Skip to main content

Advertisement

Log in

Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is a devastating condition that affects approximately 294,000 people in the USA and several millions worldwide. The corticospinal motor circuitry plays a major role in controlling skilled movements and in planning and coordinating movements in mammals and can be damaged by SCI. While axonal regeneration of injured fibers over long distances is scarce in the adult CNS, substantial spontaneous neural reorganization and plasticity in the spared corticospinal motor circuitry has been shown in experimental SCI models, associated with functional recovery. Beneficially harnessing this neuroplasticity of the corticospinal motor circuitry represents a highly promising therapeutic approach for improving locomotor outcomes after SCI. Several different strategies have been used to date for this purpose including neuromodulation (spinal cord/brain stimulation strategies and brain-machine interfaces), rehabilitative training (targeting activity-dependent plasticity), stem cells and biological scaffolds, neuroregenerative/neuroprotective pharmacotherapies, and light-based therapies like photodynamic therapy (PDT) and photobiomodulation (PMBT). This review provides an overview of the spontaneous reorganization and neuroplasticity in the corticospinal motor circuitry after SCI and summarizes the various therapeutic approaches used to beneficially harness this neuroplasticity for functional recovery after SCI in preclinical animal model and clinical human patients’ studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data are contained within the manuscript.

References

  1. Kumar R, Lim J, Mekary RA, Rattani A, Dewan MC, Sharif SY, Osorio-Fonseca E, Park KB (2018) Traumatic spinal injury: global epidemiology and worldwide volume. World Neurosurg 113:e345–e363. https://doi.org/10.1016/j.wneu.2018.02.033

    Article  PubMed  Google Scholar 

  2. National Spinal Cord Injury Statistical Center (2020) Spinal cord injury facts and figures at a glance. J Spinal Cord Med.

  3. Spinal cord injury fact sheet (2013) http://www.who.int/mediacentre/factsheets/fs384/en/. Accessed May 11, 2017

  4. Chen Y, Tang Y, Vogel LC, Devivo MJ (2013) Causes of spinal cord injury. Top Spinal Cord Inj Rehabil 19(1):1–8. https://doi.org/10.1310/sci1901-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, Fehlings MG (2017) Traumatic spinal cord injury. Nat Rev Dis Primers 3:17018. https://doi.org/10.1038/nrdp.2017.18

    Article  PubMed  Google Scholar 

  6. Armour BS, Courtney-Long EA, Fox MH, Fredine H (2013) Cahill A (2016) Prevalence and causes of paralysis-United States. Am J Public Health 106(10):1855–1857. https://doi.org/10.2105/ajph.2016.303270

    Article  Google Scholar 

  7. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2019) Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol 10:282. https://doi.org/10.3389/fneur.2019.00282

    Article  PubMed  PubMed Central  Google Scholar 

  8. Silva NA, Sousa N, Reis RL, Salgado AJ (2014) From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 114:25–57. https://doi.org/10.1016/j.pneurobio.2013.11.002

    Article  PubMed  Google Scholar 

  9. Hachem LD, Fehlings MG (2021) Pathophysiology of spinal cord injury. Neurosurg Clin N Am 32(3):305–313. https://doi.org/10.1016/j.nec.2021.03.002

    Article  PubMed  Google Scholar 

  10. Cheriyan T, Ryan DJ, Weinreb JH, Cheriyan J, Paul JC, Lafage V, Kirsch T, Errico TJ (2014) Spinal cord injury models: a review. Spinal Cord 52(8):588–595. https://doi.org/10.1038/sc.2014.91

    Article  CAS  PubMed  Google Scholar 

  11. Kwon BK, Streijger F, Hill CE, Anderson AJ, Bacon M, Beattie MS, Blesch A, Bradbury EJ et al. (2015) Large animal and primate models of spinal cord injury for the testing of novel therapies. Exp Neurol 269:154–168. https://doi.org/10.1016/j.expneurol.2015.04.008

    Article  PubMed  Google Scholar 

  12. Sharif-Alhoseini M, Khormali M, Rezaei M, Safdarian M, Hajighadery A, Khalatbari MM, Safdarian M, Meknatkhah S et al. (2017) Animal models of spinal cord injury: a systematic review. Spinal Cord. https://doi.org/10.1038/sc.2016.187

    Article  PubMed  Google Scholar 

  13. Sharif-Alhoseini M, Rahimi-Movaghar V (2014) Animal models in traumatic spinal cord injury. Topics in Paraplegia. 46005

  14. Zhang N, Fang M, Chen H, Gou F, Ding M (2014) Evaluation of spinal cord injury animal models. Neural Regen Res 9(22):2008–2012. https://doi.org/10.4103/1673-5374.143436

    Article  PubMed  PubMed Central  Google Scholar 

  15. Moon L, Bunge MB (2005) From animal models to humans: strategies for promoting CNS axon regeneration and recovery of limb function after spinal cord injury. J Neurol Phys Ther 29(2):55–69

    Article  PubMed  Google Scholar 

  16. Iwanami A, Yamane J, Katoh H, Nakamura M, Momoshima S, Ishii H, Tanioka Y, Tamaoki N et al. (2005) Establishment of graded spinal cord injury model in a nonhuman primate: the common marmoset. J Neurosci Res 80(2):172–181. https://doi.org/10.1002/jnr.20435

    Article  CAS  PubMed  Google Scholar 

  17. Lee JH, Jones CF, Okon EB, Anderson L, Tigchelaar S, Kooner P, Godbey T, Chua B et al. (2013) A novel porcine model of traumatic thoracic spinal cord injury. J Neurotrauma 30(3):142–159. https://doi.org/10.1089/neu.2012.2386

    Article  PubMed  Google Scholar 

  18. Schomberg DT, Miranpuri GS, Chopra A, Patel K, Meudt JJ, Tellez A, Resnick DK, Shanmuganayagam D (2017) Translational relevance of swine models of spinal cord injury. J Neurotrauma 34(3):541–551. https://doi.org/10.1089/neu.2016.4567

    Article  PubMed  Google Scholar 

  19. Slotkin JR, Pritchard CD, Luque B, Ye J, Layer RT, Lawrence MS, O’Shea TM, Roy RR et al. (2017) Biodegradable scaffolds promote tissue remodeling and functional improvement in non-human primates with acute spinal cord injury. Biomaterials 123:63–76. https://doi.org/10.1016/j.biomaterials.2017.01.024

    Article  CAS  PubMed  Google Scholar 

  20. Hug A, Weidner N (2012) From bench to beside to cure spinal cord injury: lost in translation? Int Rev Neurobiol 106:173–196. https://doi.org/10.1016/b978-0-12-407178-0.00008-9

    Article  CAS  PubMed  Google Scholar 

  21. Reier PJ, Lane MA, Hall ED, Teng YD, Howland DR (2012) Translational spinal cord injury research: preclinical guidelines and challenges. Handb Clin Neurol 109:411–433. https://doi.org/10.1016/b978-0-444-52137-8.00026-7

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tator CH, Hashimoto R, Raich A, Norvell D, Fehlings MG, Harrop JS, Guest J, Aarabi B et al. (2012) Translational potential of preclinical trials of neuroprotection through pharmacotherapy for spinal cord injury. J Neurosurg Spine 17(1):157–229. https://doi.org/10.3171/2012.5.aospine12116

    Article  PubMed  Google Scholar 

  23. Shah M, Peterson C, Yilmaz E, Halalmeh DR, Moisi M (2020) Current advancements in the management of spinal cord injury: a comprehensive review of literature. Surg Neurol Int 11:2. https://doi.org/10.25259/SNI_568_2019

    Article  PubMed  PubMed Central  Google Scholar 

  24. Iles JF (1996) Evidence for cutaneous and corticospinal modulation of presynaptic inhibition of Ia afferents from the human lower limb. J Physiol 491(1):197–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lemon RN (2008) Descending pathways in motor control. Annu Rev Neurosci 31:195–218. https://doi.org/10.1146/annurev.neuro.31.060407.125547

    Article  CAS  PubMed  Google Scholar 

  26. Lemon RN, Griffiths J (2005) Comparing the function of the corticospinal system in different species: organizational differences for motor specialization? Muscle Nerve 32(3):261–279. https://doi.org/10.1002/mus.20333

    Article  PubMed  Google Scholar 

  27. Serradj N, Agger SF, Hollis ER 2nd (2016) Corticospinal circuit plasticity in motor rehabilitation from spinal cord injury. Neurosci Lett. https://doi.org/10.1016/j.neulet.2016.12.003

    Article  PubMed  Google Scholar 

  28. Brown AR, Martinez M (2019) From cortex to cord: motor circuit plasticity after spinal cord injury. Neural Regen Res 14(12):2054–2062. https://doi.org/10.4103/1673-5374.262572

    Article  PubMed  PubMed Central  Google Scholar 

  29. Filli L, Engmann AK, Zorner B, Weinmann O, Moraitis T, Gullo M, Kasper H, Schneider R et al. (2014) Bridging the gap: a reticulo-propriospinal detour bypassing an incomplete spinal cord injury. J Neurosci 34(40):13399–13410. https://doi.org/10.1523/JNEUROSCI.0701-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fouad K, Tse A (2008) Adaptive changes in the injured spinal cord and their role in promoting functional recovery. Neurol Res 30(1):17–27. https://doi.org/10.1179/016164107X251781

    Article  CAS  PubMed  Google Scholar 

  31. Moxon KA, Oliviero A, Aguilar J, Foffani G (2014) Cortical reorganization after spinal cord injury: always for good? Neuroscience 283:78–94. https://doi.org/10.1016/j.neuroscience.2014.06.056

    Article  CAS  PubMed  Google Scholar 

  32. Oudega M, Perez MA (2012) Corticospinal reorganization after spinal cord injury. J Physiol 590(16):3647–3663. https://doi.org/10.1113/jphysiol.2012.233189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chari A, Hentall ID, Papadopoulos MC, Pereira EA (2017) Surgical Neurostimulation for Spinal Cord Injury. Brain Sci 7 (2). https://doi.org/10.3390/brainsci7020018

  34. Fouad K, Tetzlaff W (2012) Rehabilitative training and plasticity following spinal cord injury. Exp Neurol 235(1):91–99. https://doi.org/10.1016/j.expneurol.2011.02.009

    Article  CAS  PubMed  Google Scholar 

  35. James ND, McMahon SB, Field-Fote EC, Bradbury EJ (2018) Neuromodulation in the restoration of function after spinal cord injury. The Lancet Neurology 17(10):905–917. https://doi.org/10.1016/S1474-4422(18)30287-4

    Article  PubMed  Google Scholar 

  36. van Hedel HJ, Dietz V (2010) Rehabilitation of locomotion after spinal cord injury. Restor Neurol Neurosci 28(1):123–134. https://doi.org/10.3233/rnn-2010-0508

