Skip to main content

Advertisement

Log in

Midazolam Exposure Impedes Oligodendrocyte Development via the Translocator Protein and Impairs Myelination in Larval Zebrafish

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Anesthetics are commonly used in various medical procedures. Accumulating evidence suggests that early-life anesthetics exposure in infants and children affects brain development, causing psychiatric and neurological disorders. However, the underlying mechanisms are poorly understood. Using zebrafish larvae as a model, we found that the proliferation and migration of oligodendrocyte progenitor cells (OPCs) were severely impaired by the exposure of midazolam (MDZ), an anesthetic widely used in pediatric surgery and intensive care medicine, leading to a reduction of oligodendroglial lineage cell in the dorsal spinal cord. This defect was mimicked by the bath application of translocator protein (TSPO) agonists and partially rescued by genetic downregulation of TSPO. Cell transplantation experiments showed that requirement of TSPO for MDZ-induced oligodendroglial lineage cell defects is cell-autonomous. Furthermore, transmission electron microscopy and in vivo electrophysiological recording experiments demonstrated that MDZ exposure caused axon hypomyelination and action potential propagation retardation, resulting in delayed behavior initiation. Thus, our findings reveal that MDZ affects oligodendroglial lineage cell development and myelination in young animals, raising the care about its clinic use in infants and children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

References

  1. Raper J, De Biasio JC, Murphy KL, Alvarado MC, Baxter MG (2018) Persistent alteration in behavioural reactivity to a mild social stressor in rhesus monkeys repeatedly exposed to sevoflurane in infancy. Br J Anaesth 120(4):761–767. https://doi.org/10.1016/j.bja.2018.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kang E, Jiang D, Ryu YK, Lim S, Kwak M, Gray CD, Xu M, Choi JH, Junn S, Kim J, Xu J, Schaefer M, Johns RA, Song H, Ming GL, Mintz CD (2017) Early postnatal exposure to isoflurane causes cognitive deficits and disrupts development of newborn hippocampal neurons via activation of the mTOR pathway. PLoS Biol 15(7):e2001246. https://doi.org/10.1371/journal.pbio.2001246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang Q, Shen FY, Zou R, Zheng JJ, Yu X, Wang YW (2017) Ketamine-induced apoptosis in the mouse cerebral cortex follows similar characteristic of physiological apoptosis and can be regulated by neuronal activity. Mol Brain 10(1):24. https://doi.org/10.1186/s13041-017-0302-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Diana P, Joksimovic SM, Faisant A, Jevtovic-Todorovic V (2019) Early exposure to general anesthesia impairs social and emotional development in rats. Mol Neurobiol. https://doi.org/10.1007/s12035-019-01755-x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zaccariello MJ, Frank RD, Lee M, Kirsch AC, Schroeder DR, Hanson AC, Schulte PJ, Wilder RT, Sprung J, Katusic SK, Flick RP, Warner DO (2019) Patterns of neuropsychological changes after general anaesthesia in young children: secondary analysis of the Mayo Anesthesia Safety in Kids study. Br J Anaesth 122(5):671–681. https://doi.org/10.1016/j.bja.2019.01.022

    Article  PubMed  PubMed Central  Google Scholar 

  6. Glatz P, Sandin RH, Pedersen NL, Bonamy AK, Eriksson LI, Granath F (2017) Association of anesthesia and surgery during childhood with long-term academic performance. JAMA Pediatr 171(1):e163470. https://doi.org/10.1001/jamapediatrics.2016.3470

    Article  PubMed  Google Scholar 

  7. Walkden GJ, Gill H, Davies NM, Peters AE, Wright I, Pickering AE (2020) Early childhood general anesthesia and neurodevelopmental outcomes in the Avon Longitudinal Study of Parents and Children birth cohort. Anesthesiology 133(5):1007–1020. https://doi.org/10.1097/ALN.0000000000003522

    Article  PubMed  Google Scholar 

  8. Polaner DM, Zuk J, McCann ME, Davidson A (2017) Warnings, uncertainty, and clinical practice. Lancet 389(10085):2174–2176. https://doi.org/10.1016/S0140-6736(17)31506-4

    Article  PubMed  Google Scholar 

  9. Loepke AW (2010) Developmental neurotoxicity of sedatives and anesthetics: a concern for neonatal and pediatric critical care medicine? Pediatr Crit Care Med 11(2):217–226. https://doi.org/10.1097/PCC.0b013e3181b80383

