Skip to main content

Advertisement

Log in

Inhibition of Autophagy Flux Promotes Secretion of Chondroitin Sulfate Proteoglycans in Primary Rat Astrocytes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Following spinal cord injury (SCI), reactive astrocytes in the glial scar produce high levels of chondroitin sulfate proteoglycans (CSPGs), which are known to inhibit axonal regeneration. Transforming growth factor beta (TGFβ) is a well-known factor that induces the production of CSPGs, and in this study, we report a novel mechanism underlying TGFβ’s effects on CSPG secretion in primary rat astrocytes. We observed increased TGFβ-induced secretion of the CSPGs neurocan and brevican, and this occurred simultaneously with inhibition of autophagy flux. In addition, we show that neurocan and brevican levels are further increased when TGFβ is administered in the presence of an autophagy inhibitor, Bafilomycin-A1, while they are reduced when cells are treated with a concentration of rapamycin that is not sufficient to induce autophagy. These findings suggest that TGFβ mediates its effects on CSPG secretion through autophagy pathways. They also represent a potential new approach to reduce CSPG secretion in vivo by targeting autophagy pathways, which could improve axonal regeneration after SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

© Red DND-99 and the cells were then fixed and immunostained for LC3-β. TGFβ induced lysosomal acidification as demonstrated by an increase in LysoTracker© Red DND-99 staining, and accumulation of LC3β puncta (arrows), but they did not co-localize. Bafilomycin-A1 and chloroquine in the presence of TGFβ increased accumulation of LC3β puncta and its dissociation with lysosomes (p < 0.0001). Rapamycin had no effect on LC3β puncta, while decreasing lysosomal acidification. Graph depicts average numbers of LC3β-positive puncta ± SEM (*p < 0.05, ***p < 0.001, ****p < 0.0001; ns, not significant). Immunocytochemistry was performed in three independent biological replicates. Scale bar = 20 µm

Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2019) Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol 10:282–282. https://doi.org/10.3389/fneur.2019.00282

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hussein RK, Mencio CP, Katagiri Y, Brake AM, Geller HM (2020) Role of chondroitin sulfation following spinal cord injury. Frontiers in Cellular Neuroscience 14 (208). https://doi.org/10.3389/fncel.2020.00208

  3. Ma VY, Chan L, Carruthers KJ (2014) Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the United States: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain. Arch Phys Med Rehabil 95(5):986-995.e981. https://doi.org/10.1016/j.apmr.2013.10.032

    Article  PubMed  PubMed Central  Google Scholar 

  4. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5(2):146–156. https://doi.org/10.1038/nrn1326

    Article  CAS  PubMed  Google Scholar 

  5. Kotter MR, Stadelmann C, Hartung HP (2011) Enhancing remyelination in disease–can we wrap it up? Brain : a journal of neurology 134(Pt 7):1882–1900. https://doi.org/10.1093/brain/awr014

    Article  Google Scholar 

  6. Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, Luo NL, Banine F, et al. (2005) Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 11(9):966–972. https://doi.org/10.1038/nm1279

    Article  CAS  PubMed  Google Scholar 

  7. Sloane JA, Batt C, Ma Y, Harris ZM, Trapp B, Vartanian T (2010) Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc Natl Acad Sci 107(25):11555–11560. https://doi.org/10.1073/pnas.1006496107

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lau LW, Keough MB, Haylock-Jacobs S, Cua R, Döring A, Sloka S, Stirling DP, Rivest S, Yong VW (2012) Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination. Ann Neurol 72(3):419–432. https://doi.org/10.1002/ana.23599

    Article  CAS  PubMed  Google Scholar 

  9. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416(6881):636–640. https://doi.org/10.1038/416636a

    Article  CAS  PubMed  Google Scholar 

  10. Davies SJ, Goucher DR, Doller C, Silver J (1999) Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. The Journal of neuroscience : the official journal of the Society for Neuroscience 19(14):5810–5822. https://doi.org/10.1523/jneurosci.19-14-05810.1999