    Article  PubMed  Google Scholar 

  37. Hutson TH, Di Giovanni S (2019) The translational landscape in spinal cord injury: focus on neuroplasticity and regeneration. Nat Rev Neurol 15(12):732–745. https://doi.org/10.1038/s41582-019-0280-3

    Article  PubMed  Google Scholar 

  38. McIntyre WB, Pieczonka K, Khazaei M, Fehlings MG (2021) Regenerative replacement of neural cells for treatment of spinal cord injury. Expert Opin Biol Ther:1–17. https://doi.org/10.1080/14712598.2021.1914582

  39. Hebb DO (1949) Organization of behavior: a neuropsychological theory. John WIley and Sons, New York

    Google Scholar 

  40. Hubel DH, Wiesel TN (1963) Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J Neurophysiol 26:994–1002

    Article  CAS  PubMed  Google Scholar 

  41. Ferguson AR, Huie JR, Crown ED, Baumbauer KM, Hook MA, Garraway SM, Lee KH, Hoy KC et al. (2012) Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury. Front Physiol 3:399. https://doi.org/10.3389/fphys.2012.00399

    Article  PubMed  PubMed Central  Google Scholar 

  42. Huie JR, Morioka K, Haefeli J, Ferguson AR (2017) What is being trained? How divergent forms of plasticity compete to shape locomotor recovery after spinal cord injury. J Neurotrauma 34(10):1831–1840. https://doi.org/10.1089/neu.2016.4562

    Article  PubMed  PubMed Central  Google Scholar 

  43. Crown ED, Gwak YS, Ye Z, Johnson KM, Hulsebosch CE (2008) Activation of p38 MAP kinase is involved in central neuropathic pain following spinal cord injury. Exp Neurol 213(2):257–267. https://doi.org/10.1016/j.expneurol.2008.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ding Y, Kastin AJ, Pan W (2005) Neural plasticity after spinal cord injury. Curr Pharm Des 11(11):1441–1450. https://doi.org/10.2174/1381612053507855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Filipp ME, Travis BJ, Henry SS, Idzikowski EC, Magnuson SA, Loh MY, Hellenbrand DJ, Hanna AS (2019) Differences in neuroplasticity after spinal cord injury in varying animal models and humans. Neural Regen Res 14(1):7–19. https://doi.org/10.4103/1673-5374.243694

    Article  PubMed  PubMed Central  Google Scholar 

  46. Finnerup NB (2017) Neuropathic pain and spasticity: intricate consequences of spinal cord injury. Spinal Cord 55(12):1046–1050. https://doi.org/10.1038/sc.2017.70

    Article  CAS  PubMed  Google Scholar 

  47. Trompetto C, Marinelli L, Mori L, Pelosin E, Curra A, Molfetta L, Abbruzzese G (2014) Pathophysiology of spasticity: implications for neurorehabilitation. Biomed Res Int 2014:354906. https://doi.org/10.1155/2014/354906

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yezierski RP (2000) Pain following spinal cord injury: pathophysiology and central mechanisms. Prog Brain Res 129:429–449. https://doi.org/10.1016/S0079-6123(00)29033-X

    Article  CAS  PubMed  Google Scholar 

  49. Yezierski RP (2009) Spinal cord injury pain: spinal and supraspinal mechanisms. J Rehabil Res Dev 46(1):95–107

    Article  PubMed  Google Scholar 

  50. Pandyan AD, Gregoric M, Barnes MP, Wood D, Van Wijck F, Burridge J, Hermens H, Johnson GR (2005) Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disabil Rehabil 27(1–2):2–6. https://doi.org/10.1080/09638280400014576

    Article  CAS  PubMed  Google Scholar 

  51. Biering-Sorensen F, Burns AS, Curt A, Harvey LA, Jane Mulcahey M, Nance PW, Sherwood AM, Sisto SA (2012) International spinal cord injury musculoskeletal basic data set. Spinal Cord 50(11):797–802. https://doi.org/10.1038/sc.2012.102

    Article  CAS  PubMed  Google Scholar 

  52. Roper S (1976) The acetylcholine sensitivity of the surface membrane of multiply-innervated parasympathetic ganglion cells in the mudpuppy before and after partial denervation. J Physiol 254(2):455–473. https://doi.org/10.1113/jphysiol.1976.sp011240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Maier IC, Baumann K, Thallmair M, Weinmann O, Scholl J, Schwab ME (2008) Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury. J Neurosci 28(38):9386–9403. https://doi.org/10.1523/JNEUROSCI.1697-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Weidner N, Ner A, Salimi N, Tuszynski MH (2001) Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc Natl Acad Sci U S A 98(6):3513–3518. https://doi.org/10.1073/pnas.051626798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nudo RJ, Masterton RB (1988) Descending pathways to the spinal cord: a comparative study of 22 mammals. J Comp Neurol 277(1):53–79. https://doi.org/10.1002/cne.902770105

    Article  CAS  PubMed  Google Scholar 

  56. Miller MW (1987) The origin of corticospinal projection neurons in rat. Exp Brain Res 67(2):339–351. https://doi.org/10.1007/BF00248554

    Article  CAS  PubMed  Google Scholar 

  57. Bareyre FM, Kerschensteiner M, Misgeld T, Sanes JR (2005) Transgenic labeling of the corticospinal tract for monitoring axonal responses to spinal cord injury. Nat Med 11(12):1355–1360. https://doi.org/10.1038/nm1331

    Article  CAS  PubMed  Google Scholar 

  58. Brosamle C, Schwab ME (1997) Cells of origin, course, and termination patterns of the ventral, uncrossed component of the mature rat corticospinal tract. J Comp Neurol 386(2):293–303. https://doi.org/10.1002/(sici)1096-9861(19970922)386:2%3c293::aid-cne9%3e3.0.co;2-x

    Article  CAS  PubMed  Google Scholar 

  59. Joosten EA, Gribnau AA, Dederen PJ (1987) An anterograde tracer study of the developing corticospinal tract in the rat: three components. Brain Res 433(1):121–130. https://doi.org/10.1016/0165-3806(87)90070-8

    Article  CAS  PubMed  Google Scholar 

  60. Liang FY, Moret V, Wiesendanger M, Rouiller EM (1991) Corticomotoneuronal connections in the rat: evidence from double-labeling of motoneurons and corticospinal axon arborizations. J Comp Neurol 311(3):356–366. https://doi.org/10.1002/cne.903110306

    Article  CAS  PubMed  Google Scholar 

  61. Terashima T (1995) Anatomy, development and lesion-induced plasticity of rodent corticospinal tract. Neurosci Res 22(2):139–161

    Article  CAS  PubMed  Google Scholar 

  62. Armand J, Kuypers HG (1980) Cells of origin of crossed and uncrossed corticospinal fibers in the cat: a quantitative horseradish peroxidase study. Exp Brain Res 40(1):23–34. https://doi.org/10.1007/BF00236659

    Article  CAS  PubMed  Google Scholar 

  63. Chambers WW, Liu CN (1957) Corticospinal tract of the cat: an attempt to correlate the pattern of degeneration with deficits in reflex activity following neocortical lesions. J Comp Neurol 108(1):23–55. https://doi.org/10.1002/cne.901080103

    Article  CAS  PubMed  Google Scholar 

  64. Martin JH (2005) The corticospinal system: from development to motor control. Neuroscientist 11(2):161–173. https://doi.org/10.1177/1073858404270843

    Article  PubMed  Google Scholar 

  65. Galea MP, Darian-Smith I (1994) Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections. Cereb Cortex 4(2):166–194. https://doi.org/10.1093/cercor/4.2.166

    Article  CAS  PubMed  Google Scholar 

  66. Lacroix S, Havton LA, McKay H, Yang H, Brant A, Roberts J, Tuszynski MH (2004) Bilateral corticospinal projections arise from each motor cortex in the macaque monkey: a quantitative study. J Comp Neurol 473(2):147–161. https://doi.org/10.1002/cne.20051

    Article  PubMed  Google Scholar 

  67. Lawrence DG, Kuypers HG (1968) The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain-stem pathways. Brain 91(1):15–36. https://doi.org/10.1093/brain/91.1.15

    Article  CAS  PubMed  Google Scholar 

  68. Alstermark B, Isa T (2012) Circuits for skilled reaching and grasping. Annu Rev Neurosci 35:559–578. https://doi.org/10.1146/annurev-neuro-062111-150527

    Article  CAS  PubMed  Google Scholar 

  69. Levine AJ, Lewallen KA, Pfaff SL (2012) Spatial organization of cortical and spinal neurons controlling motor behavior. Curr Opin Neurobiol 22(5):812–821. https://doi.org/10.1016/j.conb.2012.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ueno M, Nakamura Y, Li J, Gu Z, Niehaus J, Maezawa M, Crone SA, Goulding M et al. (2018) Corticospinal circuits from the sensory and motor cortices differentially regulate skilled movements through distinct spinal interneurons. Cell Rep 23(5):1286-1300 e7. https://doi.org/10.1016/j.celrep.2018.03.137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Isa T, Kinoshita M, Nishimura Y (2013) Role of direct vs. indirect pathways from the motor cortex to spinal motoneurons in the control of hand dexterity. Front Neurol 4:191. https://doi.org/10.3389/fneur.2013.00191

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gioanni Y, Lamarche M (1985) A reappraisal of rat motor cortex organization by intracortical microstimulation. Brain Res 344(1):49–61. https://doi.org/10.1016/0006-8993(85)91188-6

    Article  CAS  PubMed  Google Scholar 

  73. Hallett M (2007) Transcranial magnetic stimulation: a primer. Neuron 55(2):187–199. https://doi.org/10.1016/j.neuron.2007.06.026

    Article  CAS  PubMed  Google Scholar 

  74. Chakrabarty S, Martin JH (2000) Postnatal development of the motor representation in primary motor cortex. J Neurophysiol 84(5):2582–2594. https://doi.org/10.1152/jn.2000.84.5.2582

    Article  CAS  PubMed  Google Scholar 

  75. Young NA, Vuong J, Teskey GC (2012) Development of motor maps in rats and their modulation by experience. J Neurophysiol 108(5):1309–1317. https://doi.org/10.1152/jn.01045.2011

    Article  PubMed  Google Scholar 

  76. Galea MP, Darian-Smith I (1995) Postnatal maturation of the direct corticospinal projections in the macaque monkey. Cereb Cortex 5(6):518–540. https://doi.org/10.1093/cercor/5.6.518

    Article  CAS  PubMed  Google Scholar 

  77. Pascual-Leone A, Nguyet D, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M (1995) Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol 74(3):1037–1045. https://doi.org/10.1152/jn.1995.74.3.1037

    Article  CAS  PubMed  Google Scholar 

  78. Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM (1996) Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 16(2):785–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Plautz EJ, Milliken GW, Nudo RJ (2000) Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem 74(1):27–55. https://doi.org/10.1006/nlme.1999.3934