    Article  PubMed  Google Scholar 

  10. Ng E, Taddio A, Ohlsson A (2017) Intravenous midazolam infusion for sedation of infants in the neonatal intensive care unit. Cochrane Database Syst Rev 1:CD002052. https://doi.org/10.1002/14651858.CD002052.pub3

    Article  PubMed  Google Scholar 

  11. Vutskits L, Xie Z (2016) Lasting impact of general anaesthesia on the brain: mechanisms and relevance. Nat Rev Neurosci 17(11):705–717. https://doi.org/10.1038/nrn.2016.128

    Article  CAS  Google Scholar 

  12. Suminaite D, Lyons DA, Livesey MR (2019) Myelinated axon physiology and regulation of neural circuit function. Glia 67(11):2050–2062. https://doi.org/10.1002/glia.23665

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A, Jin L, Zhang PW, Pellerin L, Magistretti PJ, Rothstein JD (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487(7408):443–448. https://doi.org/10.1038/nature11314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gelabert-Gonzalez M, Ginesta-Galan V, Sernamito-Garcia R, Allut AG, Bandin-Dieguez J, Rumbo RM (2006) The Camino intracranial pressure device in clinical practice. Assessment in a 1000 cases. Acta Neurochir (Wien) 148(4):435–441. https://doi.org/10.1007/s00701-005-0683-3

    Article  CAS  Google Scholar 

  15. Yeung MSY, Djelloul M, Steiner E, Bernard S, Salehpour M, Possnert G, Brundin L, Frisen J (2019) Dynamics of oligodendrocyte generation in multiple sclerosis. Nature 566(7745):538–542. https://doi.org/10.1038/s41586-018-0842-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kochunov P, Coyle TR, Rowland LM, Jahanshad N, Thompson PM, Kelly S, Du X, Sampath H, Bruce H, Chiappelli J, Ryan M, Fisseha F, Savransky A, Adhikari B, Chen S, Paciga SA, Whelan CD, Xie Z, Hyde CL, Chen X, Schubert CR, O’Donnell P, Hong LE (2017) Association of white matter with core cognitive deficits in patients with schizophrenia. JAMA Psychiat 74(9):958–966. https://doi.org/10.1001/jamapsychiatry.2017.2228

    Article  Google Scholar 

  17. Banerjee P, Rossi MG, Anghelescu DL, Liu W, Breazeale AM, Reddick WE, Glass JO, Phillips NS, Jacola LM, Sabin ND, Inaba H, Srivastava D, Robison LL, Pui CH, Hudson MM, Krull KR (2019) Association between anesthesia exposure and neurocognitive and neuroimaging outcomes in long-term survivors of childhood acute lymphoblastic leukemia. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2019.1094

    Article  PubMed  PubMed Central  Google Scholar 

  18. Paquet D, Bhat R, Sydow A, Mandelkow EM, Berg S, Hellberg S, Falting J, Distel M, Koster RW, Schmid B, Haass C (2009) A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. J Clin Invest 119(5):1382–1395. https://doi.org/10.1172/JCI37537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu DJ, Bu JW, Gu SY, Xia YM, Du JL, Wang YW (2011) Celecoxib impairs heart development via inhibiting cyclooxygenase-2 activity in zebrafish embryos. Anesthesiology 114(2):391–400. https://doi.org/10.1097/ALN.0b013e3182039f22

    Article  CAS  PubMed  Google Scholar 

  20. Xu DJ, Wang B, Zhao X, Zheng Y, Du JL, Wang YW (2017) General anesthetics protects against cardiac arrest-induced brain injury by inhibiting calcium wave propagation in zebrafish. Mol Brain 10(1):44. https://doi.org/10.1186/s13041-017-0323-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shin J, Park HC, Topczewska JM, Mawdsley DJ, Appel B (2003) Neural cell fate analysis in zebrafish using olig2 BAC transgenics. Methods Cell Sci 25(1–2):7–14. https://doi.org/10.1023/B:MICS.0000006847.09037.3a5146566

