Skip to main content

Generation and Role of Calpain-Cleaved 17-kDa Tau Fragment in Acute Ischemic Stroke

Abstract

Stroke is the leading cause of permanent disability and death in the world. The therapy for acute stroke is still limited due to the complex mechanisms underlying stroke-induced neuronal death. The generation of a 17-kDa neurotoxic tau fragment was reported in Alzheimer’s disease but it has not been well studied in stroke. In this study, we observed the accumulation of 17-kDa tau fragment in cultured primary neurons and media after oxygen-glucose deprivation/reperfusion (OGD/R) treatment that could be diminished by the presence of a calpain inhibitor. This calpain-mediated proteolytic tau fragment was also detected in brain tissues from middle cerebral artery occlusion–injured rats and acute ischemic stroke patients receiving strokectomy, and human plasma samples collected within 48 h after the onset of stroke. The mass spectrometry analysis of this 17-kDa fragment identified 2 peptide sequences containing 195–224 amino acids of tau, which agrees with the previously reported tau45-230 or tau125-230 as the calpain-cleaved tau fragment. Ectopic expression of tau45-230-GFP but not tau125-230-GFP in cultured neurons induced the formation of tortuous processes without evident cell death. In summary, the 17-kDa tau fragment is a novel stroke biomarker and may play a pathophysiological role to affect post-stroke neuronal health.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

The datasets generated and/or analyzed during the current study are available upon reasonable request.

References

  1. Pluta R, Ułamek M, Jabłoński M (2009) Alzheimer's mechanisms in ischemic brain degeneration. Anat Rec (Hoboken) 292:1863–1881. https://doi.org/10.1002/ar.21018

    Article  CAS  Google Scholar 

  2. Wang Y, Mandelkow E (2016) Tau in physiology and pathology. Nat Rev Neurosci 17:22–35. https://doi.org/10.1038/nrn.2015.1

    Article  CAS  Google Scholar 

  3. Ke YD, Suchowerska AK, van der Hoven J, De Silva DM, Wu CW, van Eersel J et al (2012) Lessons from tau-deficient mice. Int J Alzheimers Dis 2012:873270–873278. https://doi.org/10.1155/2012/873270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ballatore C, Lee VMY, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci 8:663–672. https://doi.org/10.1038/nrn2194

    Article  CAS  PubMed  Google Scholar 

  5. Bi M, Gladbach A, van Eersel J, Ittner A, Przybyla M, van Hummel A, Chua SW, van der Hoven J et al (2017) Tau exacerbates excitotoxic brain damage in an animal model of stroke. Nat Commun 8:473. https://doi.org/10.1038/s41467-017-00618-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gordon-Krajcer W, Kozniewska E, Lazarewicz JW, Ksiezak-Reding H (2007) Differential changes in phosphorylation of tau at PHF-1 and 12E8 epitopes during brain ischemia and reperfusion in gerbils. Neurochem Res 32:729–737. https://doi.org/10.1007/s11064-006-9199-3

    Article  CAS  PubMed  Google Scholar 

  7. Morioka M, Kawano T, Yano S, Kai Y, Tsuiki H, Yoshinaga Y, Matsumoto J, Maeda T et al (2006) Hyperphosphorylation at serine 199/202 of tau factor in the gerbil hippocampus after transient forebrain ischemia. Biochem Biophys Res Commun 347:273–278. https://doi.org/10.1016/j.bbrc.2006.06.096

    Article  CAS  PubMed  Google Scholar 

  8. Inekci D, Jonesco DS, Kennard S, Karsdal MA, Henriksen K (2015) The potential of pathological protein fragmentation in blood-based biomarker development for dementia – with emphasis on Alzheimer’s disease. Front Neurol 6:90. https://doi.org/10.3389/fneur.2015.00090

    Article  PubMed  PubMed Central  Google Scholar 

  9. Quinn JP, Corbett NJ, Kellett KAB, Hooper NM (2018) Tau proteolysis in the pathogenesis of tauopathies: neurotoxic fragments and novel biomarkers. J Alzheimers Dis 63:13–33. https://doi.org/10.3233/JAD-170959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Corsetti V, Amadoro G, Gentile A, Capsoni S, Ciotti MT, Cencioni MT, Atlante A, Canu N et al (2008) Identification of a caspase-derived N-terminal tau fragment in cellular and animal Alzheimer's disease models. Mol Cell Neurosci 38:381–392. https://doi.org/10.1016/j.mcn.2008.03.011

