi.org/10.1021/jf801744r

    Article  CAS  Google Scholar 

  53. Emma F, Michael M, Michael H, David V (2018) Impact of flavonoids on cellular and molecular mechanisms underlying age-related cognitive decline and neurodegeneration. Current Nutrition Reports 7(2):49–57. https://doi.org/10.1007/s13668-018-0226-1

    Article  Google Scholar 

  54. Maria RR, Ivan I, Maria d-C BR, José ÂZ, Daniela B, Amélia TH (2005): Effect of lyophilised Vaccinium berries on memory, anxiety and locomotion in adult rats. Pharmacological research, 52(6):457–62. https://doi.org/10.1016/j.phrs.2005.07.003

  55. David V, Katerina V, Catherine RE, Robert JW, Jeremy PES (2007) Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons. J Neurochem 103(4):1355–1367. https://doi.org/10.1111/j.1471-4159.2007.04841.x

    Article  CAS  Google Scholar 

  56. Robert W, Björn D, Peer W, Joey S, Ursula S, Gunther K, Marsha B, Dietmar K (2001): Arg3.1/Arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. The Journal of neuroscience: the official journal of the Society for Neuroscience, 1;21(15):5484–93. https://doi.org/10.1523/jneurosci.21-15-05484.2001

Download references

Author information

Authors and Affiliations

Authors

Contributions

DM and HD designed experiments. DM and NN performed experiments. DM, HD and NN provided experimental support and intellectual input. DM and HD wrote the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Doaa M. Hassan.

Ethics declarations

Ethics Approval and Consent to Participate

The experiment strictly adhered to all ethical rules concerning animal research and was approved by the Institutional Animal Care and Use Committee of Cairo University (CU-IACUC).

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, D.M., Welson, N.N. & Yassa, H.D. The Possible Protective Role of Dark Chocolate Against Acrylamide Neurotoxicity in Weaning Rats Cerebellum. Mol Neurobiol 59, 234–244 (2022). https://doi.org/10.1007/s12035-021-02580-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02580-x

Keywords

Navigation