    Article  CAS  PubMed  Google Scholar 

  22. Lee JS, Padmanabhan A, Shin J, Zhu S, Guo F, Kanki JP, Epstein JA, Look AT (2010) Oligodendrocyte progenitor cell numbers and migration are regulated by the zebrafish orthologs of the NF1 tumor suppressor gene. Hum Mol Genet 19(23):4643–4653. https://doi.org/10.1093/hmg/ddq395ddq395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rampon C, Bouzaffour M, Ostuni MA, Dufourcq P, Girard C, Freyssinet JM, Lacapere JJ, Schweizer-Groyer G, Vriz S (2009) Translocator protein (18 kDa) is involved in primitive erythropoiesis in zebrafish. FASEB J 23(12):4181–4192. https://doi.org/10.1096/fj.09-129262fj.09-129262

    Article  CAS  PubMed  Google Scholar 

  24. Chen Q, Jiang L, Li C, Hu D, Bu JW, Cai D, Du JL (2012) Haemodynamics-driven developmental pruning of brain vasculature in zebrafish. PLoS Biol 10(8):e1001374. https://doi.org/10.1371/journal.pbio.1001374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu Q (1999) Microinjection into zebrafish embryos. Methods Mol Biol 127:125–132. https://doi.org/10.1385/1-59259-678-9:125

    Article  CAS  PubMed  Google Scholar 

  26. Liu P, Du JL, He C (2013) Developmental pruning of early-stage myelin segments during CNS myelination in vivo. Cell Res 23(7):962–964. https://doi.org/10.1038/cr.2013.62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu PC, Gu SY, Bu JW, Du JL (2010) TRPC1 is essential for in vivo angiogenesis in zebrafish. Circ Res 106(7):1221–1232. https://doi.org/10.1161/CIRCRESAHA.109.207670

    Article  CAS  PubMed  Google Scholar 

  28. Kimmel CB, Warga RM, Schilling TF (1990) Origin and organization of the zebrafish fate map. Development 108(4):581–594

    Article  CAS  Google Scholar 

  29. Mu Y, Li XQ, Zhang B, Du JL (2012) Visual input modulates audiomotor function via hypothalamic dopaminergic neurons through a cooperative mechanism. Neuron 75(4):688–699. https://doi.org/10.1016/j.neuron.2012.05.035

    Article  CAS  PubMed  Google Scholar 

  30. Czopka T, Ffrench-Constant C, Lyons DA (2013) Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev Cell 25(6):599–609. https://doi.org/10.1016/j.devcel.2013.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nicolay DJ, Doucette JR, Nazarali AJ (2007) Transcriptional control of oligodendrogenesis. Glia 55(13):1287–1299. https://doi.org/10.1002/glia.20540

    Article  PubMed  Google Scholar 

  32. Tokuda K, O’Dell KA, Izumi Y, Zorumski CF (2010) Midazolam inhibits hippocampal long-term potentiation and learning through dual central and peripheral benzodiazepine receptor activation and neurosteroidogenesis. J Neurosci 30(50):16788–16795. https://doi.org/10.1523/JNEUROSCI.4101-10.201030/50/16788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barron AM, Higuchi M, Hattori S, Kito S, Suhara T, Ji B (2021) Regulation of anxiety and depression by mitochondrial translocator protein-mediated steroidogenesis: the role of neurons. Mol Neurobiol 58(2):550–563. https://doi.org/10.1007/s12035-020-02136-5

    Article  CAS  PubMed  Google Scholar 

  34. Kirby BB, Takada N, Latimer AJ, Shin J, Carney TJ, Kelsh RN, Appel B (2006) In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat Neurosci 9(12):1506–1511. https://doi.org/10.1038/nn1803

    Article  CAS  PubMed  Google Scholar 

  35. Zhou B, Chen L, Liao P, Huang L, Chen Z, Liao D, Yang L, Wang J, Yu G, Wang L, Zhang J, Zuo Y, Liu J, Jiang R (2019) Astroglial dysfunctions drive aberrant synaptogenesis and social behavioral deficits in mice with neonatal exposure to lengthy general anesthesia. PLoS Biol 17(8):e3000086. https://doi.org/10.1371/journal.pbio.3000086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li Q, Mathena RP, Xu J, Eregha ON, Wen J, Mintz CD (2019) Early postnatal exposure to isoflurane disrupts oligodendrocyte development and myelin formation in the mouse hippocampus. Anesthesiology. https://doi.org/10.1097/ALN.0000000000002904

