Skip to main content

Advertisement

Log in

Revisiting the Role of Biologically Active Natural and Synthetic Compounds as an Intervention to Treat Injured Nerves

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Traumatic lesions in nerves present high incidence and may culminate in sensorimotor and/or autonomic dysfunctions or a total loss of function, affecting the patient’s quality of life. Although the microenvironment favors peripheral nerve regeneration, the regenerative process is not always successful. Some herbs, natural products, and synthetic drugs have been studied as potential pro-regenerative interventions. We reviewed and discussed the most recent articles published over the last ten years in high impact factor journals. Even though most of the articles contemplated in this review were in vitro and animal model studies, those with herbs showed promising results. Most of them presented antioxidant and anti-inflammatory effects. Drugs of several pharmacological classes also showed optimistic outcomes in nerve functional recovery, including clinical trials. The results are hopeful; however, mechanisms of action need to be elucidated, and there is a need for more high-quality clinical studies. The study presents careful compilation of findings of dozens of compounds with consistent pro-regenerative evidence published in respected scientific journals. It may be valuable for health professionals and researchers in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data are given herein.

References

  1. Arrieta Ó, Hernández-Pedro N, Fernández-González-Aragón MC, Saavedra-Pérez D, Campos-Parra AD, Ríos-Trejo MÁ, Cerón-Lizárraga T, Martínez-Barrera L, Pineda B, Ordóñez G, Ortiz-Plata A, Granados-Soto V, Sotelo J (2011) Retinoic acid reduces chemotherapy-induced neuropathy in an animal model and patients with lung cancer. Neurology 77(10):987–995. https://doi.org/10.1212/WNL.0b013e31822e045c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bosse F (2012) Extrinsic cellular and molecular mediators of peripheral axonal regeneration. Cell Tissue Res 349:5–14. https://doi.org/10.1007/s00441-012-1389-5

    Article  CAS  PubMed  Google Scholar 

  3. Brügger V, Duman M, Bochud M, Münger E, Heller M, Ruff S, Jacob C (2017) Delaying histone deacetylase response to injury accelerates conversion into repair Schwann cells and nerve regeneration. Nat Commun 8:1–16. https://doi.org/10.1038/ncomms14272

    Article  CAS  Google Scholar 

  4. Burnett MG, Zager EL (2004) Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus 16(5):E1. https://doi.org/10.3171/foc.2004.16.5.2

    Article  PubMed  Google Scholar 

  5. Caillaud M, Chantemargue B, Richard L, Vignaud L, Favreau F, Faye PA, Vignoles P, Sturtz F, Trouillas P, Vallat JM, Desmoulière A, Billet F (2018) Local low dose curcumin treatment improves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress. Neuropharmacology 139:98–116. https://doi.org/10.1016/j.neuropharm.2018.07.001

    Article  CAS  PubMed  Google Scholar 

  6. Caillaud M, Richard L, Vallat JM, Desmoulière A, Billet F (2019) Peripheral nerve regeneration and intraneural revascularization. Neural Regen Res 14(1):24–33. https://doi.org/10.4103/1673-5374.243699

    Article  PubMed  PubMed Central  Google Scholar 

  7. Caner B, IlkerKafa M, Bekar A, Ayberk Kurt M, Karli N, Cansev M, Ulus IH (2012) Intraperitoneal administration of CDP-choline or a combination of cytidine plus choline improves nerve regeneration and functional recovery in a rat model of sciatic nerve injury. Neurol Res 34:238–245. https://doi.org/10.1179/1743132812Y.0000000003

    Article  CAS  PubMed  Google Scholar 

  8. Chang YM, Chang HH, Tsai CC, Lin HJ, Ho TJ, Ye CX, Chiu PL, Chen YS, Chen RJ, Huang CY, Lin CC (2017) Alpinia oxyphylla Miq. fruit extract activates IGFRPI3K/Akt signaling to induce Schwann cell proliferation and sciatic nerve regeneration. BMC Complement Altern Med 17:1–9. https://doi.org/10.1186/s12906-017-1695-2

    Article  CAS  Google Scholar 

  9. Cheng Q, Yuan Y, Sun C, Gu X, Cao Z, Ding F (2014) Neurotrophic and neuroprotective actions of Achyranthes bidentata polypeptides on cultured dorsal root ganglia of rats and on crushed common peroneal nerve of rabbits. Neurosci Lett 562:7–12. https://doi.org/10.1016/j.neulet.2013.12.015