    Article  CAS  PubMed  Google Scholar 

  80. Kleim JA, Barbay S, Cooper NR, Hogg TM, Reidel CN, Remple MS, Nudo RJ (2002) Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiol Learn Mem 77(1):63–77. https://doi.org/10.1006/nlme.2000.4004

    Article  PubMed  Google Scholar 

  81. Kleim JA, Barbay S, Nudo RJ (1998) Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol 80(6):3321–3325. https://doi.org/10.1152/jn.1998.80.6.3321

    Article  CAS  PubMed  Google Scholar 

  82. Molina-Luna K, Hertler B, Buitrago MM, Luft AR (2008) Motor learning transiently changes cortical somatotopy. Neuroimage 40(4):1748–1754. https://doi.org/10.1016/j.neuroimage.2007.11.018

    Article  PubMed  Google Scholar 

  83. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39. https://doi.org/10.1038/361031a0

    Article  CAS  PubMed  Google Scholar 

  84. Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129(7):1659–1673. https://doi.org/10.1093/brain/awl082

    Article  CAS  PubMed  Google Scholar 

  85. Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9(1):65–75. https://doi.org/10.1038/nrn2303

    Article  CAS  PubMed  Google Scholar 

  86. Greenough WT, Larson JR, Withers GS (1985) Effects of unilateral and bilateral training in a reaching task on dendritic branching of neurons in the rat motor-sensory forelimb cortex. Behav Neural Biol 44(2):301–314. https://doi.org/10.1016/s0163-1047(85)90310-3

    Article  CAS  PubMed  Google Scholar 

  87. Withers GS, Greenough WT (1989) Reach training selectively alters dendritic branching in subpopulations of layer II-III pyramids in rat motor-somatosensory forelimb cortex. Neuropsychologia 27(1):61–69. https://doi.org/10.1016/0028-3932(89)90090-0

    Article  CAS  PubMed  Google Scholar 

  88. Wang L, Conner JM, Rickert J, Tuszynski MH (2011) Structural plasticity within highly specific neuronal populations identifies a unique parcellation of motor learning in the adult brain. Proc Natl Acad Sci U S A 108(6):2545–2550. https://doi.org/10.1073/pnas.1014335108

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kleim JA, Bruneau R, Calder K, Pocock D, VandenBerg PM, MacDonald E, Monfils MH, Sutherland RJ et al. (2003) Functional organization of adult motor cortex is dependent upon continued protein synthesis. Neuron 40(1):167–176. https://doi.org/10.1016/s0896-6273(03)00592-0

    Article  CAS  PubMed  Google Scholar 

  90. Monfils MH, Teskey GC (2004) Skilled-learning-induced potentiation in rat sensorimotor cortex: a transient form of behavioural long-term potentiation. Neuroscience 125(2):329–336. https://doi.org/10.1016/j.neuroscience.2004.01.048

    Article  CAS  PubMed  Google Scholar 

  91. Urbin MA, Royston DA, Weber DJ, Boninger ML, Collinger JL (2019) What is the functional relevance of reorganization in primary motor cortex after spinal cord injury? Neurobiol Dis 121:286–295. https://doi.org/10.1016/j.nbd.2018.09.009

    Article  CAS  PubMed  Google Scholar 

  92. Streletz LJ, Belevich JK, Jones SM, Bhushan A, Shah SH, Herbison GJ (1995) Transcranial magnetic stimulation: cortical motor maps in acute spinal cord injury. Brain Topogr 7(3):245–250. https://doi.org/10.1007/BF01202383

    Article  CAS  PubMed  Google Scholar 

  93. Freund P, Rothwell J, Craggs M, Thompson AJ, Bestmann S (2011) Corticomotor representation to a human forearm muscle changes following cervical spinal cord injury. Eur J Neurosci 34(11):1839–1846. https://doi.org/10.1111/j.1460-9568.2011.07895.x

    Article  PubMed  Google Scholar 

  94. Levy WJ Jr, Amassian VE, Traad M, Cadwell J (1990) Focal magnetic coil stimulation reveals motor cortical system reorganized in humans after traumatic quadriplegia. Brain Res 510(1):130–134. https://doi.org/10.1016/0006-8993(90)90738-w

    Article  PubMed  Google Scholar 

  95. Topka H, Cohen LG, Cole RA, Hallett M (1991) Reorganization of corticospinal pathways following spinal cord injury. Neurology 41(8):1276–1283. https://doi.org/10.1212/wnl.41.8.1276

    Article  CAS  PubMed  Google Scholar 

  96. Cortes M, Thickbroom GW, Elder J, Rykman A, Valls-Sole J, Pascual-Leone A, Edwards DJ (2017) The corticomotor projection to liminally-contractable forearm muscles in chronic spinal cord injury: a transcranial magnetic stimulation study. Spinal Cord 55(4):362–366. https://doi.org/10.1038/sc.2016.161

    Article  CAS  PubMed  Google Scholar 

  97. Cramer SC, Lastra L, Lacourse MG, Cohen MJ (2005) Brain motor system function after chronic, complete spinal cord injury. Brain 128(12):2941–2950. https://doi.org/10.1093/brain/awh648

    Article  PubMed  Google Scholar 

  98. Hotz-Boendermaker S, Funk M, Summers P, Brugger P, Hepp-Reymond MC, Curt A, Kollias SS (2008) Preservation of motor programs in paraplegics as demonstrated by attempted and imagined foot movements. Neuroimage 39(1):383–394. https://doi.org/10.1016/j.neuroimage.2007.07.065

    Article  PubMed  Google Scholar 

  99. Curt A, Alkadhi H, Crelier GR, Boendermaker SH, Hepp-Reymond MC, Kollias SS (2002) Changes of non-affected upper limb cortical representation in paraplegic patients as assessed by fMRI. Brain 125(11):2567–2578. https://doi.org/10.1093/brain/awf250

    Article  PubMed  Google Scholar 

  100. Oza CS, Giszter SF (2014) Plasticity and alterations of trunk motor cortex following spinal cord injury and non-stepping robot and treadmill training. Exp Neurol 256:57–69. https://doi.org/10.1016/j.expneurol.2014.03.012

    Article  PubMed  PubMed Central  Google Scholar 

  101. Martinez M, Delcour M, Russier M, Zennou-Azogui Y, Xerri C, Coq JO, Brezun JM (2010) Differential tactile and motor recovery and cortical map alteration after C4–C5 spinal hemisection. Exp Neurol 221(1):186–197. https://doi.org/10.1016/j.expneurol.2009.10.022

    Article  PubMed  Google Scholar 

  102. Brown AR, Martinez M (2018) Ipsilesional motor cortex plasticity participates in spontaneous hindlimb recovery after lateral hemisection of the thoracic spinal cord in the rat. J Neurosci 38(46):9977–9988. https://doi.org/10.1523/JNEUROSCI.1062-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Axelson HW, Winkler T, Flygt J, Djupsjo A, Hanell A, Marklund N (2013) Plasticity of the contralateral motor cortex following focal traumatic brain injury in the rat. Restor Neurol Neurosci 31(1):73–85. https://doi.org/10.3233/RNN-2012-120242

    Article  PubMed  Google Scholar 

  104. Wen TC, Lall S, Pagnotta C, Markward J, Gupta D, Ratnadurai-Giridharan S, Bucci J, Greenwald L et al. (2018) Plasticity in one hemisphere, control from two: adaptation in descending motor pathways after unilateral corticospinal injury in neonatal rats. Front Neural Circuits 12:28. https://doi.org/10.3389/fncir.2018.00028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fink KL, Cafferty WB (2016) Reorganization of intact descending motor circuits to replace lost connections after injury. Neurotherapeutics 13(2):370–381. https://doi.org/10.1007/s13311-016-0422-x

    Article  PubMed  PubMed Central  Google Scholar 

  106. Fouad K, Pedersen V, Schwab ME, Brosamle C (2001) Cervical sprouting of corticospinal fibers after thoracic spinal cord injury accompanies shifts in evoked motor responses. Curr Biol 11(22):1766–1770. https://doi.org/10.1016/s0960-9822(01)00535-8

    Article  CAS  PubMed  Google Scholar 

  107. Ghosh A, Haiss F, Sydekum E, Schneider R, Gullo M, Wyss MT, Mueggler T, Baltes C et al. (2010) Rewiring of hindlimb corticospinal neurons after spinal cord injury. Nat Neurosci 13(1):97–104. https://doi.org/10.1038/nn.2448

    Article  CAS  PubMed  Google Scholar 

  108. Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME (2004) The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 7(3):269–277. https://doi.org/10.1038/nn1195

    Article  CAS  PubMed  Google Scholar 

  109. Mc CG, Austin GM, Liu CN, Liu CY (1958) Sprouting as a cause of spasticity. J Neurophysiol 21(3):205–216. https://doi.org/10.1152/jn.1958.21.3.205

    Article  Google Scholar 

  110. Aoki M, Fujito Y, Satomi H, Kurosawa Y, Kasaba T (1986) The possible role of collateral sprouting in the functional restitution of corticospinal connections after spinal hemisection. Neurosci Res 3(6):617–627. https://doi.org/10.1016/0168-0102(86)90058-1

    Article  CAS  PubMed  Google Scholar 

  111. Rosenzweig ES, Brock JH, Culbertson MD, Lu P, Moseanko R, Edgerton VR, Havton LA, Tuszynski MH (2009) Extensive spinal decussation and bilateral termination of cervical corticospinal projections in rhesus monkeys. J Comp Neurol 513(2):151–163. https://doi.org/10.1002/cne.21940

    Article  PubMed  PubMed Central  Google Scholar 

  112. Rosenzweig ES, Courtine G, Jindrich DL, Brock JH, Ferguson AR, Strand SC, Nout YS, Roy RR et al. (2010) Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat Neurosci 13(12):1505–1510. https://doi.org/10.1038/nn.2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wrigley PJ, Gustin SM, Macey PM, Nash PG, Gandevia SC, Macefield VG, Siddall PJ, Henderson LA (2009) Anatomical changes in human motor cortex and motor pathways following complete thoracic spinal cord injury. Cereb Cortex 19(1):224–232. https://doi.org/10.1093/cercor/bhn072

    Article  CAS  PubMed  Google Scholar 

  114. Edgerton VR, Tillakaratne NJ, Bigbee AJ, de Leon RD, Roy RR (2004) Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci 27:145–167. https://doi.org/10.1146/annurev.neuro.27.070203.144308

    Article  CAS  PubMed  Google Scholar 

  115. Bose P, Parmer R, Reier PJ, Thompson FJ (2005) Morphological changes of the soleus motoneuron pool in chronic midthoracic contused rats. Exp Neurol 191(1):13–23. https://doi.org/10.1016/j.expneurol.2004.08.028