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ohta N, Ohashi Y, Takayama C, Mashimo T, Fujino Y (2011) Midazolam suppresses maturation of murine dendritic cells and priming of lipopolysaccharide-induced t helper 1-type immune response. Anesthesiology 114(2):355–362. https://doi.org/10.1097/ALN.0b013e3182070c1f

    Article  CAS  PubMed  Google Scholar 

  38. Tanabe K, Kozawa O, Iida H (2011) Midazolam suppresses interleukin-1beta-induced interleukin-6 release from rat glial cells. J Neuroinflammation 8:68. https://doi.org/10.1186/1742-2094-8-68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Young C, Jevtovic-Todorovic V, Qin YQ, Tenkova T, Wang H, Labruyere J, Olney JW (2005) Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain. Br J Pharmacol 146(2):189–197. https://doi.org/10.1038/sj.bjp.0706301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Joo HK, Lee YR, Kang G, Choi S, Kim CS, Ryoo S, Park JB, Jeon BH (2015) The 18-kDa translocator protein inhibits vascular cell adhesion molecule-1 expression via inhibition of mitochondrial reactive oxygen species. Mol Cells 38(12):1064–1070. https://doi.org/10.14348/molcells.2015.0165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stevens MF, Werdehausen R, Gaza N, Hermanns H, Kremer D, Bauer I, Kury P, Hollmann MW, Braun S (2011) Midazolam activates the intrinsic pathway of apoptosis independent of benzodiazepine and death receptor signaling. Reg Anesth Pain Med 36(4):343–349. https://doi.org/10.1097/AAP.0b013e318217a6c7

    Article  CAS  PubMed  Google Scholar 

  42. So EC, Chang YT, Hsing CH, Poon PW, Leu SF, Huang BM (2010) The effect of midazolam on mouse Leydig cell steroidogenesis and apoptosis. Toxicol Lett 192(2):169–178. https://doi.org/10.1016/j.toxlet.2009.10.017

    Article  CAS  PubMed  Google Scholar 

  43. Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, Groyer G, Adams D, Schumacher M (2010) Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 9(12):971–988. https://doi.org/10.1038/nrd3295nrd3295

    Article  CAS  PubMed  Google Scholar 

  44. Guilarte TR (2019) TSPO in diverse CNS pathologies and psychiatric disease: a critical review and a way forward. Pharmacol Ther 194:44–58. https://doi.org/10.1016/j.pharmthera.2018.09.003

    Article  CAS  PubMed  Google Scholar 

  45. Fields RD (2008) White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31(7):361–370. https://doi.org/10.1016/j.tins.2008.04.001S0166-2236(08)00132-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alnaes D, Kaufmann T, Doan NT, Cordova-Palomera A, Wang Y, Bettella F, Moberget T, Andreassen OA, Westlye LT (2018) Association of heritable cognitive ability and psychopathology with white matter properties in children and adolescents. JAMA Psychiat 75(3):287–295. https://doi.org/10.1001/jamapsychiatry.2017.4277

    Article  Google Scholar 

  47. Sprung J, Flick RP, Katusic SK, Colligan RC, Barbaresi WJ, Bojanic K, Welch TL, Olson MD, Hanson AC, Schroeder DR, Wilder RT, Warner DO (2012) Attention-deficit/hyperactivity disorder after early exposure to procedures requiring general anesthesia. Mayo Clin Proc 87(2):120–129. https://doi.org/10.1016/j.mayocp.2011.11.008S0025-6196(11)00072-3

    Article  PubMed  PubMed Central  Google Scholar 

  48. Warner DO, Zaccariello MJ, Katusic SK, Schroeder DR, Hanson AC, Schulte PJ, Buenvenida SL, Gleich SJ, Wilder RT, Sprung J, Hu D, Voigt RG, Paule MG, Chelonis JJ, Flick RP (2018) Neuropsychological and behavioral outcomes after exposure of young children to procedures requiring general anesthesia: the Mayo Anesthesia Safety in Kids (MASK) study. Anesthesiology 129(1):89–105. https://doi.org/10.1097/ALN.0000000000002232