    Article  CAS  PubMed  Google Scholar 

  10. Cobianchi S, Jaramillo J, Luvisetto S, Pavone F, Navarro X (2017) Botulinum neurotoxin A promotes functional recovery after peripheral nerve injury by increasing regeneration of myelinated fibers. Neuroscience 359:82–91. https://doi.org/10.1016/j.neuroscience.2017.07.011

    Article  CAS  PubMed  Google Scholar 

  11. Fang XY, Zhang WM, Zhang CF, Wong WM, Li W, Wu W, Lin JH (2016) Lithium accelerates functional motor recovery by improving remyelination of regenerating axons following ventral root avulsion and reimplantation. Neuroscience 329:213–225. https://doi.org/10.1016/j.neuroscience.2016.05.010

    Article  CAS  PubMed  Google Scholar 

  12. Franz CK, Puritz A, Jordan LA, Chow J, Ortega JA, Kiskinis E, Heckman CJ (2018) Botulinum toxin conditioning enhances motor axon regeneration in mouse and human preclinical models. Neurorehabil Neural Repair 32:735–745. https://doi.org/10.1177/1545968318790020

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gabrielpillai J, Geissler C, Stock B, Stöver T, Diensthuber M (2018) Growth hormone promotes neurite growth of spiral ganglion neurons. Neuroreport 29:637–642. https://doi.org/10.1097/WNR.0000000000001011

    Article  CAS  PubMed  Google Scholar 

  14. Girard C, Liu S, Adams D, Lacroix C, Sinéus M, Boucher C, Groyer G (2011) Axonal Regeneration and Neuroinflammation: Roles for the Translocator Protein 18 kDa. Journal of Neuroendocrinology 24(1):71–81. https://doi.org/10.1111/j.1365-2826.2011.02215.x

    Article  CAS  Google Scholar 

  15. Girouard MP, Bueno M, Julian V, Drake S, Byrne AB, Fournier AE (2018) The molecular interplay between axon degeneration and regeneration. Dev Neurobiol 78(10):978–990. https://doi.org/10.1002/dneu.22627

    Article  PubMed  Google Scholar 

  16. Goncalves S, Goldstein BJ (2019) Acute N-acetylcysteine administration ameliorates loss of olfactory neurons following experimental injury in vivo. The Anatomical Record. https://doi.org/10.1002/ar.24066

    Article  PubMed  Google Scholar 

  17. Griffin JW, Hogan MV, Chhabra AB, Deal DN (2013) Peripheral nerve repair and reconstruction. J Bone Joint Surg Am 95(23):2144–51. https://doi.org/10.2106/JBJS.L.00704

    Article  PubMed  Google Scholar 

  18. Gundogdu EB, Bekar A, Turkyilmaz M, Gumus A, Kafa IM, Cansev M (2016) CDPcholine modulates matrix metalloproteinases in rat sciatic injury. J Surg Res 200:655–663. https://doi.org/10.1016/j.jss.2015.10.003

    Article  CAS  PubMed  Google Scholar 

  19. Guo Q, Liu C, Hai B, Ma T, Zhang W, Tan J, Fu X, Wang H, Xu Y, Song C (2018) Chitosan conduits filled with simvastatin/Pluronic F-127 hydrogel promote peripheral nerve regeneration in rats. J Biomed Mater Res B Appl Biomater 106(2):787–799. https://doi.org/10.1002/jbm.b.33890

    Article  CAS  PubMed  Google Scholar 

  20. Haapanen A, Thorén H, Apajalahti S, Suominen AL, Snäll J (2017) Does dexamethasone facilitate neurosensory function regeneration after zygomatic fracture? A Randomized Controlled Trial. J Oral Maxillofac Surg 75(12):2607–2612. https://doi.org/10.1016/j.joms.2017.08.009