    Article  PubMed  Google Scholar 

  116. Gazula VR, Roberts M, Luzzio C, Jawad AF, Kalb RG (2004) Effects of limb exercise after spinal cord injury on motor neuron dendrite structure. J Comp Neurol 476(2):130–145. https://doi.org/10.1002/cne.20204

    Article  PubMed  Google Scholar 

  117. Kitzman P (2005) Alteration in axial motoneuronal morphology in the spinal cord injured spastic rat. Exp Neurol 192(1):100–108. https://doi.org/10.1016/j.expneurol.2004.10.021

    Article  PubMed  Google Scholar 

  118. London M, Hausser M (2005) Dendritic computation. Annu Rev Neurosci 28:503–532. https://doi.org/10.1146/annurev.neuro.28.061604.135703

    Article  CAS  PubMed  Google Scholar 

  119. Lynskey JV, Belanger A, Jung R (2008) Activity-dependent plasticity in spinal cord injury. J Rehabil Res Dev 45(2):229–240. https://doi.org/10.1682/jrrd.2007.03.0047

    Article  PubMed  PubMed Central  Google Scholar 

  120. van Ooyen A, Duijnhouwer J, Remme MW, van Pelt J (2002) The effect of dendritic topology on firing patterns in model neurons. Network 13(3):311–325. https://doi.org/10.1088/0954-898x/13/3/304

    Article  PubMed  Google Scholar 

  121. Beaumont E, Houle JD, Peterson CA, Gardiner PF (2004) Passive exercise and fetal spinal cord transplant both help to restore motoneuronal properties after spinal cord transection in rats. Muscle Nerve 29(2):234–242. https://doi.org/10.1002/mus.10539

    Article  PubMed  Google Scholar 

  122. Chen Y, Chen XY, Jakeman LB, Chen L, Stokes BT, Wolpaw JR (2006) Operant conditioning of H-reflex can correct a locomotor abnormality after spinal cord injury in rats. J Neurosci 26(48):12537–12543. https://doi.org/10.1523/JNEUROSCI.2198-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Thompson FJ, Parmer R, Reier PJ (1998) Alteration in rate modulation of reflexes to lumbar motoneurons after midthoracic spinal cord injury in the rat I Contusion injury. J Neurotrauma 15(7):495–508. https://doi.org/10.1089/neu.1998.15.495

    Article  CAS  PubMed  Google Scholar 

  124. Parker D (2017) The lesioned spinal cord is a “new” spinal cord: evidence from functional changes after spinal injury in Lamprey. Front Neural Circuits 11:84. https://doi.org/10.3389/fncir.2017.00084

    Article  PubMed  PubMed Central  Google Scholar 

  125. Martinez M, Delivet-Mongrain H, Rossignol S (2013) Treadmill training promotes spinal changes leading to locomotor recovery after partial spinal cord injury in cats. J Neurophysiol 109(12):2909–2922. https://doi.org/10.1152/jn.01044.2012

    Article  PubMed  Google Scholar 

  126. Hill CE, Beattie MS, Bresnahan JC (2001) Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat. Exp Neurol 171(1):153–169. https://doi.org/10.1006/exnr.2001.7734

    Article  CAS  PubMed  Google Scholar 

  127. von Euler M, Janson AM, Larsen JO, Seiger A, Forno L, Bunge MB, Sundstrom E (2002) Spontaneous axonal regeneration in rodent spinal cord after ischemic injury. J Neuropathol Exp Neurol 61(1):64–75. https://doi.org/10.1093/jnen/61.1.64

    Article  Google Scholar 

  128. Beattie MS, Bresnahan JC, Komon J, Tovar CA, Van Meter M, Anderson DK, Faden AI, Hsu CY et al. (1997) Endogenous repair after spinal cord contusion injuries in the rat. Exp Neurol 148(2):453–463. https://doi.org/10.1006/exnr.1997.6695

    Article  CAS  PubMed  Google Scholar 

  129. Zai LJ, Wrathall JR (2005) Cell proliferation and replacement following contusive spinal cord injury. Glia 50(3):247–257. https://doi.org/10.1002/glia.20176

    Article  PubMed  Google Scholar 

  130. Zai LJ, Yoo S, Wrathall JR (2005) Increased growth factor expression and cell proliferation after contusive spinal cord injury. Brain Res 1052(2):147–155. https://doi.org/10.1016/j.brainres.2005.05.071

    Article  CAS  PubMed  Google Scholar 

  131. Zheng Y, Mao YR, Yuan TF, Xu DS, Cheng LM (2020) Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation. Neural Regen Res 15(8):1437–1450. https://doi.org/10.4103/1673-5374.274332

    Article  PubMed  PubMed Central  Google Scholar 

  132. Deer TR, Mekhail N, Provenzano D, Pope J, Krames E, Leong M, Levy RM, Abejon D et al. (2014) The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases: the Neuromodulation Appropriateness Consensus Committee. Neuromodulation 17(6):515–550. https://doi.org/10.1111/ner.12208

    Article  PubMed  Google Scholar 

  133. Deer TR, Skaribas IM, Haider N, Salmon J, Kim C, Nelson C, Tracy J, Espinet A et al. (2014) Effectiveness of cervical spinal cord stimulation for the management of chronic pain. Neuromodulation 17(3):265–271. https://doi.org/10.1111/ner.12119

    Article  PubMed  Google Scholar 

  134. Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A et al. (2011) Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377(9781):1938–1947. https://doi.org/10.1016/S0140-6736(11)60547-3

    Article  PubMed  PubMed Central  Google Scholar 

  135. Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ (2014) Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137(5):1394–1409. https://doi.org/10.1093/brain/awu038

    Article  PubMed  PubMed Central  Google Scholar 

  136. Lu DC, Edgerton VR, Modaber M, AuYong N, Morikawa E, Zdunowski S, Sarino ME, Sarrafzadeh M et al. (2016) Engaging cervical spinal cord networks to reenable volitional control of hand function in tetraplegic patients. Neurorehabil Neural Repair 30(10):951–962. https://doi.org/10.1177/1545968316644344

    Article  PubMed  PubMed Central  Google Scholar 

  137. McPherson JG, Miller RR, Perlmutter SI (2015) Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury. Proc Natl Acad Sci U S A 112(39):12193–12198. https://doi.org/10.1073/pnas.1505383112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sharpe AN, Jackson A (2014) Upper-limb muscle responses to epidural, subdural and intraspinal stimulation of the cervical spinal cord. J Neural Eng 11(1):016005. https://doi.org/10.1088/1741-2560/11/1/016005

    Article  PubMed  PubMed Central  Google Scholar 

  139. van den Brand R, Heutschi J, Barraud Q, DiGiovanna J, Bartholdi K, Huerlimann M, Friedli L, Vollenweider I et al. (2012) Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336(6085):1182–1185. https://doi.org/10.1126/science.1217416

    Article  CAS  PubMed  Google Scholar 

  140. Wenger N, Moraud EM, Gandar J, Musienko P, Capogrosso M, Baud L, Le Goff CG, Barraud Q et al. (2016) Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nat Med 22(2):138–145. https://doi.org/10.1038/nm.4025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Eisdorfer JT, Smit RD, Keefe KM, Lemay MA, Smith GM, Spence AJ (2020) Epidural electrical stimulation: a review of plasticity mechanisms that are hypothesized to underlie enhanced recovery from spinal cord injury with stimulation. Front Mol Neurosci 13:163. https://doi.org/10.3389/fnmol.2020.00163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Islamov R, Bashirov F, Fadeev F, Shevchenko R, Izmailov A, Markosyan V, Sokolov M, Kuznetsov M et al. (2020) Epidural stimulation combined with triple gene therapy for spinal cord injury treatment. International Journal of Molecular Sciences 21 (23). https://doi.org/10.3390/ijms21238896

  143. Jack AS, Hurd C, Martin J, Fouad K (2020) Electrical stimulation as a tool to promote plasticity of the injured spinal cord. J Neurotrauma 37(18):1933–1953. https://doi.org/10.1089/neu.2020.7033

    Article  PubMed  PubMed Central  Google Scholar 

  144. Minev IR, Musienko P, Hirsch A, Barraud Q, Wenger N, Moraud EM, Gandar J, Capogrosso M et al. (2015) Biomaterials. Electronic dura mater for long-term multimodal neural interfaces. Science 347(6218):159–163. https://doi.org/10.1126/science.1260318

    Article  CAS  PubMed  Google Scholar 

  145. Inanici F, Samejima S, Gad P, Edgerton VR, Hofstetter CP, Moritz CT (2018) Transcutaneous electrical spinal stimulation promotes long-term recovery of upper extremity function in chronic tetraplegia. IEEE Trans Neural Syst Rehabil Eng 26(6):1272–1278. https://doi.org/10.1109/TNSRE.2018.2834339

    Article  PubMed  PubMed Central  Google Scholar 

  146. Gerasimenko YP, Lu DC, Modaber M, Zdunowski S, Gad P, Sayenko DG, Morikawa E, Haakana P et al. (2015) Noninvasive reactivation of motor descending control after paralysis. J Neurotrauma 32(24):1968–1980. https://doi.org/10.1089/neu.2015.4008

    Article  PubMed  PubMed Central  Google Scholar 

  147. Hofstoetter US, Freundl B, Danner SM, Krenn MJ, Mayr W, Binder H, Minassian K (2020) Transcutaneous spinal cord stimulation induces temporary attenuation of spasticity in individuals with spinal cord injury. J Neurotrauma 37(3):481–493. https://doi.org/10.1089/neu.2019.6588

    Article  PubMed  Google Scholar 

  148. Megia Garcia A, Serrano-Munoz D, Taylor J, Avendano-Coy J, Gomez-Soriano J (2020) Transcutaneous spinal cord stimulation and motor rehabilitation in spinal cord injury: a systematic review. Neurorehabil Neural Repair 34(1):3–12. https://doi.org/10.1177/1545968319893298

    Article  PubMed  Google Scholar 

  149. Chalfouh C, Guillou C, Hardouin J, Delarue Q, Li X, Duclos C, Schapman D, Marie JP et al. (2020) The regenerative effect of trans-spinal magnetic stimulation after spinal cord injury: mechanisms and pathways underlying the effect. Neurotherapeutics. https://doi.org/10.1007/s13311-020-00915-5

    Article  PubMed  PubMed Central  Google Scholar 

  150. Hunanyan AS, Petrosyan HA, Alessi V, Arvanian VL (2012) Repetitive spinal electromagnetic stimulation opens a window of synaptic plasticity in damaged spinal cord: role of NMDA receptors. J Neurophysiol 107(11):3027–3039. https://doi.org/10.1152/jn.00015.2012

    Article  CAS  PubMed  Google Scholar 

  151. Leydeker M, Delva S, Tserlyuk I, Yau J, Wagdy M, Hawash A, Bendaoud S, Mohamed S et al. (2013) The effects of 15 Hz trans-spinal magnetic stimulation on locomotor control in mice with chronic contusive spinal cord injury. Electromagn Biol Med 32(2):155–164. https://doi.org/10.3109/15368378.2013.776353