    Article  CAS  Google Scholar 

  11. McKeon RJ, Schreiber RC, Rudge JS, Silver J (1991) Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. The Journal of neuroscience : the official journal of the Society for Neuroscience 11(11):3398–3411. https://doi.org/10.1523/jneurosci.11-11-03398.1991

    Article  CAS  Google Scholar 

  12. Jones LL, Margolis RU, Tuszynski MH (2003) The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp Neurol 182(2):399–411. https://doi.org/10.1016/S0014-4886(03)00087-6

    Article  CAS  PubMed  Google Scholar 

  13. Tang X, Davies JE, Davies SJ (2003) Changes in distribution, cell associations, and protein expression levels of NG2, neurocan, phosphacan, brevican, versican V2, and tenascin-C during acute to chronic maturation of spinal cord scar tissue. J Neurosci Res 71(3):427–444. https://doi.org/10.1002/jnr.10523

    Article  CAS  PubMed  Google Scholar 

  14. Cafferty WBJ, Yang S-H, Duffy PJ, Li S, Strittmatter SM (2007) Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans. J Neurosci 27(9):2176–2185. https://doi.org/10.1523/jneurosci.5176-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fouad K, Schnell L, Bunge MB, Schwab ME, Liebscher T, Pearse DD (2005) Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J Neurosci 25(5):1169–1178. https://doi.org/10.1523/jneurosci.3562-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Schut D, Fehlings MG (2010) Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci 30(5):1657–1676. https://doi.org/10.1523/jneurosci.3111-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moghadam AR, da Silva Rosa SC, Samiei E, Alizadeh J, Field J, Kawalec P, Thliveris J, Akbari M, Ghavami S, Gordon JW (2018) Autophagy modulates temozolomide-induced cell death in alveolar rhabdomyosarcoma cells. Cell Death Discov 4:52. https://doi.org/10.1038/s41420-018-0115-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alizadeh J, Glogowska A, Thliveris J, Kalantari F, Shojaei S, Hombach-Klonisch S, Klonisch T (1865) Ghavami S (2018) Autophagy modulates transforming growth factor beta 1 induced epithelial to mesenchymal transition in non-small cell lung cancer cells. Biochim Biophys Acta Mol Cell Res 5:749–768. https://doi.org/10.1016/j.bbamcr.2018.02.007

    Article  CAS  Google Scholar 

  19. Aghaei M, Dastghaib S, Aftabi S, Aghanoori MR, Alizadeh J, Mokarram P, Mehrbod P, Ashrafizadeh M, et al. (2020) The ER stress/UPR axis in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Life (Basel) 11 (1). https://doi.org/10.3390/life11010001

  20. Lorzadeh S, Kohan L, Ghavami S (1868) Azarpira N (2021) Autophagy and the Wnt signaling pathway: a focus on Wnt/beta-catenin signaling. Biochim Biophys Acta Mol Cell Res 3:118926. https://doi.org/10.1016/j.bbamcr.2020.118926

    Article  CAS  Google Scholar 

  21. Sharma P, Alizadeh J, Juarez M, Samali A, Halayko AJ, Kenyon NJ, Ghavami S, Zeki AA (2021) Autophagy, apoptosis, the unfolded protein response, and lung function in idiopathic pulmonary fibrosis. Cells 10 (7). https://doi.org/10.3390/cells10071642

  22. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741. https://doi.org/10.1016/j.cell.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  23. Jiang P, Mizushima N (2014) Autophagy and human diseases. Cell Res 24(1):69–79. https://doi.org/10.1038/cr.2013.161

    Article  CAS  Google Scholar 

  24. Eghtedardoost M, Ghazanfari T, Sadeghipour A, Hassan ZM, Ghanei M, Ghavami S (2020) Delayed effects of sulfur mustard on autophagy suppression in chemically-injured lung tissue. Int Immunopharmacol 80:105896. https://doi.org/10.1016/j.intimp.2019.105896

    Article  CAS  PubMed  Google Scholar 

  25. Alizadeh J, Lorzadeh S, Ghavami S (2021) Autophagy and cancer metastasis: a Trojan horse. J Investig Med. https://doi.org/10.1136/jim-2021-002016