    Article  PubMed  Google Scholar 

  21. Hershman DL, Unger JM, Crew KD, Minasian LM, Awad D, Moinpour CM, Hansen L, Lew DL, Greenlee H, Fehrenbacher L, Wade JL 3rd, Wong SF, Hortobagyi GN, Meyskens FL, Albain KS (2013) Randomized double-blind placebo-controlled trial of acetyl-L-carnitine for the prevention of taxane-induced neuropathy in women undergoing adjuvant breast cancer therapy. J Clin Oncol 31(20):2627–2633. https://doi.org/10.1200/JCO.2012.44.8738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He Z, Jin Y (2016) Intrinsic Control of Axon Regeneration. Neuron 90:437–451. https://doi.org/10.1016/j.neuron.2016.04.022

    Article  CAS  PubMed  Google Scholar 

  23. Huo DS, Zhang M, Cai ZP, Dong CX, Wang H, Yang ZJ (2015) The role of nerve growth factor in ginsenoside Rg1-induced regeneration of injured rat sciatic nerve. J Toxicol Environ Heal - Part A Curr Issues 78:1328–1337. https://doi.org/10.1080/15287394.2015.1085943

    Article  CAS  Google Scholar 

  24. Iqbal SZ, Jubeen F, Sher F (2019) Future of 5-Fluorouracil in cancer therapeutics, current pharmacokinetics issues and a way forward. J Cancer Res Pract 6:155–161. https://doi.org/10.4103/JCRP.JCRP_10_19

    Article  Google Scholar 

  25. Jang CH, Cho YB, Choi CH (2012) Effect of ginkgo biloba extract on recovery after facial nerve crush injury in the rat. Int J Pediatr Otorhinolaryngol 76:1823–1826. https://doi.org/10.1016/j.ijporl.2012.09.009

    Article  PubMed  Google Scholar 

  26. Jang EH, Sim A, Im SK, Hur EM (2016) Effects of microtubule stabilization by epothilone B depend on the type and age of neurons. Neural Plast 2016:5056418. https://doi.org/10.1155/2016/5056418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang X, Wang Y, Zhang B, Fei X, Guo X, Jia Y, Yu W (2020) Acetyl-11-keto-βboswellic acid regulates the repair of rat sciatic nerve injury by promoting the proliferation of Schwann cells. Life Sci 254:116887. https://doi.org/10.1016/j.lfs.2019.116887

    Article  CAS  PubMed  Google Scholar 

  28. Jubeen F, Liaqat A, Sultan M, Zafar Iqbal S, Sajid I, Sher F (2019) Green synthesis and biological evaluation of novel 5-fluorouracil derivatives as potent anticancer agents. Saudi Pharm J 27(8):1164–1173. https://doi.org/10.1016/j.jsps.2019.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jubeen F, Liaqat A, Amjad F, Sultan M, Iqbal SZ, Sajid I, Niazi MB, Sher F (2020) Synthesis of 5-Fluorouracil cocrystals with novel organic acids as coformers and anticancer evaluation against HCT-116 colorectal cell lines. Cryst Growth Des 20:2406–2414. https://doi.org/10.1021/acs.cgd.9b01570

    Article  CAS  Google Scholar 

  30. Kaplan AA, Yurt KK, Deniz ÖG, Altun G (2018) Peripheral nerve and diclofenac sodium: Molecular and clinical approaches. J Chem Neuroanat 87:2–11. https://doi.org/10.1016/j.jchemneu.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  31. Kim KJ, Namgung U (2018) Facilitating effects of Buyang Huanwu decoction on axonal regeneration after peripheral nerve transection. J Ethnopharmacol 213:56–64. https://doi.org/10.1016/j.jep.2017.10.036

    Article  PubMed  Google Scholar 

  32. Kim TH, Yoon SJ, Lee WC, Kim JK, Shin J, Lee S, Lee SM (2011) Protective effect of GCSB-5, an herbal preparation, against peripheral nerve injury in rats. J Ethnopharmacol 136:297–304. https://doi.org/10.1016/j.jep.2011.04.037

    Article  PubMed  Google Scholar 

  33. Kou Y, Wang Z, Wu Z, Zhang P, Zhang Y, Yin X, Wong X, Qiu G, Jiang B (2013) Epimedium extract promotes peripheral nerve regeneration in rats. Evidencebased Complement Altern Med 2013:1–6. https://doi.org/10.1155/2013/954798

    Article  Google Scholar 

  34. Labroo P, Hilgart D, Davis B, Lambert C, Sant H, Gale B, Shea JE, Agarwal J (2019) Drug-delivering nerve conduit improves regeneration in a critical-sized gap. Biotechnol Bioeng 116(1):143–154. https://doi.org/10.1002/bit.26837