    Article  PubMed  Google Scholar 

  152. Petrosyan HA, Alessi V, Hunanyan AS, Sisto SA, Arvanian VL (2015) Spinal electro-magnetic stimulation combined with transgene delivery of neurotrophin NT-3 and exercise: novel combination therapy for spinal contusion injury. J Neurophysiol 114(5):2923–2940. https://doi.org/10.1152/jn.00480.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Grehl S, Viola HM, Fuller-Carter PI, Carter KW, Dunlop SA, Hool LC, Sherrard RM, Rodger J (2015) Cellular and molecular changes to cortical neurons following low intensity repetitive magnetic stimulation at different frequencies. Brain Stimul 8(1):114–123. https://doi.org/10.1016/j.brs.2014.09.012

    Article  PubMed  Google Scholar 

  154. Zhang ZC, Luan F, Xie CY, Geng DD, Wang YY, Ma J (2015) Low-frequency transcranial magnetic stimulation is beneficial for enhancing synaptic plasticity in the aging brain. Neural Regen Res 10(6):916–924. https://doi.org/10.4103/1673-5374.158356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nardone R, Holler Y, Brigo F, Seidl M, Christova M, Bergmann J, Golaszewski S, Trinka E (2013) Functional brain reorganization after spinal cord injury: systematic review of animal and human studies. Brain Res 1504:58–73. https://doi.org/10.1016/j.brainres.2012.12.034

    Article  CAS  PubMed  Google Scholar 

  156. Squair JW, Bjerkefors A, Inglis JT, Lam T, Carpenter MG (2016) Cortical and vestibular stimulation reveal preserved descending motor pathways in individuals with motor-complete spinal cord injury. J Rehabil Med 48(7):589–596. https://doi.org/10.2340/16501977-2101

    Article  PubMed  Google Scholar 

  157. Gunduz A, Rothwell J, Vidal J, Kumru H (2017) Non-invasive brain stimulation to promote motor and functional recovery following spinal cord injury. Neural Regen Res 12(12):1933–1938. https://doi.org/10.4103/1673-5374.221143

    Article  PubMed  PubMed Central  Google Scholar 

  158. Medeiros LF, de Souza IC, Vidor LP, de Souza A, Deitos A, Volz MS, Fregni F, Caumo W et al. (2012) Neurobiological effects of transcranial direct current stimulation: a review. Front Psychiatry 3:110. https://doi.org/10.3389/fpsyt.2012.00110

    Article  PubMed  PubMed Central  Google Scholar 

  159. Gomes-Osman J, Field-Fote EC (2015) Cortical vs. afferent stimulation as an adjunct to functional task practice training: a randomized, comparative pilot study in people with cervical spinal cord injury. Clin Rehabil 29(8):771–782. https://doi.org/10.1177/0269215514556087

    Article  PubMed  Google Scholar 

  160. Murray LM, Edwards DJ, Ruffini G, Labar D, Stampas A, Pascual-Leone A, Cortes M (2015) Intensity dependent effects of transcranial direct current stimulation on corticospinal excitability in chronic spinal cord injury. Arch Phys Med Rehabil 96(4):S114-121. https://doi.org/10.1016/j.apmr.2014.11.004

    Article  PubMed  Google Scholar 

  161. Raithatha R, Carrico C, Powell ES, Westgate PM, Chelette Ii KC, Lee K, Dunsmore L, Salles S et al. (2016) Non-invasive brain stimulation and robot-assisted gait training after incomplete spinal cord injury: a randomized pilot study. NeuroRehabilitation 38(1):15–25. https://doi.org/10.3233/NRE-151291

    Article  PubMed  Google Scholar 

  162. Sriraman A, Oishi T, Madhavan S (2014) Timing-dependent priming effects of tDCS on ankle motor skill learning. Brain Res 1581:23–29. https://doi.org/10.1016/j.brainres.2014.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Morya E, Monte-Silva K, Bikson M, Esmaeilpour Z, Biazoli CE Jr, Fonseca A, Bocci T, Farzan F et al. (2019) Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes. J Neuroeng Rehabil 16(1):141. https://doi.org/10.1186/s12984-019-0581-1

    Article  PubMed  PubMed Central  Google Scholar 

  164. Alexeeva N, Calancie B (2016) Efficacy of QuadroPulse rTMS for improving motor function after spinal cord injury: three case studies. J Spinal Cord Med 39(1):50–57. https://doi.org/10.1179/2045772314Y.0000000279

    Article  PubMed  PubMed Central  Google Scholar 

  165. Gomes-Osman J, Field-Fote EC (2015) Improvements in hand function in adults with chronic tetraplegia following a multiday 10-Hz repetitive transcranial magnetic stimulation intervention combined with repetitive task practice. Journal of Neurologic Physical Therapy: JNPT 39(1):23–30. https://doi.org/10.1097/NPT.0000000000000062

    Article  PubMed  Google Scholar 

  166. Kumru H, Benito-Penalva J, Valls-Sole J, Murillo N, Tormos JM, Flores C, Vidal J (2016) Placebo-controlled study of rTMS combined with Lokomat((R)) gait training for treatment in subjects with motor incomplete spinal cord injury. Exp Brain Res 234(12):3447–3455. https://doi.org/10.1007/s00221-016-4739-9

    Article  CAS  PubMed  Google Scholar 

  167. Krishnan VS, Shin SS, Belegu V, Celnik P, Reimers M, Smith KR, Pelled G (2019) Multimodal evaluation of TMS - induced somatosensory plasticity and behavioral recovery in rats with contusion spinal cord injury. Front Neurosci 13:387. https://doi.org/10.3389/fnins.2019.00387

    Article  PubMed  PubMed Central  Google Scholar 

  168. Makowiecki K, Harvey AR, Sherrard RM, Rodger J (2014) Low-intensity repetitive transcranial magnetic stimulation improves abnormal visual cortical circuit topography and upregulates BDNF in mice. J Neurosci 34(32):10780–10792. https://doi.org/10.1523/JNEUROSCI.0723-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Macerollo A, Sajin V, Bonello M, Barghava D, Alusi SH, Eldridge PR, Osman-Farah J (2020) Deep brain stimulation in dystonia: state of art and future directions. J Neurosci Methods 340:108750. https://doi.org/10.1016/j.jneumeth.2020.108750

    Article  CAS  PubMed  Google Scholar 

  170. Mahlknecht P, Limousin P, Foltynie T (2015) Deep brain stimulation for movement disorders: update on recent discoveries and outlook on future developments. J Neurol 262(11):2583–2595. https://doi.org/10.1007/s00415-015-7790-8

    Article  PubMed  Google Scholar 

  171. Merola A, Romagnolo A, Krishna V, Pallavaram S, Carcieri S, Goetz S, Mandybur G, Duker AP et al. (2020) Current directions in deep brain stimulation for Parkinson’s disease-directing current to maximize clinical benefit. Neurol Ther 9(1):25–41. https://doi.org/10.1007/s40120-020-00181-9

    Article  PubMed  PubMed Central  Google Scholar 

  172. Bachmann LC, Matis A, Lindau NT, Felder P, Gullo M, Schwab ME (2013) Deep brain stimulation of the midbrain locomotor region improves paretic hindlimb function after spinal cord injury in rats. Sci Transl Med 5(208ra146):208. https://doi.org/10.1126/scitranslmed.3005972

    Article  Google Scholar 

  173. Hentall ID, Gonzalez MM (2012) Promotion of recovery from thoracic spinal cord contusion in rats by stimulation of medullary raphe or its midbrain input. Neurorehabil Neural Repair 26(4):374–384. https://doi.org/10.1177/1545968311425178

    Article  PubMed  Google Scholar 

  174. Wang M, Jia L, Wu X, Sun Z, Xu Z, Kong C, Ma L, Zhao R, Lu S (2020) Deep brain stimulation improves motor function in rats with spinal cord injury by increasing synaptic plasticity. World Neurosurg 140:e294–e303. https://doi.org/10.1016/j.wneu.2020.05.029

    Article  PubMed  Google Scholar 

  175. Jackson A, Zimmermann JB (2012) Neural interfaces for the brain and spinal cord–restoring motor function. Nat Rev Neurol 8(12):690–699. https://doi.org/10.1038/nrneurol.2012.219

    Article  CAS  PubMed  Google Scholar 

  176. Ethier C, Oby ER, Bauman MJ, Miller LE (2012) Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485(7398):368–371. https://doi.org/10.1038/nature10987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Moritz CT, Perlmutter SI, Fetz EE (2008) Direct control of paralysed muscles by cortical neurons. Nature 456(7222):639–642. https://doi.org/10.1038/nature07418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J et al. (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398):372–375. https://doi.org/10.1038/nature11076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bouton CE, Shaikhouni A, Annetta NV, Bockbrader MA, Friedenberg DA, Nielson DM, Sharma G, Sederberg PB et al. (2016) Restoring cortical control of functional movement in a human with quadriplegia. Nature 533(7602):247–250. https://doi.org/10.1038/nature17435

    Article  CAS  PubMed  Google Scholar 

  180. Ajiboye AB, Willett FR, Young DR, Memberg WD, Murphy BA, Miller JP, Walter BL, Sweet JA et al. (2017) Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 389(10081):1821–1830. https://doi.org/10.1016/S0140-6736(17)30601-3

    Article  PubMed  PubMed Central  Google Scholar 

  181. Donati AR, Shokur S, Morya E, Campos DS, Moioli RC, Gitti CM, Augusto PB, Tripodi S et al. (2016) Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci Rep 6:30383. https://doi.org/10.1038/srep30383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D et al. (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171. https://doi.org/10.1038/nature04970

    Article  CAS  PubMed  Google Scholar 

  183. Krucoff MO, Rahimpour S, Slutzky MW, Edgerton VR, Turner DA (2016) Enhancing nervous system recovery through neurobiologics, neural interface training, and neurorehabilitation. Front Neurosci 10:584. https://doi.org/10.3389/fnins.2016.00584

    Article  PubMed  PubMed Central  Google Scholar 

  184. Pichiorri F, Mattia D (2020) Brain-computer interfaces in neurologic rehabilitation practice. Handb Clin Neurol 168:101–116. https://doi.org/10.1016/B978-0-444-63934-9.00009-3

    Article  PubMed  Google Scholar 

  185. Rupp R (2014) Challenges in clinical applications of brain computer interfaces in individuals with spinal cord injury. Front Neuroeng 7:38. https://doi.org/10.3389/fneng.2014.00038

    Article  PubMed  PubMed Central  Google Scholar 

  186. Torres-Espin A, Beaudry E, Fenrich K, Fouad K (2018) Rehabilitative training in animal models of spinal cord injury. J Neurotrauma 35(16):1970–1985. https://doi.org/10.1089/neu.2018.5906

