Skip to main content

Advertisement

Log in

MiR-135-5p Alleviates Bone Cancer Pain by Regulating Astrocyte-Mediated Neuroinflammation in Spinal Cord through JAK2/STAT3 Signaling Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Bone cancer pain (BCP) was associated with microRNA dysregulation. In this study, we intended to clarify the potential role of miR-135-5p in a BCP mouse model, which was established by tumor cell implantation (TCI) in the medullary cavity of the mouse femur. The BCP-related behaviors were tested, including the paw withdrawal mechanical threshold (PWMT) and number of spontaneous flinches (NSF). The miRNA expression profiles in astrocytes of the sham and tumor groups were compared, and miRNA microarray and quantitative real-time PCR (qRT-PCR) assays confirmed that the amount of expression of miR-135-5p was significantly decreased in astrocytes of the tumor group. Gain- and loss-of-function studies showed that miR-135-5p could inhibit astrocyte activation and inflammation cytokine (TNF-α and IL-1β) expression. The relation between miR-135-5p and JAK2 was detected by bioinformatic analysis and dual luciferase reporter gene assay. By conducting in vitro experiments, it was shown that the miR-135-5P mimics lowered the level of JAK2/STAT3 proteins and inflammatory factors in astrocytes. Moreover, in vivo analysis on BCP mice model indicated that the miR-135-5p agonist could sufficiently increase PWMT and decrease NSF. Meanwhile, reduced activation of astrocytes in the spinal cord, as well as decreased expression of JAK2/STAT3 and inflammatory mediators, were found after miR-135-5p agonist treatment. Collectively, the results showed that miR-135-5p could potentially reduce BCP in mice through inhibiting astrocyte-mediated neuroinflammation and blocking of the JAK2/STAT3 signaling pathway, indicating that the upregulation of miR-135-5P could be a therapeutic focus in BCP treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2(8):584–593. https://doi.org/10.1038/nrc867

    Article  CAS  PubMed  Google Scholar 

  2. Delaney A, Fleetwood-Walker SM, Colvin LA, Fallon M (2008) Translational medicine: cancer pain mechanisms and management. Br J Anaesth 101(1):87–94. https://doi.org/10.1093/bja/aen100

    Article  CAS  PubMed  Google Scholar 

  3. Liu S, Liu YP, Lv Y, Yao JL, Yue DM, Zhang MY, Qi DY, Liu GJ (2018) IL-18 contributes to bone cancer pain by regulating glia cells and neuron interaction. The journal of pain : official journal of the American Pain Society 19(2):186–195. https://doi.org/10.1016/j.jpain.2017.10.003

  4. Zhao D, Han DF, Wang SS, Lv B, Wang X, Ma C (2019) Roles of tumor necrosis factor-alpha and interleukin-6 in regulating bone cancer pain via TRPA1 signal pathway and beneficial effects of inhibition of neuro-inflammation and TRPA1. Mol Pain 15:1744806919857981. https://doi.org/10.1177/1744806919857981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Elramah S, Lopez-Gonzalez MJ, Bastide M, Dixmerias F, Roca-Lapirot O, Wielanek-Bachelet AC, Vital A, Leste-Lasserre T, Brochard A, Landry M, Favereaux A (2017) Spinal miRNA-124 regulates synaptopodin and nociception in an animal model of bone cancer pain. Sci Rep 7(1):10949. https://doi.org/10.1038/s41598-017-10224-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hou B, Cui X, Liu Y, Zhang W, Liu M, Sun YE, Ma Z, Gu X (2016) Positive feedback regulation between microRNA-132 and CREB in spinal cord contributes to bone cancer pain in mice. Eur J Pain 20(8):1299–1308. https://doi.org/10.1002/ejp.854

    Article  CAS  PubMed  Google Scholar 

  7. Gandla J, Lomada SK, Lu J, Kuner R, Bali KK (2017) miR-34c-5p functions as pronociceptive microRNA in cancer pain by targeting Cav2. 3 containing calcium channels. Pain 158(9):1765–1779. https://doi.org/10.1097/j.pain.0000000000000971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu SN, Liu GF, Li LY, Zhao GQ, Liu L, Li XF (2019) Analgesic effects of microRNA-129-5p against bone cancer pain through the EphB1/EphrinB2 signaling pathway in mice. J Cell Biochem 120(3):2876–2885. https://doi.org/10.1002/jcb.26605