    Article  CAS  PubMed  Google Scholar 

  35. Lee JI, Hur JM, You J, Lee DH (2020) Functional recovery with histomorphometric analysis of nerves and muscles after combination treatment with erythropoietin and dexamethasone in acute peripheral nerve injury. PLoS ONE 15(9):e0238208. https://doi.org/10.1371/journal.pone.0238208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li H, Wu W (2017) Microtubule stabilization promoted axonal regeneration and functional recovery after spinal root avulsion ed. Kirik D. Eur J Neurosci 46:1650– 1662. https://doi.org/10.1111/ejn.13585

  37. Li M, Wang J, Ding L, Meng H, Wang F, Luo Z (2017) Tanshinone IIA attenuates nerve transection injury associated with nerve regeneration promotion in rats. Neurosci Lett 659:18–25. https://doi.org/10.1111/ejn.13585

    Article  CAS  PubMed  Google Scholar 

  38. Liang W, Ge S, Yang L, Yang M, Ye Z, Yan M, Du J, Luo Z (2010) Ginsenosides Rb1 and Rg1 promote proliferation and expression of neurotrophic factors in primary Schwann cell cultures. Brain Res 1357:19–25. https://doi.org/10.1016/j.brainres.2010.07.091

    Article  CAS  PubMed  Google Scholar 

  39. Liao WC, Chen JR, Wang YJ, Tseng GF (2010) Methylcobalamin, but not methylprednisolone or pleiotrophin, accelerates the recovery of rat biceps after ulnar to musculocutaneous nerve transfer. Neuroscience 171(3):934–949. https://doi.org/10.1016/j.neuroscience.2010.09.036

    Article  CAS  PubMed  Google Scholar 

  40. Lin YC, Oh SJ, Marra KG (2013) Synergistic lithium chloride and glial cell linederived neurotrophic factor delivery for peripheral nerve repair in a rodent sciatic nerve injury model. Plast Reconstr Surg 132(2):251e–262e. https://doi.org/10.1097/PRS.0b013e31829588cf

    Article  CAS  PubMed  Google Scholar 

  41. Liu CH, Chang HM, Yang YS, Lin YT, Ho YJ, Tseng TJ, Lan CT, Li ST, Liao WC (2020) Melatonin promotes nerve regeneration following end-to-side neurorrhaphy by accelerating cytoskeletal remodeling via the melatonin receptor-dependent pathway. Neuroscience 429:282–292. https://doi.org/10.1016/j.neuroscience.2019.09.009

    Article  CAS  PubMed  Google Scholar 

  42. Liu H, Lv P, Zhu Y, Wu H, Zhang K, Xu F, Zheng L, Zhao J (2017) Salidroside promotes peripheral nerve regeneration based on tissue engineering strategy using Schwann cells and PLGA: In vitro and in vivo. Sci Rep 7:39869. https://doi.org/10.1016/j.neuroscience.2019.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lopez J, Quan A, Budihardjo J, Xiang S, Wang H, Koshy K, Cashman C, Lee WPA, Hoke A, Tuffaha S, Brandacher G (2019) Growth hormone improves nerve regeneration, muscle re-innervation, and functional outcomes after chronic denervation injury. Sci Rep 9(1):3117. https://doi.org/10.1038/s41598-019-39738-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu MC, Yao CH, Wang SH, Lai YL, Tsai CC, Chen YS (2010) Effect of Astragalus membranaceus in rats on peripheral nerve regeneration: in vitro and in vivo studies. J Trauma 68(2):434–440. https://doi.org/10.1097/TA.0b013e31819adb38

    Article  PubMed  Google Scholar 

  45. Ma J, Li W, Tian R, Lei W (2010) Ginsenoside Rg1 promotes peripheral nerve regeneration in rat model of nerve crush injury. Neurosci Lett 478:66–71. https://doi.org/10.1016/j.neulet.2010.04.064

    Article  CAS  PubMed  Google Scholar 

  46. Ma J, Yu H, Liu J, Chen Y, Wang Q, Xiang L (2016) Curcumin promotes nerve regeneration and functional recovery after sciatic nerve crush injury in diabetic rats. Neurosci Lett 610:139–143. https://doi.org/10.1016/j.neulet.2010.04.064

