Skip to main content
Log in

Norepinephrine and Glucocorticoids Modulate Chronic Unpredictable Stress-Induced Increase in the Type 2 CRF and Glucocorticoid Receptors in Brain Structures Related to the HPA Axis Activation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The stress response is multifactorial and enrolls circuitries to build a coordinated reaction, leading to behavioral, endocrine, and autonomic changes. These changes are mainly related to the hypothalamus–pituitary–adrenal (HPA) axis activation and the organism’s integrity. However, when self-regulation is ineffective, stress becomes harmful and predisposes the organism to pathologies. The chronic unpredictable stress (CUS) is a widely used experimental model since it induces physiological and behavioral changes and better mimics the stressors variability encountered in daily life. Corticotropin-releasing factor (CRF) and glucocorticoids (GCs) are deeply implicated in the CUS-induced physiological and behavioral changes. Nonetheless, the CUS modulation of CRF receptors and GR and the norepinephrine role in extra-hypothalamic brain areas were not well explored. Here, we show that 14 days of CUS induced a long-lasting HPA axis hyperactivity evidenced by plasmatic corticosterone increase and adrenal gland hypertrophy, which was dependent on both GCs and NE release induced by each stress session. CUS also increased CRF2 mRNA expression and GR protein levels in fundamental brain structures related to HPA regulation and behavior, such as the lateral septal nucleus intermedia part (LSI), ventromedial hypothalamic nucleus (VMH), and central nucleus of the amygdala (CeA). We also showed that NE participates in the CUS-induced increase in CRF2 and GR levels in the LSI, reinforcing the locus coeruleus (LC) involvement in the HPA axis modulation. Despite the CUS-induced molecular changes in essential areas related to anxiety-like behavior, this phenotype was not observed in CUS animals 24 h after the last stress session.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability (Data Transparency)

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Code Availability (Software Application or Custom Code)

Not applicable.

References

  1. Ulrich-Lai YM, Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10(6):397–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. de Kloet ER (2008) About stress hormones and resilience to psychopathology. J Neuroendocrinol 20(6):885–892

    Article  PubMed  CAS  Google Scholar 

  3. Goldstein DS, McEwen B (2002) Allostasis, homeostats, and the nature of stress. Stress 5(1):55–58

    Article  PubMed  Google Scholar 

  4. Bejean S, Sultan-Taieb H (2005) Modeling the economic burden of diseases imputable to stress at work. Eur J Health Econ 6(1):16–23

    Article  PubMed  Google Scholar 

  5. de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6(6):463–475

    Article  PubMed  CAS  Google Scholar 

  6. Van de Kar LD, Blair ML (1999) Forebrain pathways mediating stress-induced hormone secretion. Front Neuroendocrinol 20(1):1–48

    Article  PubMed  Google Scholar 

  7. Akil HA, Morano MI (1995) Stress. In: Bloom FE, Kupfer DJ (eds) psychopharmacology: the fourth generation of progress. Raven Press, New York, pp 773–785

    Google Scholar 

  8. Romier C et al (1993) Solution of structure of human corticotropin releasing factor by HNMR and distance geometry with restrained molecular dynamics. Prot Eng 6:149–156

    Article  CAS  Google Scholar 

  9. Trainer PJ et al (1995) A comparison of the effects of human and ovine corticotropin-releasing hormone on the pituitary-adrenal axis. J Clin Endocrinol Metab 80(2):412–417

    CAS  PubMed  Google Scholar 

  10. Hillhouse EW, Grammatopoulos DK (2006) The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocr Rev 27(3):260–286

    Article  CAS  PubMed  Google Scholar 

  11. Dunn AJ, Swiergiel AH, Palamarchouk V (2004) Brain circuits involved in corticotropin-releasing factor-norepinephrine interactions during stress. Ann N Y Acad Sci 1018:25–34

    Article  CAS  PubMed  Google Scholar 

  12. Gallagher JP et al (2008) Synaptic physiology of central CRH system. Eur J Pharmacol 583(2–3):215–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Henckens MJ, Deussing JM, Chen A (2016) Region-specific roles of the corticotropin-releasing factor-urocortin system in stress. Nat Rev Neurosci 17(10):636–651

    Article  CAS  PubMed  Google Scholar 

  14. Shekhar A et al (2005) Role of stress, corticotrophin releasing factor (CRF) and amygdala plasticity in chronic anxiety. Stress 8(4):209–219

    Article  CAS  PubMed  Google Scholar 

  15. Bale TL et al (2000) Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet 24(4):410–414

    Article  CAS  PubMed  Google Scholar 

  16. Coste SC et al (2000) Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nat Genet 24(4):403–409

    Article  CAS  PubMed  Google Scholar 

  17. Kozicz T et al (2004) Urocortin expression in the Edinger-Westphal nucleus is down-regulated in transgenic mice over-expressing neuronal corticotropin-releasing factor. Neuroscience 123(3):589–594