    Article  CAS  PubMed  Google Scholar 

  11. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ et al (2007) Reducing endogenous tau ameliorates amyloid -induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754. https://doi.org/10.1126/science.1141736

    Article  CAS  Google Scholar 

  12. Park S-Y, Ferreira A (2005) The generation of a 17 kDa neurotoxic fragment: An alternative mechanism by which tau mediates β-amyloid-induced neurodegeneration. J Neurosci 25:5365–5375. https://doi.org/10.1523/JNEUROSCI.1125-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reinecke JB, DeVos SL, McGrath JP, Shepard AM, Goncharoff DK, Tait DN et al (2011) Implicating calpain in tau-mediated toxicity in vivo. PLOS ONE 6:e23865. https://doi.org/10.1371/journal.pone.0023865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lang AE, Riherd Methner DN, Ferreira A (2014) Neuronal degeneration, synaptic defects, and behavioral abnormalities in tau45-230 transgenic mice. Neuroscience 275:322–339. https://doi.org/10.1016/j.neuroscience.2014.06.017

    Article  CAS  PubMed  Google Scholar 

  15. Garg S, Timm T, Mandelkow E-M, Mandelkow E, Wang Y (2011) Cleavage of tau by calpain in Alzheimer's disease: the quest for the toxic 17 kD fragment. Neurobiol Aging 32:1–14. https://doi.org/10.1016/j.neurobiolaging.2010.09.008

    Article  CAS  PubMed  Google Scholar 

  16. Ferrer I (2006) Apoptosis: future targets for neuroprotective strategies. Cerebrovasc Dis 21:9–20. https://doi.org/10.1159/000091699

    Article  PubMed  Google Scholar 

  17. White BC, Sullivan JM, DeGracia DJ, O’Neil BJ, Neumar RW, Grossman LI et al (2000) Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 179:1–33. https://doi.org/10.1016/S0022-510X(00)00386-5

    Article  CAS  PubMed  Google Scholar 

  18. Pivtoraiko VN, Stone SL, Roth KA, Shacka JJ (2008) Oxidative stress and autophagy in the regulation of lysosome-dependent neuron death. Antioxid Redox Signal 11:481–496. https://doi.org/10.1089/ars.2008.2263

    Article  CAS  Google Scholar 

  19. Tsuji M, Inanami O, Kuwabara M (2000) Neuroprotective effect of α-phenyl-n-tert-butylnitrone in gerbil hippocampus is mediated by the mitogen-activated protein kinase pathway and heat shock proteins. Neurosci Lett 282:41–44. https://doi.org/10.1016/S0304-3940(00)00844-2

    Article  CAS  PubMed  Google Scholar 

  20. Ferrer I, Friguls B, Dalfó E, Planas AM (2003) Early modifications in the expression of mitogen-activated protein kinase (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia. Acta Neuropathol 105:425–437. https://doi.org/10.1007/s00401-002-0661-2

    Article  CAS  PubMed  Google Scholar 

  21. Dong Y, Liu HD, Zhao R, Yang CZ, Chen XQ, Wang XH, Lau LT, Chen J et al (2009) Ischemia activates JNK/c-Jun/AP-1 pathway to up-regulate 14-3-3γ in astrocyte. J Neurochem 109:182–188. https://doi.org/10.1111/j.1471-4159.2009.05974.x

    Article  CAS  PubMed  Google Scholar 

  22. Tian Y, Su Y, Ye Q, Chen L, Yuan F, Wang Z (2020) Silencing of TXNIP alleviated oxidative stress injury by regulating MAPK-Nrf2 axis in ischemic stroke. Neurochem Res 45:428–436. https://doi.org/10.1007/s11064-019-02933-y

    Article  CAS  PubMed  Google Scholar 

  23. Nozaki K, Nishimura M, Hashimoto N (2001) Mitogen-activated protein kinases and cerebral ischemia. Mol Neurobiol 23:1–19. https://doi.org/10.1385/MN:23:1:01

    Article  CAS  PubMed  Google Scholar 

  24. Borsello T, Clarke PGH, Hirt L, Vercelli A, Repici M, Schorderet DF, Bogousslavsky J, Bonny C (2003) A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 9:1180–1186. https://doi.org/10.1038/nm911