    Article  CAS  PubMed  Google Scholar 

  47. Mohammadi R, Amini K, Yousefi A, Abdollahi-Pirbazari M, Belbasi A, Abedi F (2013) Functional effects of local administration of thyroid hormone combined with chitosan conduit after sciatic nerve transection in rats. J Oral Maxillofac Surg 71(10):1763–1776. https://doi.org/10.1016/j.joms.2013.03.010

    Article  PubMed  Google Scholar 

  48. Monahan Vargas EJ, Matamoros AJ, Qiu J, Jan CH, Wang Q, Gorczyca D, Han TW, Weissman JS, Jan YN, Banerjee S, Song Y (2020) The microtubule regulator ringer functions downstream from the RNA repair/splicing pathway to promote axon regeneration. Genes Dev 34(3–4):194–208. https://doi.org/10.1101/gad.331330.119

    Article  CAS  Google Scholar 

  49. Moon LDF (2018) Chromatolysis: Do injured axons regenerate poorly when ribonucleases attack rough endoplasmic reticulum, ribosomes and RNA? Dev Neurobiol 78(10):1011–1024. https://doi.org/10.1002/dneu.22625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Onger ME, Kaplan S, Deniz ÖG, Altun G, Altunkaynak BZ, Balcı K, Raimondo S, Geuna S (2017) Possible promoting effects of melatonin, leptin and alcar on regeneration of the sciatic nerve. J Chem Neuroanat 81:34–41. https://doi.org/10.1016/j.jchemneu.2017.02.003

    Article  CAS  PubMed  Google Scholar 

  51. Padovano WM, Dengler J, Patterson MM, Yee A, Snyder-Warwick AK, Wood MD, Moore AM, Mackinnon SE (2020) Incidence of nerve injury after extremity trauma in the United States. Hand (N Y) 1558944720963895. https://doi.org/10.1177/1558944720963895

  52. Panaite PA, Barakat-Walter I (2010) Thyroid hormone enhances transected axonal regeneration and muscle reinnervation following rat sciatic nerve injury. J Neurosci Res 88(8):1751–1763. https://doi.org/10.1002/jnr.22344

    Article  CAS  PubMed  Google Scholar 

  53. Reden J, Lill K, Zahnert T, Haehner A, Hummel T (2012) Olfactory function in patients with postinfectious and posttraumatic smell disorders before and after treatment with vitamin A: a double-blind, placebo-controlled, randomized clinical trial. Laryngoscope 122(9):1906–1909. https://doi.org/10.1002/lary.23405

    Article  CAS  PubMed  Google Scholar 

  54. Salehi M, Naseri-Nosar M, Ebrahimi-Barough S, Nourani M, Khojasteh A, Farzamfar S, Mansouri K, Ai J (2018) Polyurethane/gelatin nanofibrils neural guidance conduit containing platelet-rich plasma and melatonin for transplantation of Schwann cells. Cell Mol Neurobiol 38(3):703–713. https://doi.org/10.1007/s10571-0170535-8

    Article  CAS  PubMed  Google Scholar 

  55. Sayanagi J, Tanaka H, Ebara M, Okada K, Oka K, Murase T, Yoshikawa H (2020) Combination of electrospun nanofiber sheet incorporating methylcobalamin and PGA-collagen tube for treatment of a sciatic nerve defect in a rat model. J Bone Joint Surg Am 102(3):245–253. https://doi.org/10.2106/JBJS.19.00254

    Article  PubMed  Google Scholar 

  56. Vijayavenkataraman S (2020) Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta biomaterialia 106:54–69. https://doi.org/10.1016/j.actbio.2020.02.003

    Article  CAS  PubMed  Google Scholar 

  57. Shanti RM, Khan J, Eliav E, Ziccardi VB (2013) Is there a role for a collagen conduit and anti-inflammatory agent in the management of partial peripheral nerve injuries? Journal of Oral and Maxillofacial Surgery 71(6):1119–1125. https://doi.org/10.1016/j.joms.2011.03.054

    Article  PubMed  Google Scholar 

  58. Shibuya K, Misawa S, Nasu S, Sekiguchi Y, Beppu M, Iwai Y, Mitsuma S, Isose S, Arimura K, Kaji R, Kuwabara S (2014) Safety and efficacy of intravenous ultra-high dose methylcobalamin treatment for peripheral neuropathy: a phase I/II open label clinical trial. Intern Med 53(17):1927–1931. https://doi.org/10.2169/internalmedicine.53.1951