    Article  CAS  PubMed  Google Scholar 

  9. Meza-Sosa KF, Pedraza-Alva G, Perez-Martinez L (2014) microRNAs: key triggers of neuronal cell fate. Front Cell Neurosci 8:175. https://doi.org/10.3389/fncel.2014.00175

    Article  PubMed  PubMed Central  Google Scholar 

  10. van Battum EY, Verhagen MG, Vangoor VR, Fujita Y, Derijck A, O’Duibhir E, Giuliani G, de Gunst T, Adolfs Y, Lelieveld D, Egan D, Schaapveld RQJ, Yamashita T, Pasterkamp RJ (2018) An image-based miRNA screen identifies miRNA-135s as regulators of CNS axon growth and regeneration by targeting Kruppel-like Factor 4. The Journal of neuroscience : the official journal of the Society for Neuroscience 38(3):613–630. https://doi.org/10.1523/JNEUROSCI.0662-17.2017

  11. Wang N, Yang Y, Pang M, Du C, Chen Y, Li S, Tian Z, Feng F, Wang Y, Chen Z, Liu B, Rong L (2020) MicroRNA-135a-5p promotes the functional recovery of spinal cord injury by targeting SP1 and ROCK. Molecular therapy Nucleic acids 22:1063–1077. https://doi.org/10.1016/j.omtn.2020.08.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiang CY, Sessle BJ, Dostrovsky JO (2012) Role of astrocytes in pain. Neurochem Res 37(11):2419–2431. https://doi.org/10.1007/s11064-012-0801-6

    Article  CAS  PubMed  Google Scholar 

  13. Lu C, Liu Y, Sun B, Sun Y, Hou B, Zhang Y, Ma Z, Gu X (2015) Intrathecal injection of JWH-015 attenuates bone cancer pain via time-dependent modification of pro-inflammatory cytokines expression and astrocytes activity in spinal cord. Inflammation 38(5):1880–1890. https://doi.org/10.1007/s10753-015-0168-3

    Article  CAS  PubMed  Google Scholar 

  14. Tsuda M, Kohro Y, Yano T, Tsujikawa T, Kitano J, Tozaki-Saitoh H, Koyanagi S, Ohdo S, Ji RR, Salter MW, Inoue K (2011) JAK-STAT3 pathway regulates spinal astrocyte proliferation and neuropathic pain maintenance in rats. Brain : a journal of neurology 134(Pt 4):1127–1139. https://doi.org/10.1093/brain/awr025

  15. Zhao H, Alam A, Chen Q, Eusman MA, Pal A, Eguchi S, Wu L, Ma D (2017) The role of microglia in the pathobiology of neuropathic pain development: what do we know? British journal of anaesthesia 118(4):504–516. https://doi.org/10.1093/bja/aex006

    Article  CAS  PubMed  Google Scholar 

  16. Li T, Chen X, Zhang C, Zhang Y, Yao W (2019) An update on reactive astrocytes in chronic pain. J Neuroinflammation 16(1):140. https://doi.org/10.1186/s12974-019-1524-2

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ji RR, Donnelly CR, Nedergaard M (2019) Astrocytes in chronic pain and itch. Nat Rev Neurosci 20(11):667–685. https://doi.org/10.1038/s41583-019-0218-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao YJ, Ji RR (2010) Targeting astrocyte signaling for chronic pain. Neurotherapeutics 7(4):482–493. https://doi.org/10.1016/j.nurt.2010.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sommer C, Leinders M, Uceyler N (2018) Inflammation in the pathophysiology of neuropathic pain. Pain 159(3):595–602. https://doi.org/10.1097/j.pain.0000000000001122

    Article  CAS  PubMed  Google Scholar 

  20. Ellis A, Bennett DL (2013) Neuroinflammation and the generation of neuropathic pain. Br J Anaesth 111(1):26–37. https://doi.org/10.1093/bja/aet128

    Article  CAS  PubMed  Google Scholar 

  21. Chen SP, Zhou YQ, Liu DQ, Zhang W, Manyande A, Guan XH, Tian YK, Ye DW, Omar DM (2017) PI3K/Akt pathway: a potential therapeutic target for chronic pain. Curr Pharm Des 23(12):1860–1868. https://doi.org/10.2174/1381612823666170210150147