    Article  PubMed  Google Scholar 

  26. Ghavami S, Gupta S, Ambrose E, Hnatowich M, Freed DH, Dixon IM (2014) Autophagy and heart disease: implications for cardiac ischemia-reperfusion damage. Curr Mol Med 14(5):616–629. https://doi.org/10.2174/1566524014666140603101520

    Article  CAS  PubMed  Google Scholar 

  27. Lock R, Debnath J (2008) Extracellular matrix regulation of autophagy. Curr Opin Cell Biol 20(5):583–588. https://doi.org/10.1016/j.ceb.2008.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Neill T, Schaefer L, Iozzo RV (2014) Instructive roles of extracellular matrix on autophagy. Am J Pathol 184(8):2146–2153. https://doi.org/10.1016/j.ajpath.2014.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alizadeh J, Shojaei S, Sepanjnia A, Hashemi M, Eftekharpour E, Ghavami S (2019) Simultaneous detection of autophagy and epithelial to mesenchymal transition in the non-small cell lung cancer cells. Methods in molecular biology (Clifton, NJ) 1854:87–103. https://doi.org/10.1007/7651_2017_84

    Article  CAS  Google Scholar 

  30. Ghavami S, Yeganeh B, Zeki AA, Shojaei S, Kenyon NJ, Ott S, Samali A, Patterson J, Alizadeh J, Moghadam AR, Dixon IMC, Unruh H, Knight DA, Post M, Klonisch T, Halayko AJ (2018) Autophagy and the unfolded protein response promote profibrotic effects of TGF-beta1 in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 314(3):L493–L504. https://doi.org/10.1152/ajplung.00372.2017

    Article  CAS  PubMed  Google Scholar 

  31. Wang M-K, Sun H-Q, Xiang Y-C, Jiang F, Su Y-P, Zou Z-M (2012) Different roles of TGF-β in the multi-lineage differentiation of stem cells. World J Stem Cells 4(5):28–34. https://doi.org/10.4252/wjsc.v4.i5.28

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ghavami S, Cunnington RH, Gupta S, Yeganeh B, Filomeno KL, Freed DH, Chen S, Klonisch T, Halayko AJ, Ambrose E, Singal R, Dixon IM (2015) Autophagy is a regulator of TGF-beta1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis 6:e1696. https://doi.org/10.1038/cddis.2015.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McTigue DM, Popovich PG, Morgan TE, Stokes BT (2000) Localization of transforming growth factor-beta1 and receptor mRNA after experimental spinal cord injury. Exp Neurol 163(1):220–230. https://doi.org/10.1006/exnr.2000.7372

    Article  CAS  PubMed  Google Scholar 

  34. Rimaniol AC, Lekieffre D, Serrano A, Masson A, Benavides J, Zavala F (1995) Biphasic transforming growth factor-beta production flanking the pro-inflammatory cytokine response in cerebral trauma. NeuroReport 7(1):133–136

    Article  CAS  Google Scholar 

  35. Logan A, Berry M, Gonzalez AM, Frautschy SA, Sporn MB, Baird A (1994) Effects of transforming growth factor beta 1 on scar production in the injured central nervous system of the rat. Eur J Neurosci 6(3):355–363. https://doi.org/10.1111/j.1460-9568.1994.tb00278.x

    Article  CAS  PubMed  Google Scholar 

  36. Moon LD, Fawcett JW (2001) Reduction in CNS scar formation without concomitant increase in axon regeneration following treatment of adult rat brain with a combination of antibodies to TGFbeta1 and beta2. Eur J Neurosci 14(10):1667–77. https://doi.org/10.1046/j.0953-816x.2001.01795.x

    Article  CAS  PubMed  Google Scholar 

  37. Asher RA, Morgenstern DA, Fidler PS, Adcock KH, Oohira A, Braistead JE, Levine JM, Margolis RU, et al. (2000) Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. The Journal of neuroscience : the official journal of the Society for Neuroscience 20(7):2427–2438. https://doi.org/10.1523/jneurosci.20-07-02427.2000

    Article  CAS  Google Scholar 

  38. Hamel MG, Mayer J, Gottschall PE (2005) Altered production and proteolytic processing of brevican by transforming growth factor beta in cultured astrocytes. J Neurochem 93(6):1533–1541. https://doi.org/10.1111/j.1471-4159.2005.03144.x