    Article  CAS  PubMed  Google Scholar 

  59. Scheib J, Höke A (2013) Advances in peripheral nerve regeneration. Nat Rev Neurol 9(12):668–676. https://doi.org/10.1038/nrneurol.2013.227

    Article  CAS  PubMed  Google Scholar 

  60. Sheng QS, Wang ZJ, Zhang J, Zhang YG (2013) Salidroside promotes peripheral nerve regeneration following crush injury to the sciatic nerve in rats. Neuroreport 24(5):217–223. https://doi.org/10.1097/WNR.0b013e32835eb867

    Article  PubMed  Google Scholar 

  61. Smith TP, Sahoo PK, Kar AN, Twiss JL (2020) Intra-axonal mechanisms driving axon regeneration. Brain Res 1740:146864. https://doi.org/10.1016/j.brainres.2020.146864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sun HH, Saheb-Al-Zamani M, Yan Y, Hunter DA, MacKinnon SE, Johnson PJ (2012) Geldanamycin accelerated peripheral nerve regeneration in comparison to FK-506 in vivo. Neuroscience 223:114–123. https://doi.org/10.1016/j.neuroscience.2012.07.026

    Article  CAS  PubMed  Google Scholar 

  63. Takaku S, Sango K (2020) Zonisamide enhances neurite outgrowth from adult rat dorsal root ganglion neurons, but not proliferation or migration of Schwann cells. Histochem Cell Biol 153(3):177–184. https://doi.org/10.1007/s00418-019-01839-8

    Article  CAS  PubMed  Google Scholar 

  64. Taylor CA, Braza D, Rice JB, Dillingham T (2008) The Incidence of Peripheral Nerve Injury in Extremity Trauma. Am J Phys Med Rehabil 87(5):381–385. https://doi.org/10.1097/PHM.0b013e31815e6370

    Article  PubMed  Google Scholar 

  65. Tello Velasquez J, Nazareth L, Quinn RJ, Ekberg JAK, St John JA (2016) Stimulating the proliferation, migration and lamellipodia of Schwann cells using low-dose curcumin. Neuroscience 324:140–150. https://doi.org/10.1016/j.neuroscience.2016.02.073

    Article  CAS  PubMed  Google Scholar 

  66. Terenghi G, Hart A, Wiberg M (2011) The nerve injury and the dying neurons: diagnosis and prevention. J Hand Surg Eur 36(9):730–734. https://doi.org/10.1177/1753193411422202

    Article  Google Scholar 

  67. Üstün R, Oğuz EK, Şeker A, Korkaya H (2018) Thymoquinone protects DRG neurons from axotomy-induced cell death. Neurol Res 40:930–937. https://doi.org/10.1080/01616412.2018.1504157

    Article  CAS  PubMed  Google Scholar 

  68. Uzun T, Toptas O, Saylan A, Carver H, Turkoglu SA (2019) Evaluation and comparison of the effects of artesunate, dexamethasone, and tacrolimus on sciatic nerve regeneration. J Oral Maxillofac Surg 77(5):1092.e1–1092.e12. https://doi.org/10.1016/j.joms.2018.12.019

    Article  Google Scholar 

  69. Wang J, Tian L, He L, Chen N, Ramakrishna S, So KF, Mo X (2018a) Lycium barbarum polysaccharide encapsulated Poly lactic-co-glycolic acid Nanofibers: Cost effective herbal medicine for potential application in peripheral nerve tissue engineering. Sci Rep 8:8669. https://doi.org/10.1038/s41598-018-26837-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang L, Yuan D, Zhang D, Zhang W, Liu C, Cheng H, Song Y, Tan Q (2015a) Ginsenoside re promotes nerve regeneration by facilitating the proliferation, differentiation and migration of Schwann cells via the ERK- and JNK-Dependent pathway in rat model of sciatic nerve crush injury. Cell Mol Neurobiol 35:827–840. https://doi.org/10.1007/s10571-015-0177-7