    Article  PubMed  Google Scholar 

  187. Loy K, Bareyre FM (2019) Rehabilitation following spinal cord injury: how animal models can help our understanding of exercise-induced neuroplasticity. Neural Regen Res 14(3):405–412. https://doi.org/10.4103/1673-5374.245951

    Article  PubMed  PubMed Central  Google Scholar 

  188. Forssberg H, Grillner S, Halbertsma J (1980) The locomotion of the low spinal cat I Coordination within a hindlimb. Acta Physiol Scand 108(3):269–281. https://doi.org/10.1111/j.1748-1716.1980.tb06533.x

    Article  CAS  PubMed  Google Scholar 

  189. Forssberg H, Grillner S, Halbertsma J, Rossignol S (1980) The locomotion of the low spinal cat. II Interlimb coordination Acta Physiol Scand 108(3):283–295. https://doi.org/10.1111/j.1748-1716.1980.tb06534.x

    Article  CAS  PubMed  Google Scholar 

  190. Barbeau H, Rossignol S (1987) Recovery of locomotion after chronic spinalization in the adult cat. Brain Res 412(1):84–95. https://doi.org/10.1016/0006-8993(87)91442-9

    Article  CAS  PubMed  Google Scholar 

  191. Lovely RG, Gregor RJ, Roy RR, Edgerton VR (1986) Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp Neurol 92(2):421–435. https://doi.org/10.1016/0014-4886(86)90094-4

    Article  CAS  PubMed  Google Scholar 

  192. Finch L, Barbeau H, Arsenault B (1991) Influence of body weight support on normal human gait: development of a gait retraining strategy. Phys Ther 71(11):842–855. https://doi.org/10.1093/ptj/71.11.842

    Article  CAS  PubMed  Google Scholar 

  193. Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, Ditunno J, Dudley G et al. (2006) Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology 66(4):484–493. https://doi.org/10.1212/01.wnl.0000202600.72018.39

    Article  CAS  PubMed  Google Scholar 

  194. Mehrholz J, Harvey LA, Thomas S, Elsner B (2017) Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review Spinal Cord 55(8):722–729. https://doi.org/10.1038/sc.2017.31

    Article  CAS  PubMed  Google Scholar 

  195. Behrman AL, Bowden MG, Nair PM (2006) Neuroplasticity after spinal cord injury and training: an emerging paradigm shift in rehabilitation and walking recovery. Phys Ther 86(10):1406–1425. https://doi.org/10.2522/ptj.20050212

    Article  PubMed  Google Scholar 

  196. Wernig A, Muller S, Nanassy A, Cagol E (1995) Laufband therapy based on “rules of spinal locomotion” is effective in spinal cord injured persons. Eur J Neurosci 7(4):823–829. https://doi.org/10.1111/j.1460-9568.1995.tb00686.x

    Article  CAS  PubMed  Google Scholar 

  197. Wernig A, Nanassy A, Muller S (1998) Maintenance of locomotor abilities following Laufband (treadmill) therapy in para- and tetraplegic persons: follow-up studies. Spinal Cord 36(11):744–749. https://doi.org/10.1038/sj.sc.3100670

    Article  CAS  PubMed  Google Scholar 

  198. Brazg G, Fahey M, Holleran CL, Connolly M, Woodward J, Hennessy PW, Schmit BD, Hornby TG (2017) Effects of training intensity on locomotor performance in individuals with chronic spinal cord injury: a randomized crossover study. Neurorehabil Neural Repair 31(10–11):944–954. https://doi.org/10.1177/1545968317731538

    Article  PubMed  PubMed Central  Google Scholar 

  199. Burns AS, Marino RJ, Kalsi-Ryan S, Middleton JW, Tetreault LA, Dettori JR, Mihalovich KE, Fehlings MG (2017) Type and timing of rehabilitation following acute and subacute spinal cord injury: a systematic review. Global Spine J 7(3 Suppl):175S-194S. https://doi.org/10.1177/2192568217703084

    Article  PubMed  PubMed Central  Google Scholar 

  200. Harkema SJ, Schmidt-Read M, Lorenz DJ, Edgerton VR, Behrman AL (2012) Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training-based rehabilitation. Arch Phys Med Rehabil 93(9):1508–1517. https://doi.org/10.1016/j.apmr.2011.01.024

    Article  PubMed  Google Scholar 

  201. Gomes-Osman J, Cortes M, Guest J, Pascual-Leone A (2016) A systematic review of experimental strategies aimed at improving motor function after acute and chronic spinal cord injury. J Neurotrauma 33(5):425–438. https://doi.org/10.1089/neu.2014.3812

    Article  PubMed  PubMed Central  Google Scholar 

  202. Hofer AS, Schwab ME (2019) Enhancing rehabilitation and functional recovery after brain and spinal cord trauma with electrical neuromodulation. Curr Opin Neurol 32(6):828–835. https://doi.org/10.1097/WCO.0000000000000750

    Article  PubMed  PubMed Central  Google Scholar 

  203. Minassian K, McKay WB, Binder H, Hofstoetter US (2016) Targeting lumbar spinal neural circuitry by epidural stimulation to restore motor function after spinal cord injury. Neurotherapeutics 13(2):284–294. https://doi.org/10.1007/s13311-016-0421-y

    Article  PubMed  PubMed Central  Google Scholar 

  204. Nagel SJ, Wilson S, Johnson MD, Machado A, Frizon L, Chardon MK, Reddy CG, Gillies GT et al. (2017) Spinal cord stimulation for spasticity: historical approaches, current status, and future directions. Neuromodulation 20(4):307–321. https://doi.org/10.1111/ner.12591

    Article  PubMed  Google Scholar 

  205. Angeli CA, Boakye M, Morton RA, Vogt J, Benton K, Chen Y, Ferreira CK, Harkema SJ (2018) Recovery of over-ground walking after chronic motor complete spinal cord injury. N Engl J Med 379(13):1244–1250. https://doi.org/10.1056/NEJMoa1803588

    Article  PubMed  Google Scholar 

  206. Gill ML, Grahn PJ, Calvert JS, Linde MB, Lavrov IA, Strommen JA, Beck LA, Sayenko DG et al. (2018) Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med 24(11):1677–1682. https://doi.org/10.1038/s41591-018-0175-7

    Article  CAS  PubMed  Google Scholar 

  207. Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24):10464–10472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Dan Y, Poo MM (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44(1):23–30. https://doi.org/10.1016/j.neuron.2004.09.007

    Article  CAS  PubMed  Google Scholar 

  209. Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215. https://doi.org/10.1126/science.275.5297.213

    Article  CAS  PubMed  Google Scholar 

  210. Boyce VS, Tumolo M, Fischer I, Murray M, Lemay MA (2007) Neurotrophic factors promote and enhance locomotor recovery in untrained spinalized cats. J Neurophysiol 98(4):1988–1996. https://doi.org/10.1152/jn.00391.2007

    Article  PubMed  Google Scholar 

  211. Garraway SM, Huie JR (2016) Spinal plasticity and behavior: BDNF-induced neuromodulation in uninjured and injured spinal cord. Neural Plast 2016:9857201. https://doi.org/10.1155/2016/9857201

    Article  PubMed  PubMed Central  Google Scholar 

  212. Vaynman S, Gomez-Pinilla F (2005) License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabil Neural Repair 19(4):283–295. https://doi.org/10.1177/1545968305280753

    Article  PubMed  Google Scholar 

  213. Weishaupt N, Blesch A, Fouad K (2012) BDNF: the career of a multifaceted neurotrophin in spinal cord injury. Exp Neurol 238(2):254–264. https://doi.org/10.1016/j.expneurol.2012.09.001

    Article  CAS  PubMed  Google Scholar 

  214. Barriere G, Leblond H, Provencher J, Rossignol S (2008) Prominent role of the spinal central pattern generator in the recovery of locomotion after partial spinal cord injuries. J Neurosci 28(15):3976–3987. https://doi.org/10.1523/JNEUROSCI.5692-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Bouyer LJ, Whelan PJ, Pearson KG, Rossignol S (2001) Adaptive locomotor plasticity in chronic spinal cats after ankle extensors neurectomy. J Neurosci 21(10):3531–3541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Edgerton VR, Leon RD, Harkema SJ, Hodgson JA, London N, Reinkensmeyer DJ, Roy RR, Talmadge RJ et al. (2001) Retraining the injured spinal cord. J Physiol 533(1):15–22. https://doi.org/10.1111/j.1469-7793.2001.0015b.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Tillakaratne NJ, de Leon RD, Hoang TX, Roy RR, Edgerton VR, Tobin AJ (2002) Use-dependent modulation of inhibitory capacity in the feline lumbar spinal cord. J Neurosci 22 (8):3130–3143. 20026278

  218. Girgis J, Merrett D, Kirkland S, Metz GA, Verge V, Fouad K (2007) Reaching training in rats with spinal cord injury promotes plasticity and task specific recovery. Brain 130(11):2993–3003. https://doi.org/10.1093/brain/awm245

    Article  CAS  PubMed  Google Scholar 

  219. Krajacic A, Weishaupt N, Girgis J, Tetzlaff W, Fouad K (2010) Training-induced plasticity in rats with cervical spinal cord injury: effects and side effects. Behav Brain Res 214(2):323–331. https://doi.org/10.1016/j.bbr.2010.05.053

    Article  PubMed  Google Scholar 

  220. Dalamagkas K, Tsintou M, Seifalian AM (2018) Stem cells for spinal cord injuries bearing translational potential. Neural Regen Res 13(1):35–42. https://doi.org/10.4103/1673-5374.224360

    Article  PubMed  PubMed Central  Google Scholar 

  221. Katoh H, Yokota K, Fehlings MG (2019) Regeneration of spinal cord connectivity through stem cell transplantation and biomaterial scaffolds. Front Cell Neurosci 13:248. https://doi.org/10.3389/fncel.2019.00248

    Article  PubMed  PubMed Central  Google Scholar 

  222. Li L, Adnan H, Xu B, Wang J, Wang C, Li F, Tang K (2015) Effects of transplantation of olfactory ensheathing cells in chronic spinal cord injury: a systematic review and meta-analysis. Eur Spine J 24(5):919–930. https://doi.org/10.1007/s00586-014-3416-6

    Article  PubMed  Google Scholar 

  223. Saberi H, Firouzi M, Habibi Z, Moshayedi P, Aghayan HR, Arjmand B, Hosseini K, Razavi HE et al. (2011) Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases. J Neurosurg Spine 15(5):515–525. https://doi.org/10.3171/2011.6.SPINE10917

    Article  PubMed  Google Scholar 

  224. Saberi H, Moshayedi P, Aghayan HR, Arjmand B, Hosseini SK, Emami-Razavi SH, Rahimi-Movaghar V, Raza M et al. (2008) Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes. Neurosci Lett 443(1):46–50. https://doi.org/10.1016/j.neulet.2008.07.041