    Article  CAS  PubMed  Google Scholar 

  25. Olivera Santa-Catalina M, Caballero Bermejo M, Argent R, Alonso JC, Centeno F, Lorenzo MJ (2017) JNK signaling pathway regulates sorbitol-induced tau proteolysis and apoptosis in SH-SY5Y cells by targeting caspase-3. Arch Biochem Biophys 636:42–49. https://doi.org/10.1016/j.abb.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  26. Huang YS, Richter JD (2007) Analysis of mRNA translation in cultured hippocampal neurons. Methods Enzymol 431:143–162. https://doi.org/10.1016/S0076-6879(07)31008-2

    Article  CAS  PubMed  Google Scholar 

  27. Tsai L-H, Delalle I, Caviness VS, Chae T, Harlow E (1994) p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371:419–423. https://doi.org/10.1038/371419a0

    Article  CAS  PubMed  Google Scholar 

  28. Sugiyama K, Aida T, Nomura M, Takayanagi R, Zeilhofer HU, Tanaka K (2017) Calpain-dependent degradation of nucleoporins contributes to motor neuron death in a mouse model of chronic excitotoxicity. J Neurosci 37:8830–8844. https://doi.org/10.1523/JNEUROSCI.0730-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4:399–414. https://doi.org/10.1038/nrn1106

    Article  CAS  PubMed  Google Scholar 

  30. Páramo B, Montiel T, Hernández-Espinosa DR, Rivera-Martínez M, Morán J, Massieu L (2013) Calpain activation induced by glucose deprivation is mediated by oxidative stress and contributes to neuronal damage. Int J Biochem Cell Biol 45:2596–2604. https://doi.org/10.1016/j.biocel.2013.08.013

    Article  CAS  PubMed  Google Scholar 

  31. Shvedova M, Anfinogenova Y, Atochina-Vasserman EN, Schepetkin IA, Atochin DN (2018) c-Jun N-terminal kinases (JNKs) in myocardial and cerebral ischemia/reperfusion injury. Front Pharmacol 9:715. https://doi.org/10.3389/fphar.2018.00715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81–94. https://doi.org/10.1038/nrm3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang J-L, Mukda S, Chen S-D (2018) Diverse roles of mitochondria in ischemic stroke. Redox Biol 16:263–275. https://doi.org/10.1016/j.redox.2018.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Afreen S, Riherd Methner DN, Ferreira A (2017) Tau45-230 association with the cytoskeleton and membrane-bound organelles: functional implications in neurodegeneration. Neuroscience 362:104–117. https://doi.org/10.1016/j.neuroscience.2017.08.026

    Article  CAS  PubMed  Google Scholar 

  35. Afreen S, Ferreira A (2019) Altered cytoskeletal composition and delayed neurite elongation in tau45-230-expressing hippocampal neurons. Neuroscience 412:1–15. https://doi.org/10.1016/j.neuroscience.2019.05.046

    Article  CAS  PubMed  Google Scholar 

  36. Amadoro G, Ciotti MT, Costanzi M, Cestari V, Calissano P, Canu N (2006) NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation. Proc Natl Acad Sci U S A 103:2892–2897. https://doi.org/10.1073/pnas.0511065103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Corsetti V, Florenzano F, Atlante A, Bobba A, Ciotti MT, Natale F, Della Valle F, Borreca A et al (2015) NH2-truncated human tau induces deregulated mitophagy in neurons by aberrant recruitment of Parkin and UCHL-1: implications in Alzheimer's disease. Hum Mol Genet 24:3058–3081. https://doi.org/10.1093/hmg/ddv059

    Article  CAS  PubMed  Google Scholar 

  38. Zilka N, Filipcik P, Koson P, Fialova L, Skrabana R, Zilkova M, Rolkova G, Kontsekova E et al (2006) Truncated tau from sporadic Alzheimer's disease suffices to drive neurofibrillary degeneration in vivo. FEBS Lett 580:3582–3588. https://doi.org/10.1016/j.febslet.2006.05.029

    Article  CAS  PubMed  Google Scholar 

  39. Bondulich MK, Guo T, Meehan C, Manion J, Rodriguez Martin T, Mitchell JC, Hortobagyi T, Yankova N et al (2016) Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate. Brain 139:2290–2306. https://doi.org/10.1093/brain/aww137