    Article  CAS  PubMed  Google Scholar 

  39. Susarla BTS, Laing ED, Yu P, Katagiri Y, Geller HM, Symes AJ (2011) Smad proteins differentially regulate transforming growth factor-β-mediated induction of chondroitin sulfate proteoglycans. J Neurochem 119(4):868–878. https://doi.org/10.1111/j.1471-4159.2011.07470.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jahan N, Hannila SS (2015) Transforming growth factor beta-induced expression of chondroitin sulfate proteoglycans is mediated through non-Smad signaling pathways. Exp Neurol 263:372–384. https://doi.org/10.1016/j.expneurol.2014.10.023

    Article  CAS  PubMed  Google Scholar 

  41. Wang H, Katagiri Y, McCann TE, Unsworth E, Goldsmith P, Yu ZX, Tan F, Santiago L, Mills EM, Wang Y, Symes AJ, Geller HM (2008) Chondroitin-4-sulfation negatively regulates axonal guidance and growth. J Cell Sci 121(Pt 18):3083–3091. https://doi.org/10.1242/jcs.032649

    Article  CAS  PubMed  Google Scholar 

  42. Shojaei S, Koleini N, Samiei E, Aghaei M, Cole LK, Alizadeh J, Islam MI, Vosoughi AR, Albokashy M, Butterfield Y, Marzban H, Xu F, Thliveris J, Kardami E, Hatch GM, Eftekharpour E, Akbari M, Hombach-Klonisch S, Klonisch T, Ghavami S (2020) Simvastatin increases temozolomide-induced cell death by targeting the fusion of autophagosomes and lysosomes. FEBS J 287(5):1005–1034. https://doi.org/10.1111/febs.15069

    Article  CAS  PubMed  Google Scholar 

  43. Yeganeh B, Ghavami S, Rahim MN, Klonisch T, Halayko AJ (1865) Coombs KM (2018) Autophagy activation is required for influenza A virus-induced apoptosis and replication. Biochim Biophys Acta Mol Cell Res 2:364–378. https://doi.org/10.1016/j.bbamcr.2017.10.014

    Article  CAS  Google Scholar 

  44. Eshraghi M, Adlimoghaddam A, Mahmoodzadeh A, Sharifzad F, Yasavoli-Sharahi H, Lorzadeh S, Albensi BC, Ghavami S (2021) Alzheimer’s disease pathogenesis: role of autophagy and mitophagy focusing in microglia. Int J Mol Sci 22 (7). https://doi.org/10.3390/ijms22073330

  45. Moosavi MA, Sharifi M, Ghafary SM, Mohammadalipour Z, Khataee A, Rahmati M, Hajjaran S, Los MJ, Klonisch T, Ghavami S (2016) Photodynamic N-TiO2 nanoparticle treatment induces controlled ROS-mediated autophagy and terminal differentiation of leukemia cells. Sci Rep 6:34413. https://doi.org/10.1038/srep34413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Emami A, Shojaei S, da Silva Rosa SC, Aghaei M, Samiei E, Vosoughi AR, Kalantari F, Kawalec P, Thliveris J, Sharma P, Zeki AA, Akbari M, Gordon JW, Ghavami S (2019) Mechanisms of simvastatin myotoxicity: the role of autophagy flux inhibition. Eur J Pharmacol 862:172616. https://doi.org/10.1016/j.ejphar.2019.172616

    Article  CAS  PubMed  Google Scholar 

  47. Brun P, Tarricone E, Di Stefano A, Mattiuzzo E, Mehrbod P, Ghavami S, Leonardi A (2020) The regulatory activity of autophagy in conjunctival fibroblasts and its possible role in vernal keratoconjunctivitis. J Allergy Clin Immunol 146 (5):1210–1213 e1219. https://doi.org/10.1016/j.jaci.2020.03.013