    Article  CAS  PubMed  Google Scholar 

  18. Reul JM, Holsboer F (2002) Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol 2(1):23–33

    Article  CAS  PubMed  Google Scholar 

  19. Bale TL, Vale WW (2004) CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 44:525–557

    Article  CAS  PubMed  Google Scholar 

  20. Ingallinesi M et al (2012) CRF2 receptor-deficiency eliminates opiate withdrawal distress without impairing stress coping. Mol Psychiatry 17(12):1283–1294

    Article  CAS  PubMed  Google Scholar 

  21. Carrasco GA, Van de Kar LD (2003) Neuroendocrine pharmacology of stress. Eur J Pharmacol 463(1–3):235–272

    Article  CAS  PubMed  Google Scholar 

  22. Keller-Wood M (2015) Hypothalamic-pituitary-adrenal axis—feedback control. Compr Physiol 5(3):1161–1182

    Article  PubMed  Google Scholar 

  23. McEwen BS (1998) Protective and damaging effects of stress mediators. N Engl J Med 338:171–179

    Article  CAS  PubMed  Google Scholar 

  24. McEwen BS, Sapolsky RM (1995) Stress and cognitive function. Curr Opin Neurobiol 5(2):205–216

    Article  CAS  PubMed  Google Scholar 

  25. De Kloet ER, Derijk R (2004) Signaling pathways in brain involved in predisposition and pathogenesis of stress-related disease: genetic and kinetic factors affecting the MR/GR balance. Ann N Y Acad Sci 1032:14–34

    Article  PubMed  CAS  Google Scholar 

  26. Willner P (2017) The chronic mild stress (CMS) model of depression: history, evaluation and usage. Neurobiol Stress 6:78–93

    Article  PubMed  Google Scholar 

  27. Joels M et al (2004) Effects of chronic stress on structure and cell function in rat hippocampus and hypothalamus. Stress 7(4):221–231

    Article  CAS  PubMed  Google Scholar 

  28. Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52(2):90–110

    Article  CAS  PubMed  Google Scholar 

  29. Munhoz CD et al (2006) Chronic unpredictable stress exacerbates lipopolysaccharide-induced activation of nuclear factor-kappaB in the frontal cortex and hippocampus via glucocorticoid secretion. J Neurosci 26(14):3813–3820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tata DA, Yamamoto BK (2008) Chronic stress enhances methamphetamine-induced extracellular glutamate and excitotoxicity in the rat striatum. Synapse 62(5):325–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garcia-Bueno B et al (2008) Stress mediators regulate brain prostaglandin synthesis and peroxisome proliferator-activated receptor-gamma activation after stress in rats. Endocrinology 149(4):1969–1978

    Article  CAS  PubMed  Google Scholar 

  32. Simmons DM, Arriza JL, Swanson LW (1989) A Complete protocol for in situ hybridization of messenger RNAs in brain and other tissues with radio-labeled single-stranded RNA probes. J Histotechnol 12(3):169–181

    Article  CAS  Google Scholar 

  33. Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29(4):577–580

    Article  CAS  PubMed  Google Scholar 

  34. Conover WJ (1999) Pratical nonparametric statistics, 3rd edn. Wiley, Hoboken

    Google Scholar 

  35. Bakshi VP et al (2007) Stimulation of lateral septum CRF2 receptors promotes anorexia and stress-like behaviors: functional homology to CRF1 receptors in basolateral amygdala. J Neurosci 27(39):10568–10577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jeanneteau FD et al (2012) BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus. Proc Natl Acad Sci U S A 109(4):1305–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sapolsky R (2003) Taming stress. Sci Am 289(3):86–95

    Article  PubMed  Google Scholar 

  38. Kling MA, Coleman VH, Schulkin J (2009) Glucocorticoid inhibition in the treatment of depression: can we think outside the endocrine hypothalamus? Depress Anxiety 26(7):641–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Herman JP et al (2003) Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol 24(3):151–180

    Article  CAS  PubMed  Google Scholar 

  40. Koob GF (1999) Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatry 46(9):1167–1180

    Article  CAS  PubMed  Google Scholar 

  41. Korosi A, Baram TZ (2008) The central corticotropin releasing factor system during development and adulthood. Eur J Pharmacol 583(2–3):204–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Herman JP, Cullinan WE (1997) Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 20(2):78–84

    Article  CAS  PubMed  Google Scholar 

  43. Flak JN et al (2014) Role of paraventricular nucleus-projecting norepinephrine/epinephrine neurons in acute and chronic stress. Eur J Neurosci 39(11):1903–1911

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang B et al (2017) Effects of alpha2A adrenoceptors on norepinephrine secretion from the locus coeruleus during chronic stress-induced depression. Front Neurosci 11:243

    Article  PubMed  PubMed Central  Google Scholar 

  45. Agon P et al (1991) Permeability of the blood-brain barrier for atenolol studied by positron emission tomography. J Pharm Pharmacol 43(8):597–600

    Article  CAS  PubMed  Google Scholar 

  46. Madrigal JL et al (2002) Stress-induced increase in extracellular sucrose space in rats is mediated by nitric oxide. Brain Res 938(1–2):87–91