    Article  CAS  PubMed  Google Scholar 

  225. Tabakow P, Raisman G, Fortuna W, Czyz M, Huber J, Li D, Szewczyk P, Okurowski S et al. (2014) Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging. Cell Transplant 23(12):1631–1655. https://doi.org/10.3727/096368914X685131

    Article  PubMed  Google Scholar 

  226. Zhou XH, Ning GZ, Feng SQ, Kong XH, Chen JT, Zheng YF, Ban DX, Liu T et al. (2012) Transplantation of autologous activated Schwann cells in the treatment of spinal cord injury: six cases, more than five years of follow-up. Cell Transplant 21(1):S39-47. https://doi.org/10.3727/096368912X633752

    Article  PubMed  Google Scholar 

  227. Wilcox JT, Satkunendrarajah K, Zuccato JA, Nassiri F, Fehlings MG (2014) Neural precursor cell transplantation enhances functional recovery and reduces astrogliosis in bilateral compressive/contusive cervical spinal cord injury. Stem Cells Transl Med 3(10):1148–1159. https://doi.org/10.5966/sctm.2014-0029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Salewski RP, Mitchell RA, Shen C, Fehlings MG (2015) Transplantation of neural stem cells clonally derived from embryonic stem cells promotes recovery after murine spinal cord injury. Stem Cells Dev 24(1):36–50. https://doi.org/10.1089/scd.2014.0096

    Article  CAS  PubMed  Google Scholar 

  229. Nagoshi N, Khazaei M, Ahlfors JE, Ahuja CS, Nori S, Wang J, Shibata S, Fehlings MG (2018) Human spinal oligodendrogenic neural progenitor cells promote functional recovery after spinal cord injury by axonal remyelination and tissue sparing. Stem Cells Transl Med 7(11):806–818. https://doi.org/10.1002/sctm.17-0269

    Article  PubMed  PubMed Central  Google Scholar 

  230. Lu P, Kadoya K, Tuszynski MH (2014) Axonal growth and connectivity from neural stem cell grafts in models of spinal cord injury. Curr Opin Neurobiol 27:103–109. https://doi.org/10.1016/j.conb.2014.03.010

    Article  CAS  PubMed  Google Scholar 

  231. Ruff CA, Wilcox JT, Fehlings MG (2012) Cell-based transplantation strategies to promote plasticity following spinal cord injury. Exp Neurol 235(1):78–90. https://doi.org/10.1016/j.expneurol.2011.02.010

    Article  PubMed  Google Scholar 

  232. Bonner JF, Connors TM, Silverman WF, Kowalski DP, Lemay MA, Fischer I (2011) Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J Neurosci 31(12):4675–4686. https://doi.org/10.1523/JNEUROSCI.4130-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Yokota K, Kobayakawa K, Kubota K, Miyawaki A, Okano H, Ohkawa Y, Iwamoto Y, Okada S (2015) Engrafted neural stem/progenitor cells promote functional recovery through synapse reorganization with spared host neurons after spinal cord injury. Stem Cell Reports 5(2):264–277. https://doi.org/10.1016/j.stemcr.2015.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Chedly J, Soares S, Montembault A, von Boxberg Y, Veron-Ravaille M, Mouffle C, Benassy MN, Taxi J et al. (2017) Physical chitosan microhydrogels as scaffolds for spinal cord injury restoration and axon regeneration. Biomaterials 138:91–107. https://doi.org/10.1016/j.biomaterials.2017.05.024

    Article  CAS  PubMed  Google Scholar 

  235. Ghosh B, Wang Z, Nong J, Urban MW, Zhang Z, Trovillion VA, Wright MC, Zhong Y et al. (2018) Local BDNF delivery to the injured cervical spinal cord using an engineered hydrogel enhances diaphragmatic respiratory function. J Neurosci 38(26):5982–5995. https://doi.org/10.1523/JNEUROSCI.3084-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Oudega M, Hao P, Shang J, Haggerty AE, Wang Z, Sun J, Liebl DJ, Shi Y et al. (2019) Validation study of neurotrophin-3-releasing chitosan facilitation of neural tissue generation in the severely injured adult rat spinal cord. Exp Neurol 312:51–62. https://doi.org/10.1016/j.expneurol.2018.11.003

    Article  CAS  PubMed  Google Scholar 

  237. Pawar K, Cummings BJ, Thomas A, Shea LD, Levine A, Pfaff S, Anderson AJ (2015) Biomaterial bridges enable regeneration and re-entry of corticospinal tract axons into the caudal spinal cord after SCI: association with recovery of forelimb function. Biomaterials 65:1–12. https://doi.org/10.1016/j.biomaterials.2015.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Ropper AE, Thakor DK, Han I, Yu D, Zeng X, Anderson JE, Aljuboori Z, Kim SW et al. (2017) Defining recovery neurobiology of injured spinal cord by synthetic matrix-assisted hMSC implantation. Proc Natl Acad Sci U S A 114(5):E820–E829. https://doi.org/10.1073/pnas.1616340114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Santhosh KT, Alizadeh A, Karimi-Abdolrezaee S (2017) Design and optimization of PLGA microparticles for controlled and local delivery of Neuregulin-1 in traumatic spinal cord injury. J Control Release 261:147–162. https://doi.org/10.1016/j.jconrel.2017.06.030

    Article  CAS  PubMed  Google Scholar 

  240. Rao JS, Zhao C, Zhang A, Duan H, Hao P, Wei RH, Shang J, Zhao W et al. (2018) NT3-chitosan enables de novo regeneration and functional recovery in monkeys after spinal cord injury. Proc Natl Acad Sci U S A 115(24):E5595–E5604. https://doi.org/10.1073/pnas.1804735115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Koffler J, Zhu W, Qu X, Platoshyn O, Dulin JN, Brock J, Graham L, Lu P et al. (2019) Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat Med 25(2):263–269. https://doi.org/10.1038/s41591-018-0296-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Li X, Xiao Z, Han J, Chen L, Xiao H, Ma F, Hou X, Li X et al. (2013) Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair. Biomaterials 34(21):5107–5116. https://doi.org/10.1016/j.biomaterials.2013.03.062

    Article  CAS  PubMed  Google Scholar 

  243. Nori S, Khazaei M, Ahuja CS, Yokota K, Ahlfors JE, Liu Y, Wang J, Shibata S et al. (2018) Human oligodendrogenic neural progenitor cells delivered with chondroitinase ABC facilitate functional repair of chronic spinal cord injury. Stem Cell Reports 11(6):1433–1448. https://doi.org/10.1016/j.stemcr.2018.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Rosenzweig ES, Brock JH, Lu P, Kumamaru H, Salegio EA, Kadoya K, Weber JL, Liang JJ et al. (2018) Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat Med 24(4):484–490. https://doi.org/10.1038/nm.4502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Ahuja CS, Fehlings M (2016) Concise review: bridging the gap: novel neuroregenerative and neuroprotective strategies in spinal cord injury. Stem Cells Transl Med 5(7):914–924. https://doi.org/10.5966/sctm.2015-0381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Ueno M, Yamashita T (2008) Strategies for regenerating injured axons after spinal cord injury - insights from brain development. Biologics 2(2):253–264. https://doi.org/10.2147/btt.s2715

    Article  PubMed  PubMed Central  Google Scholar 

  247. Lee JK, Zheng B (2012) Role of myelin-associated inhibitors in axonal repair after spinal cord injury. Exp Neurol 235(1):33–42. https://doi.org/10.1016/j.expneurol.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  248. Meves JM, Zheng B (2014) Extrinsic inhibitors in axon sprouting and functional recovery after spinal cord injury. Neural Regen Res 9(5):460–461. https://doi.org/10.4103/1673-5374.130056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Shim SO, Cafferty WB, Schmidt EC, Kim BG, Fujisawa H, Strittmatter SM (2012) PlexinA2 limits recovery from corticospinal axotomy by mediating oligodendrocyte-derived Sema6A growth inhibition. Mol Cell Neurosci 50(2):193–200. https://doi.org/10.1016/j.mcn.2012.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Starkey ML, Bartus K, Barritt AW, Bradbury EJ (2012) Chondroitinase ABC promotes compensatory sprouting of the intact corticospinal tract and recovery of forelimb function following unilateral pyramidotomy in adult mice. Eur J Neurosci 36(12):3665–3678. https://doi.org/10.1111/ejn.12017

    Article  PubMed  PubMed Central  Google Scholar 

  251. Thallmair M, Metz GA, Z’Graggen WJ, Raineteau O, Kartje GL, Schwab ME (1998) Neurite growth inhibitors restrict plasticity and functional recovery following corticospinal tract lesions. Nat Neurosci 1(2):124–131. https://doi.org/10.1038/373

    Article  CAS  PubMed  Google Scholar 

  252. Li S, Liu BP, Budel S, Li M, Ji B, Walus L, Li W, Jirik A et al. (2004) Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury. J Neurosci 24(46):10511–10520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Li S, Strittmatter SM (2003) Delayed systemic Nogo-66 receptor antagonist promotes recovery from spinal cord injury. J Neurosci 23(10):4219–4227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. GrandPre T, Li S, Strittmatter SM (2002) Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417(6888):547–551. https://doi.org/10.1038/417547a

    Article  CAS  PubMed  Google Scholar 

  255. Wang S, Smith GM, Selzer ME, Li S (2019) Emerging molecular therapeutic targets for spinal cord injury. Expert Opin Ther Targets 23(9):787–803. https://doi.org/10.1080/14728222.2019.1661381

    Article  PubMed  PubMed Central  Google Scholar 

  256. Schwab ME, Strittmatter SM (2014) Nogo limits neural plasticity and recovery from injury. Curr Opin Neurobiol 27:53–60. https://doi.org/10.1016/j.conb.2014.02.011

    Article  CAS  PubMed  Google Scholar 

  257. Siddiqui AM, Khazaei M, Fehlings MG (2015) Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury. Prog Brain Res 218:15–54. https://doi.org/10.1016/bs.pbr.2014.12.007

    Article  PubMed  Google Scholar 

  258. Teng YD, Mocchetti I, Wrathall JR (1998) Basic and acidic fibroblast growth factors protect spinal motor neurones in vivo after experimental spinal cord injury. Eur J Neurosci 10(2):798–802. https://doi.org/10.1046/j.1460-9568.1998.00100.x

    Article  CAS  PubMed  Google Scholar 

  259. Bracken MB (2002) Steroids for acute spinal cord injury. Cochrane Database Syst Rev (3):CD001046. https://doi.org/10.1002/14651858.CD001046

  260. Nash HH, Borke RC, Anders JJ (2002) Ensheathing cells and methylprednisolone promote axonal regeneration and functional recovery in the lesioned adult rat spinal cord. J Neurosci 22 (16):7111–7120. 20026746