  48. McAlinden KD, Deshpande DA, Ghavami S, Xenaki D, Sohal SS, Oliver BG, Haghi M, Sharma P (2019) Autophagy activation in asthma airways remodeling. Am J Respir Cell Mol Biol 60(5):541–553. https://doi.org/10.1165/rcmb.2018-0169OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dastghaib S, Shojaei S, Mostafavi-Pour Z, Sharma P, Patterson JB, Samali A, Mokarram P, Ghavami S (2020) Simvastatin induces unfolded protein response and enhances temozolomide-induced cell death in glioblastoma cells. Cells 9 (11). https://doi.org/10.3390/cells9112339

  50. Mayer J, Hamel MG, Gottschall PE (2005) Evidence for proteolytic cleavage of brevican by the ADAMTSs in the dentate gyrus after excitotoxic lesion of the mouse entorhinal cortex. BMC Neurosci 6:52. https://doi.org/10.1186/1471-2202-6-52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mauvezin C, Neufeld TP (2015) Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy. 11(8):1437–8. https://doi.org/10.1080/15548627.2015.1066957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Semyanov A, Henneberger C, Agarwal A (2020) Making sense of astrocytic calcium signals - from acquisition to interpretation. Nat Rev Neurosci. 21(10):551–564. https://doi.org/10.1038/s41583-020-0361-8

    Article  CAS  PubMed  Google Scholar 

  53. Cavalli G, Cenci S (2020) Autophagy and Protein Secretion. J Mol Biol 432(8):2525–2545. https://doi.org/10.1016/j.jmb.2020.01.015

    Article  CAS  PubMed  Google Scholar 

  54. Xu J, Camfield R, Gorski SM (2018) The interplay between exosomes and autophagy - partners in crime. J Cell Sci 131(15):jcs215210. https://doi.org/10.1242/jcs.215210

  55. Ponpuak M, Mandell MA, Kimura T, Chauhan S, Cleyrat C, Deretic V (2015) Secretory autophagy. Curr Opin Cell Biol. 35:106–16. https://doi.org/10.1016/j.ceb.2015.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gonzalez CD, Resnik R, Vaccaro MI (2020) Secretory Autophagy and Its Relevance in Metabolic and Degenerative Disease. Front Endocrinol (Lausanne). 11:266. https://doi.org/10.3389/fendo.2020.00266

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mauvezin C, Nagy P, Juhász G, Neufeld TP (2015) Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification. Nat Commun. 6:7007. https://doi.org/10.1038/ncomms8007

    Article  PubMed  Google Scholar 

  58. Minakaki G, Menges S, Kittel A, Emmanouilidou E, Schaeffner I, Barkovits K, Bergmann A, Rockenstein E, Adame A, Marxreiter F, Mollenhauer B, Galasko D, Buzás EI, Schlötzer-Schrehardt U, Marcus K, Xiang W, Lie DC, Vekrellis K, Masliah E, Winkler J, Klucken J (2018) Autophagy inhibition promotes SNCA/alpha-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype. Autophagy. 14(1):98–119. https://doi.org/10.1080/15548627.2017.1395992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kingsley DM (1994) The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8(2):133–146. https://doi.org/10.1101/gad.8.2.133

    Article  CAS  PubMed  Google Scholar 

  60. Brand T, Schneider MD (1996) Transforming growth factor-beta signal transduction. Circ Res 78(2):173–179. https://doi.org/10.1161/01.res.78.2.173

    Article  CAS  PubMed  Google Scholar 

  61. Tran AP, Warren PM, Silver J (2020) Regulation of autophagy by inhibitory CSPG interactions with receptor PTPσ and its impact on plasticity and regeneration after spinal cord injury. Exp Neurol 328:113276. https://doi.org/10.1016/j.expneurol.2020.113276

  62. Zhang X, Zhou Y, Yu X, Huang Q, Fang W, Li J, Bonventre JV, Sukhova GK, Libby P, Shi GP (2019) Differential Roles of Cysteinyl Cathepsins in TGF-β Signaling and Tissue Fibrosis. iScience. 19:607–622. https://doi.org/10.1016/j.isci.2019.08.014

  63. Jones LL, Sajed D, Tuszynski MH (2003) Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition. The Journal of neuroscience : the official journal of the Society for Neuroscience 23(28):9276–9288. https://doi.org/10.1523/jneurosci.23-28-09276.2003