    Article  CAS  PubMed  Google Scholar 

  71. Wang Y, Shen W, Yang L, Zhao H, Gu W, Yuan Y (2013a) The Protective effects of Achyranthes bidentata polypeptides on rat sciatic nerve crush injury causes modulation of neurotrophic factors. Neurochem Res 38:538–546. https://doi.org/10.1007/s11064-012-0946-3

    Article  CAS  PubMed  Google Scholar 

  72. Wang Z, Yang X, Zhang W, Zhang P, Jiang B (2018b) Tanshinone IIA attenuates nerve structural and functional damage induced by nerve crush injury in rats. PLoS One 13:e0202532. https://doi.org/10.1371/journal.pone.0202532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang Z, Zhang P, Kou Y, Yin X, Han N, Jiang B (2013b) Hedysari Extract Improves Regeneration after Peripheral Nerve Injury by Enhancing the Amplification Effect. PLoS One 8:e67921. https://doi.org/10.1371/journal.pone.0067921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wilson ADH, Hart A, Wiberg M, Terenghi G (2010) Acetyl-l-carnitine increases nerve regeneration and target organ reinnervation - a morphological study. J Plast Reconstr Aesthetic Surg 63:1186–1195. https://doi.org/10.1016/j.bjps.2009.05.039

    Article  Google Scholar 

  75. Yagi H, Ohkawara B, Nakashima H, Ito K, Tsushima M, Ishii H, Noto K, Ohta K, Masuda A, Imagama S, Ishiguro N, Ohno K (2015) Zonisamide enhances neurite elongation of primary motor neurons and facilitates peripheral nerve regeneration in vitro and in a mouse model ed. Nógrádi A. PLoS One 10:e0142786. https://doi.org/10.1371/journal.pone.0142786

  76. Yang S, Gao Q, Xing S, Feng X, Peng L, Dong H, Bao L, Zhang J, Hu Y, Li G, Song T, Li Z, Sun J (2011) Neuroprotective effects of Buyang Huanwu decoction against hydrogen peroxide induced oxidative injury in Schwann cells. J Ethnopharmacol 137:1095–1101. https://doi.org/10.1016/j.jep.2011.07.014

    Article  PubMed  Google Scholar 

  77. Zhang W, Zhang L, Liu J, Zhang L, Zhang J, Tang P (2017) Repairing sciatic nerve injury with an EPO-loaded nerve conduit and sandwiched-in strategy of transplanting mesenchymal stem cells. Biomaterials 142:90–100. https://doi.org/10.1016/j.biomaterials.2017.06.024

    Article  CAS  PubMed  Google Scholar 

  78. Zhou X, He B, Zhu Z, He X, Zheng C, Xu J, Jiang L, Gu L, Zhu J, Zhu Q, Liu X (2014) Etifoxine provides benefits in nerve repair with acellular nerve grafts. Muscle Nerve 50:235–243. https://doi.org/10.1002/mus.24131

    Article  CAS  PubMed  Google Scholar 

  79. Zhu Z, Zhou X, He B, Dai T, Zheng C, Yang C, Zhu S, Zhu J, Zhu Q, Liu X (2015) Ginkgo Biloba Extract (EGb 761) Promotes peripheral nerve regeneration and neovascularization after acellular nerve allografts in a rat model. Cell Mol Neurobiol 35:273–282. https://doi.org/10.1007/s10571-014-0122-1

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Consejo Nacional de Ciencia y Tecnología (CONACYT) is thankfully acknowledged for partially supporting this work under Sistema Nacional de Investigadores (SNI) program awarded to Hafiz M.N. Iqbal (CVU: 735340). The authors thankfully acknowledge the literature access provided by their respective institutions/organizations.

Funding

This article received no funding.

Author information

Authors and Affiliations

Authors

Contributions

All listed authors equally contributed from conceptualization to compilation.

Corresponding authors

Correspondence to Muhammad Bilal, Hafiz M. N. Iqbal or Renato Nery Soriano.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All listed authors have read and agreed with this submission and give their consent to publish in Molecular Neurobiology.

Research involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Competing Interests

The listed author(s) declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, N.M., Gonçalves, M.F., Ferreira, L.F.R. et al. Revisiting the Role of Biologically Active Natural and Synthetic Compounds as an Intervention to Treat Injured Nerves. Mol Neurobiol 58, 4980–4998 (2021). https://doi.org/10.1007/s12035-021-02473-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02473-z

Keywords

Navigation