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J, Wang L, Wang H, Su Z, Pang X (2019) Neuroinflammation and central PI3K/Akt/mTOR signal pathway contribute to bone cancer pain. Mol Pain 15:1744806919830240. https://doi.org/10.1177/1744806919830240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grenald SA, Doyle TM, Zhang H, Slosky LM, Chen Z, Largent-Milnes TM, Spiegel S, Vanderah TW, Salvemini D (2017) Targeting the S1P/S1PR1 axis mitigates cancer-induced bone pain and neuroinflammation. Pain 158(9):1733–1742. https://doi.org/10.1097/j.pain.0000000000000965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dominguez E, Rivat C, Pommier B, Mauborgne A, Pohl M (2008) JAK/STAT3 pathway is activated in spinal cord microglia after peripheral nerve injury and contributes to neuropathic pain development in rat. J Neurochem 107(1):50–60. https://doi.org/10.1111/j.1471-4159.2008.05566.x

    Article  CAS  PubMed  Google Scholar 

  25. Liu S, Mi WL, Li Q, Zhang MT, Han P, Hu S, Mao-Ying QL, Wang YQ (2015) Spinal IL-33/ST2 Signaling contributes to neuropathic pain via neuronal CaMKII-CREB and astroglial JAK2-STAT3 cascades in mice. Anesthesiology 123(5):1154–1169. https://doi.org/10.1097/ALN.0000000000000850

    Article  CAS  PubMed  Google Scholar 

  26. Liu S, Li Q, Zhang MT, Mao-Ying QL, Hu LY, Wu GC, Mi WL, Wang YQ (2016) Curcumin ameliorates neuropathic pain by down-regulating spinal IL-1beta via suppressing astroglial NALP1 inflammasome and JAK2-STAT3 signalling. Sci Rep 6:28956. https://doi.org/10.1038/srep28956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang ZF, Li Q, Liu SB, Mi WL, Hu S, Zhao J, Tian Y, Mao-Ying QL, Jiang JW, Ma HJ, Wang YQ, Wu GC (2014) Aspirin-triggered lipoxin A4 attenuates mechanical allodynia in association with inhibiting spinal JAK2/STAT3 signaling in neuropathic pain in rats. Neuroscience 273:65–78. https://doi.org/10.1016/j.neuroscience.2014.04.052

    Article  CAS  PubMed  Google Scholar 

  28. Schwei MJ, Honore P, Rogers SD, Salak-Johnson JL, Finke MP, Ramnaraine ML, Clohisy DR, Mantyh PW (1999) Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. The Journal of neuroscience : the official journal of the Society for Neuroscience 19(24):10886–10897

  29. Wu XP, Yang YP, She RX, Xing ZM, Chen HW, Zhang YW (2019) microRNA-329 reduces bone cancer pain through the LPAR1-dependent LPAR1/ERK signal transduction pathway in mice. Therapeutic advances in medical oncology 11:1758835919875319. https://doi.org/10.1177/1758835919875319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu C, Wang K, Chen Z, Han Y, Chen H, Li Q, Liu Z, Qian L, Tang J, Shen H (2020) Antinociceptive effect of intrathecal injection of miR-9-5p modified mouse bone marrow mesenchymal stem cells on a mouse model of bone cancer pain. J Neuroinflammation 17(1):85. https://doi.org/10.1186/s12974-020-01765-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu Y, Liao S, Quan H, Lin Y, Li J, Yang Q (2016) Involvement of microRNA-135a-5p in the protective effects of hydrogen sulfide against Parkinson’s disease. Cell Physiol Biochem 40(1 2):18–26. https://doi.org/10.1159/000452521

    Article  CAS  PubMed  Google Scholar 

  32. He Y, Wu L, Dai Y, Li J, Liu S (2019) MicroRNA-135 inhibits gastric cancer metastasis by targeting SMAD2. Eur Rev Med Pharmacol Sci 23(21):9436–9444. https://doi.org/10.26355/eurrev_201911_19437