    Article  CAS  Google Scholar 

  64. Sandvig A, Berry M, Barrett LB, Butt A, Logan A (2004) Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia 46(3):225–251. https://doi.org/10.1002/glia.10315

    Article  PubMed  Google Scholar 

  65. Galtrey CM, Fawcett JW (2007) The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res Rev 54(1):1–18. https://doi.org/10.1016/j.brainresrev.2006.09.006

    Article  CAS  PubMed  Google Scholar 

  66. Crespo D, Asher RA, Lin R, Rhodes KE, Fawcett JW (2007) How does chondroitinase promote functional recovery in the damaged CNS? Exp Neurol 206(2):159–171. https://doi.org/10.1016/j.expneurol.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  67. Laabs TL, Wang H, Katagiri Y, McCann T, Fawcett JW, Geller HM (2007) Inhibiting glycosaminoglycan chain polymerization decreases the inhibitory activity of astrocyte-derived chondroitin sulfate proteoglycans. The Journal of neuroscience : the official journal of the Society for Neuroscience 27(52):14494–14501. https://doi.org/10.1523/jneurosci.2807-07.2007

    Article  CAS  Google Scholar 

  68. Karumbaiah L, Anand S, Thazhath R, Zhong Y, McKeon RJ, Bellamkonda RV (2011) Targeted downregulation of N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase significantly mitigates chondroitin sulfate proteoglycan-mediated inhibition. Glia 59(6):981–996. https://doi.org/10.1002/glia.21170

    Article  PubMed  PubMed Central  Google Scholar 

  69. Logan A, Green J, Hunter A, Jackson R, Berry M (1999) Inhibition of glial scarring in the injured rat brain by a recombinant human monoclonal antibody to transforming growth factor-beta2. Eur J Neurosci 11(7):2367–2374. https://doi.org/10.1046/j.1460-9568.1999.00654.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JA was supported by Vanier Canada Graduate Scholarship (Vanier CGS) funded by the Canadian Institute of Health Research (CIHR). SG was supported by a Research Manitoba New Operating grant. MMK and VDS were the recipients of an Undergraduate Research Award (Office of the Vice-President – Research and International, University of Manitoba). SSH was supported by operating grants from the Natural Sciences and Engineering Research Council of Canada (Discovery Grant), the Manitoba Spinal Cord Injury Research Committee (Canadian Paraplegic Association), and the Wings for Life Spinal Cord Research Foundation. The authors thank Mrs. Dana Henderson, Mrs. Farhana Begum, and the staff of the Human Anatomy and Cell Science core histology facility for preparing and sectioning the blocks for the electron microscopy experiments.

Funding

This research was supported by operating grants from Research Manitoba and CancerCare Manitoba Foundation (SG), the Natural Sciences and Engineering Research Council of Canada (SSH), the Manitoba Spinal Cord Injury Research Committee (Canadian Paraplegic Association – SSH), and the Wings for Life Spinal Cord Research Foundation (SSH).

Author information

Authors and Affiliations

Authors

Contributions

MMK and DAD performed Western blotting and immunocytochemistry experiments. VDS performed Western blotting experiments, prepared figures, and wrote the manuscript. JA prepared the manuscript and graphical abstract. SG designed experiments, performed electron microscopy, prepared figures, and finalized the manuscript. SSH supervised all experiments, performed cell culture and prepared samples, prepared figures, and wrote the manuscript.

Corresponding authors

Correspondence to Sari S. Hannila or Saeid Ghavami.

Ethics declarations

Ethics Approval

All animal procedures were approved by the University of Manitoba Bannatyne Campus Animal Care Committee.

Consent to Participate

Not applicable.

Consent for Publication

All authors have consented to submission of the manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, J., Kochan, M.M., Stewart, V.D. et al. Inhibition of Autophagy Flux Promotes Secretion of Chondroitin Sulfate Proteoglycans in Primary Rat Astrocytes. Mol Neurobiol 58, 6077–6091 (2021). https://doi.org/10.1007/s12035-021-02533-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02533-4

Keywords

Navigation