    Article  CAS  PubMed  Google Scholar 

  47. Radley JJ, Johnson SB, Sawchenko PE (2017) Stress: neuroendocrinology and neurobiology. In: Fink G (ed) Handbook of Stress Series. Academic Press, New York, pp 17–27

    Google Scholar 

  48. Morilak DA et al (2005) Role of brain norepinephrine in the behavioral response to stress. Prog Neuropsychopharmacol Biol Psychiatry 29(8):1214–1224

    Article  CAS  PubMed  Google Scholar 

  49. Herman JP et al (2005) Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 29(8):1201–1213

    Article  CAS  PubMed  Google Scholar 

  50. Singewald GM et al (2011) The modulatory role of the lateral septum on neuroendocrine and behavioral stress responses. Neuropsychopharmacology 36(4):793–804

    Article  PubMed  Google Scholar 

  51. Gold PW (2015) The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry 20(1):32–47

    Article  CAS  PubMed  Google Scholar 

  52. van Bodegom M, Homberg JR, Henckens M (2017) Modulation of the hypothalamic-pituitary-adrenal axis by early life stress exposure. Front Cell Neurosci 11:87

    PubMed  PubMed Central  Google Scholar 

  53. Henry B, Vale W, Markou A (2006) The effect of lateral septum corticotropin-releasing factor receptor 2 activation on anxiety is modulated by stress. J Neurosci 26(36):9142–9152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Heinrichs M et al (2003) Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol Psychiatry 54(12):1389–1398

    Article  CAS  PubMed  Google Scholar 

  55. Southwick SM, Vythilingam M, Charney DS (2005) The psychobiology of depression and resilience to stress: implications for prevention and treatment. Annu Rev Clin Psychol 1:255–291

    Article  PubMed  Google Scholar 

  56. Sterling P, Eyer J (1988) Allostasis: a new paradigm to explain arousal pathology. In: Fisher S, Reason J (eds) Handbook of life stress, cognition and health. Wiley, New York, pp 629–649

    Google Scholar 

Download references

Acknowledgements

We gratefully thank Guiomar Wiesel and Larissa de Sá Lima for technical assistance.

Funding

This article was supported by research grants to J.B. from Fundação de Amparo à Pesquisa do Estado de São Paulo (São Paulo Research Foundation — FAPESP) grants #2010/52068–0, #2016/02224–1. J.B. was also supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Agency for the Advancement of Higher Education) and Comité Français d’Evaluation de la Coopération Universitaire avec le Brésil (French Committee for the Evaluation of Academic and Scientific Cooperation with Brazil) grant CAPES-COFECUB 848/15. J.B. is an Investigator with the Conselho Nacional de Desenvolvimento Científico e Tecnológico (National Council for Scientific and Technological Development— CNPq) with grant # #426378/2016–4. This work was supported by research grants to C.D.M. from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP: 2008/55178–0, 2012/24727–4, and 2016/03572–3) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq: 479153/2009–4 and 422523/2016–0). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. M.B.M. was supported by FAPESP (2006/52566–4) and CAPES. L.S.N. was supported by FAPESP (2010/13843–8 and 2012/24002–0). N.B.S. was supported by CNPq (160570/2012–3); C.D.M., C.S., and R.C. are research fellows from CNPq.

Author information

Authors and Affiliations

Authors

Contributions

M.B.M. designed research, performed research, analyzed data, wrote the paper, revised the paper final version; J.M. designed research, performed research, revised the paper final version; L.S.N. performed research, analyzed data, revised the paper final version; N.B.S. performed research, analyzed data, revised the paper final version; L.S. analyzed data, contributed unpublished reagents/analytic tools, revised the paper final version; R.C: contributed unpublished reagents/analytic tools, revised the paper final version; C.S. contributed unpublished reagents/analytic tools, analyzed data, revised the paper final version; J.B. contributed unpublished reagents/analytic tools, analyzed data, revised the paper final version; C.D.M.: designed research, analyzed data, contributed unpublished reagents/analytic tools, wrote the paper and revised the paper final version.

Corresponding author

Correspondence to Carolina D. Munhoz.

Ethics declarations

Ethics Approval

All animals were used following the standards of the Ethics Committee for Animal Use of the Institute of Biomedical Sciences/University of São Paulo (CEUA- ICB 102/06 and 75/05) and the guidelines of the Brazilian National Council for the Control of Animal Experimentation (CONCEA).

Consent to Participate

Not applicable.

Consent for Publication

All authors have contributed significantly and agreed with the entire content of this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malta, M.B., Martins, J., Novaes, L.S. et al. Norepinephrine and Glucocorticoids Modulate Chronic Unpredictable Stress-Induced Increase in the Type 2 CRF and Glucocorticoid Receptors in Brain Structures Related to the HPA Axis Activation. Mol Neurobiol 58, 4871–4885 (2021). https://doi.org/10.1007/s12035-021-02470-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02470-2

Keywords

Navigation