    Article  PubMed  Google Scholar 

  49. Clausen NG, Kahler S, Hansen TG (2018) Systematic review of the neurocognitive outcomes used in studies of paediatric anaesthesia neurotoxicity. Br J Anaesth 120(6):1255–1273. https://doi.org/10.1016/j.bja.2017.11.107

    Article  CAS  PubMed  Google Scholar 

  50. McCann ME, de Graaff JC, Dorris L, Disma N, Withington D, Bell G, Grobler A, Stargatt R, Hunt RW, Sheppard SJ, Marmor J, Giribaldi G, Bellinger DC, Hartmann PL, Hardy P, Frawley G, Izzo F, von Ungern Sternberg BS, Lynn A, Wilton N, Mueller M, Polaner DM, Absalom AR, Szmuk P, Morton N, Berde C, Soriano S, Davidson AJ, Consortium GAS (2019) Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS): an international, multicentre, randomised, controlled equivalence trial. Lancet 393(10172):664–677. https://doi.org/10.1016/S0140-6736(18)32485-1

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sun LS, Li G, Miller TL, Salorio C, Byrne MW, Bellinger DC, Ing C, Park R, Radcliffe J, Hays SR, DiMaggio CJ, Cooper TJ, Rauh V, Maxwell LG, Youn A, McGowan FX (2016) Association between a single general anesthesia exposure before age 36 months and neurocognitive outcomes in later childhood. JAMA 315(21):2312–2320. https://doi.org/10.1001/jama.2016.6967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu J, Mathena RP, Singh S, Kim J, Long JJ, Li Q, Junn S, Blaize E, Mintz CD (2019) Early developmental exposure to repetitive long duration of midazolam sedation causes behavioral and synaptic alterations in a rodent model of neurodevelopment. J Neurosurg Anesthesiol 31(1):151–162. https://doi.org/10.1097/ANA.0000000000000541

    Article  PubMed  PubMed Central  Google Scholar 

  53. Alvarez RV, Palmer C, Czaja AS, Peyton C, Silver G, Traube C, Mourani PM, Kaufman J (2018) Delirium is a common and early finding in patients in the pediatric cardiac intensive care unit. J Pediatr 195:206–212. https://doi.org/10.1016/j.jpeds.2017.11.064

    Article  PubMed  Google Scholar 

  54. Mulla H, Lawson G, Peek GJ, Firmin RK, Upton DR (2003) Plasma concentrations of midazolam in neonates receiving extracorporeal membrane oxygenation. ASAIO J 49(1):41–47. https://doi.org/10.1097/00002480-200301000-00007

    Article  CAS  PubMed  Google Scholar 

  55. Fukuoka N, Aibiki M, Tsukamoto T, Seki K, Morita S (2004) Biphasic concentration change during continuous midazolam administration in brain-injured patients undergoing therapeutic moderate hypothermia. Resuscitation 60(2):225–230. https://doi.org/10.1016/j.resuscitation.2003.09.017

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Bruce Appel at University of Colorado School of Medicine for providing the Tg(olig2:EGFP) transgenic zebrafish, Sox10:mRFP plasmid and anti-sox10 antibody.

Funding

This work was supported by the National Natural Science Foundation of China (grants no. 81200942, 81671058 and 81730031) and the Foundation of Shanghai Municipal Key Clinical Specialty (grant no. shslczdzk06901).

Author information

Authors and Affiliations

Authors

Contributions

Daojie Xu designed, planned and performed the experiments, analyzed the data, and wrote the manuscript. Bin Wang performed DNA microinjection and assisted with cell transplantation experiments. Bo Xu performed immunohistochemistry and assisted with time-lapse imaging experiments. Chen Yin performed in vivo electrophysiological recording. Li Ning assisted with transmission electron microscopy and drug treatment experiments. Xiaoquan Li assisted with C-start escape behavior test. Jiulin Du oversaw all research phases and contributed to writing the manuscript. Yingwei Wang coordinated and supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Yingwei Wang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Ethical Statement

All animal work were approved by Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10786 KB)

Supplementary file2 (AVI 1203 KB)

Supplementary file3 (AVI 1028 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Wang, B., Xu, B. et al. Midazolam Exposure Impedes Oligodendrocyte Development via the Translocator Protein and Impairs Myelination in Larval Zebrafish. Mol Neurobiol 59, 93–106 (2022). https://doi.org/10.1007/s12035-021-02559-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02559-8

Keywords

Navigation