Skip to main content

Advertisement

Log in

Accumulation of Endogenous Mutant Huntingtin in Astrocytes Exacerbates Neuropathology of Huntington Disease in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Selective neuronal accumulation of misfolded proteins is a key step toward neurodegeneration in a wide range of neurodegenerative diseases, including Huntington’s (HD) diseases. Our recent studies suggest that Hsp70-binding protein 1 (HspBP1), an Hsp70/CHIP inhibitor that reduces protein folding, is highly expressed in neuronal cells and accounts for the accumulation of the HD protein huntingtin (HTT) in neuronal cells. To further determine the role of HspBP1 in regulation of mutant protein accumulation, we investigated whether increasing expression of HspBP1 in glial cells can also induce the accumulation of endogenous mutant HTT in glial cells and yield non-cell-autonomous toxic effects. We performed stereotaxic injection of AAV to selectively express HspBP1 in astrocytes in the brains of HD140Q knock-in (KI) mice that express mutant HTT ubiquitously but do not display obvious neurodegeneration. However, HspBP1 expression in HD140Q astrocytes led to the increased accumulation of endogenous mutant HTT and robust neuronal loss in the striatum of HD140Q KI mice. In transgenic HD mice that selectively express mutant HTT in astrocytes, increased accumulation of mutant HTT in astrocytes via HspBP1 expression did not elicit neurodegeneration but could exacerbate neurological symptoms. Consistently, suppressing the expression of endogenous HspBp1 in the striatum of HD140Q KI mice via CRISPR/Cas9 led to a significant reduction of mutant HTT accumulation. Our findings suggest that although endogenous mutant HTT in astrocytes can exacerbate neurological symptoms, it mediates neurodegeneration only when mutant HTT is also accumulated in neuronal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

None.

References

  1. Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4(1):49–60. https://doi.org/10.1038/nrn1007

    Article  CAS  PubMed  Google Scholar 

  2. Saxena S, Caroni P (2011) Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71(1):35–48. https://doi.org/10.1016/j.neuron.2011.06.031

    Article  CAS  PubMed  Google Scholar 

  3. Sherman MY, Goldberg AL (2001) Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29(1):15–32. https://doi.org/10.1016/s0896-6273(01)00177-5

    Article  CAS  PubMed  Google Scholar 

  4. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426(6968):895–899. https://doi.org/10.1038/nature02263

    Article  CAS  PubMed  Google Scholar 

  5. Vilchez D, Saez I, Dillin A (2014) The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5:5659. https://doi.org/10.1038/ncomms6659

    Article  CAS  PubMed  Google Scholar 

  6. Pohl C, Dikic I (2019) Cellular quality control by the ubiquitin-proteasome system and autophagy. Science 366(6467):818–822. https://doi.org/10.1126/science.aax3769

    Article  CAS  PubMed  Google Scholar 

  7. Ciechanover A, Kwon YT (2017) Protein quality control by molecular chaperones in neurodegeneration. Front Neurosci 11:185. https://doi.org/10.3389/fnins.2017.00185

    Article  PubMed  PubMed Central  Google Scholar 

  8. McClellan AJ, Frydman J (2001) Molecular chaperones and the art of recognizing a lost cause. Nat Cell Biol 3(2):E51-53. https://doi.org/10.1038/35055162

    Article  CAS  PubMed  Google Scholar 

  9. McDonough H, Patterson C (2003) CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8(4):303–308. https://doi.org/10.1379/1466-1268(2003)008%3c0303:calbtc%3e2.0.co;2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Raynes DA, Guerriero V Jr (1998) Inhibition of Hsp70 ATPase activity and protein renaturation by a novel Hsp70-binding protein. J Biol Chem 273(49):32883–32888. https://doi.org/10.1074/jbc.273.49.32883

    Article  CAS  PubMed  Google Scholar 

  11. McLellan CA, Raynes DA, Guerriero V (2003) HspBP1, an Hsp70 cochaperone, has two structural domains and is capable of altering the conformation of the Hsp70 ATPase domain. J Biol Chem 278(21):19017–19022. https://doi.org/10.1074/jbc.M301109200