    Article  PubMed  PubMed Central  Google Scholar 

  40. Guo T, Dakkak D, Rodriguez-Martin T, Noble W, Hanger DP (2019) A pathogenic tau fragment compromises microtubules, disrupts insulin signaling and induces the unfolded protein response. Acta Neuropathol Commun 7:2. https://doi.org/10.1186/s40478-018-0651-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yamada K, Cirrito JR, Stewart FR, Jiang H, Finn MB, Holmes BB, Binder LI, Mandelkow EM et al (2011) In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J Neurosci 31:13110–13117. https://doi.org/10.1523/JNEUROSCI.2569-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gómez-Ramos A, Díaz-Hernández M, Rubio A, Miras-Portugal MT, Avila J (2008) Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells. Mol Cell Neurosci 37:673–681. https://doi.org/10.1016/j.mcn.2007.12.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Patrick Ching-Ho Hsieh (Institute of Biomedical Sciences, Academia Sinica) for the hypoxia incubator and the DNA Sequencing Core, which is supported under the Academia Sinica Core Facility and Innovative Instrument Project (AS-CFII-108-115). We also thank Mass Spectrometry Division, Instrumentation Center (College of Science National Taiwan University), for mass spectrometry analysis. We also thank the support of the 3rd core facility at the National Taiwan University Hospital.

Funding

This work was supported by grants from the Ministry of Science and Technology of Taiwan (MOST 109-2811-B-002-595 to S. C. T.) and Academia Sinica (AS-GC-110-MD05 to Y. S. H.).

Author information

Authors and Affiliations

Authors

Contributions

Y. D. C., P. Y. H., C. S. C., Y. S. H., and S. C. T. participated in the study design; Y. D. C. and P. Y. H. conducted the experiments; Y. D. C. analyzed the results and prepared the manuscript; Y. S. H. and S. C. T. revised and edited the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Yi-Shuian Huang or Sung-Chun Tang.

Ethics declarations

Ethical Approval

This study was approved by the ethics committees of the National Taiwan University Hospital (NTUH) Ethics Committee and conducted in accordance with ethical standards of the responsible committee in NTUH on human experimentation.

Consent to Participate

All study subjects and/or their relatives gave written informed consent. Informed consent was obtained from participants.

Consent for Publication

All authors have read and approved the submission of the manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Fig. S1

Hydrogen peroxide induces the cleavage of p35 and tau in neurons. DIV 24 cortical neurons were treated with 50 or 100 μM hydrogen peroxide (H2O2) for 3 h or 24 h and then harvested for western blotting of p35/p25, tau and β-actin. (PNG 228 kb)

High Resolution image (TIF 330 kb)

Fig. S2

The tau peptide sequences identified from the 17-kDa gel region. The lysate from OGD/R-treated neurons was separated on a SDS-PAGE and the gel around 17-kDa region was processed for mass spectrometry analysis. The identified 3 peptide sequences (marked in red) and corresponding positions in human tau 2N4R form were denoted. (PNG 118 kb)

High Resolution image (TIF 246 kb)

Fig. S3

OGD/R induces autophagy in cultured neurons. DIV 10 and DIV 16 cortical neurons were exposed to OGD/R for the indicated times and harvested for immunoblotting of LC3 and β-actin. (PNG 136 kb)

High Resolution image (TIF 183 kb)

Fig. S4

Expression of various GFP-tagged tau constructs in neurons. DIV 8 cortical neurons were infected with the lentivirus expressing GFP, tau1-441-GFP, tau45-230-GFP or tau125-230-GFP and then harvested at DIV 16 for western blotting of GFP and β-actin. (PNG 350 kb)

High Resolution image (TIF 541 kb)

Fig. S5

Extracellular presence of tau125-230-GFP and tau45-230-GFP does not affect neuronal viability. The 293T cells expressing GFP, tau125-230-GFP or tau45-230-GFP were lysed with a hypotonic buffer to collect cytoplasmic lysates. DIV 18 cortical neurons were treated with 40 or 120 μg cytoplasmic lysates for 24 h, followed by the viability measurement. Neurons treated with the same amount of hypotonic buffer were used as a control. (PNG 85 kb)

High Resolution image (TIF 140 kb)

Table S1

Clinical characteristics in control and stroke patients. NIHSS, National Institute of Health Stroke Scale; HT, hypertension; DM, diabetes mellitus; AF, atrial fibrillation; DLP, dyslipidemia; mRS, modified Rankin Scale.a median (25-75 percentile). (DOCX 34 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, YD., Huang, PY., Chiang, CS. et al. Generation and Role of Calpain-Cleaved 17-kDa Tau Fragment in Acute Ischemic Stroke. Mol Neurobiol 58, 5814–5825 (2021). https://doi.org/10.1007/s12035-021-02519-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02519-2

Keywords

  • Calpain
  • Ischemic stroke
  • Neuron
  • OGD/R
  • Tau proteolysis