    Article  CAS  PubMed  Google Scholar 

  33. Wang N, Zhang T (2018) Downregulation of microRNA-135 promotes sensitivity of non-small cell lung cancer to gefitinib by targeting TRIM16. Oncol Res 26(7):1005–1014. https://doi.org/10.3727/096504017X15144755633680

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yang W, Feng W, Wu F, Gao Y, Sun Q, Hu N, Lu W, Zhou J (2020) MiR-135-5p inhibits TGF-beta-induced epithelial–mesenchymal transition and metastasis by targeting SMAD3 in breast cancer. J Cancer 11(21):6402–6412. https://doi.org/10.7150/jca.47083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang H (2017) Upregulation of PIM2 by underexpression of microRNA-135–5p improves survival rates of skin allografts by suppressing apoptosis of fibroblast cells. Med Sci Monit 23:107–113. https://doi.org/10.12659/msm.897613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5’ UTR as in the 3’ UTR. Proc Natl Acad Sci USA 104(23):9667–9672. https://doi.org/10.1073/pnas.0703820104

  37. Dominguez E, Mauborgne A, Mallet J, Desclaux M, Pohl M (2010) SOCS3-mediated blockade of JAK/STAT3 signaling pathway reveals its major contribution to spinal cord neuroinflammation and mechanical allodynia after peripheral nerve injury. J Neurosci 30(16):5754–5766. https://doi.org/10.1523/JNEUROSCI.5007-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tang J, Li ZH, Ge SN, Wang W, Mei XP, Wang W, Zhang T, Xu LX, Li JL (2012) The inhibition of spinal astrocytic JAK2-STAT3 pathway activation correlates with the analgesic effects of triptolide in the rat neuropathic pain model. Evid Based Complement Alternat Med 2012:185167. https://doi.org/10.1155/2012/185167

    Article  PubMed  PubMed Central  Google Scholar 

  39. Murray PJ (2007) The JAK-STAT signaling pathway: input and output integration. J Immunol 178(5):2623–2629. https://doi.org/10.4049/jimmunol.178.5.2623

    Article  CAS  PubMed  Google Scholar 

  40. Yoshida Y, Kumar A, Koyama Y, Peng H, Arman A, Boch JA, Auron PE (2004) Interleukin 1 activates STAT3/nuclear factor-kappaB cross-talk via a unique TRAF6- and p65-dependent mechanism. J Biol Chem 279(3):1768–1776. https://doi.org/10.1074/jbc.M311498200

    Article  CAS  PubMed  Google Scholar 

  41. Huang C, Ma R, Sun S, Wei G, Fang Y, Liu R, Li G (2008) JAK2-STAT3 signaling pathway mediates thrombin-induced proinflammatory actions of microglia in vitro. J Neuroimmunol 204(1–2):118–125. https://doi.org/10.1016/j.jneuroim.2008.07.004

    Article  CAS  PubMed  Google Scholar 

  42. Samavati L, Rastogi R, Du W, Huttemann M, Fite A, Franchi L (2009) STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and live bacteria. Mol Immunol 46(8–9):1867–1877. https://doi.org/10.1016/j.molimm.2009.02.018

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank those previous researchers who updated their data onto the databases employed in the present study.

Funding

This work is supported by the Fundamental Research Funds for the Central Universities (No. 2042019kf0073).

Author information

Authors and Affiliations

Authors

Contributions

M.L., X.F.C., and Z.H.C. designed the experiments. M.L. and X.F.C. collected samples. M.L., X.F.C., and H.Y. conducted the experiments and acquired the data. M.L., H.Y., and J.L.C. analyzed the data. M.L. and X.F.C. wrote the manuscript. H.Y., J.L.C., and C.H.L. revised the manuscript. All authors approved the final version. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Corresponding author

Correspondence to Zhonghui Chen.

Ethics declarations

Ethics approval and consent to participate

All experimental approaches were reviewed and approved by the Institutional Animal Care and Use Committee of the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Cheng, X., Yan, H. et al. MiR-135-5p Alleviates Bone Cancer Pain by Regulating Astrocyte-Mediated Neuroinflammation in Spinal Cord through JAK2/STAT3 Signaling Pathway . Mol Neurobiol 58, 4802–4815 (2021). https://doi.org/10.1007/s12035-021-02458-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02458-y

Keywords

Navigation