  261. Dinomais M, Stana L, Egon G, Richard I, Menei P (2009) Significant recovery of motor function in a patient with complete T7 paraplegia receiving etanercept. J Rehabil Med 41(4):286–288. https://doi.org/10.2340/16501977-0329

    Article  PubMed  Google Scholar 

  262. Bayrakli F, Balaban H, Ozum U, Duger C, Topaktas S, Kars HZ (2012) Etanercept treatment enhances clinical and neuroelectrophysiological recovery in partial spinal cord injury. Eur Spine J 21(12):2588–2593. https://doi.org/10.1007/s00586-012-2319-7

    Article  PubMed  PubMed Central  Google Scholar 

  263. Genovese T, Mazzon E, Crisafulli C, Di Paola R, Muia C, Bramanti P, Cuzzocrea S (2006) Immunomodulatory effects of etanercept in an experimental model of spinal cord injury. J Pharmacol Exp Ther 316(3):1006–1016. https://doi.org/10.1124/jpet.105.097188

    Article  CAS  PubMed  Google Scholar 

  264. Cheong CU, Chang CP, Chao CM, Cheng BC, Yang CZ, Chio CC (2013) Etanercept attenuates traumatic brain injury in rats by reducing brain TNF-alpha contents and by stimulating newly formed neurogenesis. Mediators Inflamm 2013:620837. https://doi.org/10.1155/2013/620837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Kato K, Liu H, Kikuchi S, Myers RR, Shubayev VI (2010) Immediate anti-tumor necrosis factor-alpha (etanercept) therapy enhances axonal regeneration after sciatic nerve crush. J Neurosci Res 88(2):360–368. https://doi.org/10.1002/jnr.22202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Sullivan PG, Krishnamurthy S, Patel SP, Pandya JD, Rabchevsky AG (2007) Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J Neurotrauma 24(6):991–999. https://doi.org/10.1089/neu.2006.0242

    Article  PubMed  Google Scholar 

  267. Scholpa NE, Williams H, Wang W, Corum D, Narang A, Tomlinson S, Sullivan PG, Rabchevsky AG et al. (2019) Pharmacological stimulation of mitochondrial biogenesis using the food and drug administration-approved beta2-adrenoreceptor agonist formoterol for the treatment of spinal cord injury. J Neurotrauma 36(6):962–972. https://doi.org/10.1089/neu.2018.5669

    Article  PubMed  PubMed Central  Google Scholar 

  268. Teng YD, Mocchetti I, Taveira-DaSilva AM, Gillis RA, Wrathall JR (1999) Basic fibroblast growth factor increases long-term survival of spinal motor neurons and improves respiratory function after experimental spinal cord injury. J Neurosci 19(16):7037–7047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Rabchevsky AG, Fugaccia I, Fletcher-Turner A, Blades DA, Mattson MP, Scheff SW (1999) Basic fibroblast growth factor (bFGF) enhances tissue sparing and functional recovery following moderate spinal cord injury. J Neurotrauma 16(9):817–830. https://doi.org/10.1089/neu.1999.16.817

    Article  CAS  PubMed  Google Scholar 

  270. Wu JC, Huang WC, Chen YC, Tu TH, Tsai YA, Huang SF, Huang HC, Cheng H (2011) Acidic fibroblast growth factor for repair of human spinal cord injury: a clinical trial. J Neurosurg Spine 15(3):216–227. https://doi.org/10.3171/2011.4.SPINE10404

    Article  PubMed  Google Scholar 

  271. Wu JC, Huang WC, Tsai YA, Chen YC, Cheng H (2008) Nerve repair using acidic fibroblast growth factor in human cervical spinal cord injury: a preliminary Phase I clinical study. J Neurosurg Spine 8(3):208–214. https://doi.org/10.3171/SPI/2008/8/3/208

    Article  PubMed  Google Scholar 

  272. Zhou Y, Wang Z, Li J, Li X, Xiao J (2018) Fibroblast growth factors in the management of spinal cord injury. J Cell Mol Med 22(1):25–37. https://doi.org/10.1111/jcmm.13353

    Article  CAS  PubMed  Google Scholar 

  273. Festoff BW, Ameenuddin S, Arnold PM, Wong A, Santacruz KS, Citron BA (2006) Minocycline neuroprotects, reduces microgliosis, and inhibits caspase protease expression early after spinal cord injury. J Neurochem 97(5):1314–1326. https://doi.org/10.1111/j.1471-4159.2006.03799.x

    Article  CAS  PubMed  Google Scholar 

  274. Wells JE, Hurlbert RJ, Fehlings MG, Yong VW (2003) Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain 126(7):1628–1637. https://doi.org/10.1093/brain/awg178

    Article  PubMed  Google Scholar 

  275. Kitayama M, Ueno M, Itakura T, Yamashita T (2011) Activated microglia inhibit axonal growth through RGMa. PLoS ONE 6(9):e25234. https://doi.org/10.1371/journal.pone.0025234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Tao T, Xu G, Si Chen C, Feng J, Kong Y, Qin X (2013) Minocycline promotes axonal regeneration through suppression of RGMa in rat MCAO/reperfusion model. Synapse 67(4):189–198. https://doi.org/10.1002/syn.21629

    Article  CAS  PubMed  Google Scholar 

  277. Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD, Ramer MS, Tetzlaff W (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci 24(9):2182–2190. https://doi.org/10.1523/JNEUROSCI.5275-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Srinivas S, Wali AR, Pham MH (2019) Efficacy of riluzole in the treatment of spinal cord injury: a systematic review of the literature. Neurosurg Focus 46(3):E6. https://doi.org/10.3171/2019.1.FOCUS18596

    Article  PubMed  Google Scholar 

  279. Satkunendrarajah K, Nassiri F, Karadimas SK, Lip A, Yao G, Fehlings MG (2016) Riluzole promotes motor and respiratory recovery associated with enhanced neuronal survival and function following high cervical spinal hemisection. Exp Neurol 276:59–71. https://doi.org/10.1016/j.expneurol.2015.09.011

    Article  CAS  PubMed  Google Scholar 

  280. Azbill RD, Mu X, Springer JE (2000) Riluzole increases high-affinity glutamate uptake in rat spinal cord synaptosomes. Brain Res 871(2):175–180. https://doi.org/10.1016/s0006-8993(00)02430-6

    Article  CAS  PubMed  Google Scholar 

  281. Nagoshi N, Nakashima H, Fehlings MG (2015) Riluzole as a neuroprotective drug for spinal cord injury: from bench to bedside. Molecules 20(5):7775–7789. https://doi.org/10.3390/molecules20057775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387. https://doi.org/10.1038/nrc1071

    Article  CAS  PubMed  Google Scholar 

  283. Quirk BJ, Brandal G, Donlon S, Vera JC, Mang TS, Foy AB, Lew SM, Girotti AW et al. (2015) Photodynamic therapy (PDT) for malignant brain tumors–where do we stand? Photodiagnosis Photodyn Ther 12(3):530–544. https://doi.org/10.1016/j.pdpdt.2015.04.009

    Article  PubMed  Google Scholar 

  284. Li Q, Liu Y, Li W, Feng S (2011) Photodynamic therapy as a potential treatment for spinal cord injury. Med Hypotheses 77(1):58–59. https://doi.org/10.1016/j.mehy.2011.03.022

    Article  PubMed  Google Scholar 

  285. Cheng Y, CS A, Meyers JD, Panagopoulos I, Fei B, Burda C (2008) Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc 130(32):10643–10647. https://doi.org/10.1021/ja801631c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 60(15):1627–1637. https://doi.org/10.1016/j.addr.2008.08.003

    Article  CAS  PubMed  Google Scholar 

  287. Liu Y, Ban DX, Ma C, Zhang ZG, Zhang JY, Gao SJ, Feng SQ (2016) Photodynamic therapy mediated by upconversion nanoparticles to reduce glial scar formation and promote hindlimb functional recovery after spinal cord injury in rats. J Biomed Nanotechnol 12(11):2063–2075. https://doi.org/10.1166/jbn.2016.2300

    Article  CAS  PubMed  Google Scholar 

  288. Hamblin MR (2016) Shining light on the head: photobiomodulation for brain disorders. BBA Clin 6:113–124. https://doi.org/10.1016/j.bbacli.2016.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  289. Hennessy M, Hamblin MR (2017) Photobiomodulation and the brain: a new paradigm. J Opt 19(1):013003. https://doi.org/10.1088/2040-8986/19/1/013003

    Article  CAS  PubMed  Google Scholar 

  290. de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22 (3). https://doi.org/10.1109/JSTQE.2016.2561201

  291. Pedram MS, Dehghan MM, Shojaee M, Fekrazad R, Sharifi D, Farzan A, Ghasemi S, AliMohammad Kalhori K et al. (2018) Therapeutic effects of simultaneous photobiomodulation therapy (PBMT) and Meloxicam administration on experimental acute spinal cord injury: rat animal model. J Photochem Photobiol B 189:49–54. https://doi.org/10.1016/j.jphotobiol.2018.09.022

    Article  CAS  PubMed  Google Scholar 

  292. Svobodova B, Kloudova A, Ruzicka J, Kajtmanova L, Navratil L, Sedlacek R, Suchy T, Jhanwar-Uniyal M et al. (2019) The effect of 808 nm and 905 nm wavelength light on recovery after spinal cord injury. Sci Rep 9(1):7660. https://doi.org/10.1038/s41598-019-44141-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Ramezani F, Razmgir M, Tanha K, Nasirinezhad F, Neshasteriz A, Bahrami-Ahmadi A, Hamblin MR, Janzadeh A (2020) Photobiomodulation for spinal cord injury: a systematic review and meta-analysis. Physiol Behav:112977. https://doi.org/10.1016/j.physbeh.2020.112977

  294. Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L, Smith K, Heckert R, Gerst H et al. (2005) Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 36(3):171–185. https://doi.org/10.1002/lsm.20143

    Article  PubMed  Google Scholar 

  295. Kim J, Kim EH, Lee K, Kim B, Kim Y, Na SH, Yoon YW (2017) Low-level laser irradiation improves motor recovery after contusive spinal cord injury in rats. Tissue Eng Regen Med 14(1):57–64. https://doi.org/10.1007/s13770-016-0003-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None

Funding

This work was supported by research funding from the Department of Neurosurgery, University of New Mexico (UNM) Hospital, Albuquerque, NM, USA.

Author information

Authors and Affiliations

Authors

Contributions

SFK, CAB, CDC, and MHS wrote the initial draft and edited the final version of the manuscript. SV, ZK, JO, and EM contributed to the manuscript editing. MHS provided overall supervision for the manuscript.

Corresponding author

Correspondence to Meic H. Schmidt.

Ethics declarations

Ethical Standards

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazim, S.F., Bowers, C.A., Cole, C.D. et al. Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes. Mol Neurobiol 58, 5494–5516 (2021). https://doi.org/10.1007/s12035-021-02484-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02484-w

Keywords

Navigation