    Article  CAS  PubMed  Google Scholar 

  12. Alberti S, Bohse K, Arndt V, Schmitz A, Hohfeld J (2004) The cochaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol Biol Cell 15(9):4003–4010. https://doi.org/10.1091/mbc.e04-04-0293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shomura Y, Dragovic Z, Chang HC, Tzvetkov N, Young JC, Brodsky JL, Guerriero V, Hartl FU et al (2005) Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol Cell 17(3):367–379. https://doi.org/10.1016/j.molcel.2004.12.023

    Article  CAS  PubMed  Google Scholar 

  14. Zhao T, Hong Y, Yin P, Li S, Li XJ (2017) Differential HspBP1 expression accounts for the greater vulnerability of neurons than astrocytes to misfolded proteins. Proc Natl Acad Sci U S A 114(37):E7803–E7811. https://doi.org/10.1073/pnas.1710549114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bradford J, Shin J-Y, Roberts M, Wang C-E, Li X-J, Li S (2009) Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci 106(52):22480–22485. https://doi.org/10.1073/pnas.0911503106

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang CE, Zhou H, McGuire JR, Cerullo V, Lee B, Li SH, Li XJ (2008) Suppression of neuropil aggregates and neurological symptoms by an intracellular antibody implicates the cytoplasmic toxicity of mutant huntingtin. J Cell Biol 181(5):803–816. https://doi.org/10.1083/jcb.200710158

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang S, Chang R, Yang H, Zhao T, Hong Y, Kong HE, Sun X, Qin Z et al (2017) CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Invest 127(7):2719–2724. https://doi.org/10.1172/JCI92087

    Article  PubMed  PubMed Central  Google Scholar 

  18. Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, Dufour N, Guillermier M et al (2010) In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet 19(15):3053–3067. https://doi.org/10.1093/hmg/ddq212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD, Anderson MA, Mody I et al (2014) Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 17(5):694–703. https://doi.org/10.1038/nn.3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wood TE, Barry J, Yang Z, Cepeda C, Levine MS, Gray M (2019) Mutant huntingtin reduction in astrocytes slows disease progression in the BACHD conditional Huntington’s disease mouse model. Hum Mol Genet 28(3):487–500. https://doi.org/10.1093/hmg/ddy363

    Article  CAS  PubMed  Google Scholar 

  21. Hickey MA, Kosmalska A, Enayati J, Cohen R, Zeitlin S, Levine MS, Chesselet MF (2008) Extensive early motor and non-motor behavioral deficits are followed by striatal neuronal loss in knock-in Huntington’s disease mice. Neuroscience 157(1):280–295. https://doi.org/10.1016/j.neuroscience.2008.08.041

    Article  CAS  PubMed  Google Scholar 

  22. Rising AC, Xu J, Carlson A, Napoli VV, Denovan-Wright EM, Mandel RJ (2011) Longitudinal behavioral, cross-sectional transcriptional and histopathological characterization of a knock-in mouse model of Huntington’s disease with 140 CAG repeats. Exp Neurol 228(2):173–182. https://doi.org/10.1016/j.expneurol.2010.12.017

    Article  CAS  PubMed  Google Scholar 

  23. Jang M, Lee SE, Cho IH (2018) Adeno-associated viral vector serotype DJ-mediated overexpression of N171–82Q-mutant Huntingtin in the striatum of juvenile mice is a new model for Huntington’s disease. Front Cell Neurosci 12:157. https://doi.org/10.3389/fncel.2018.00157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang S, Li S, Li XJ (2018) Shortening the half-life of Cas9 maintains its gene editing ability and reduces neuronal toxicity. Cell Rep 25(10):2653-2659.e2653. https://doi.org/10.1016/j.celrep.2018.11.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O et al (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159(2):440–455. https://doi.org/10.1016/j.cell.2014.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang H, Yang S, Jing L, Huang L, Chen L, Zhao X, Yang W, Pan Y et al (2020) Truncation of mutant huntingtin in knock-in mice demonstrates exon1 huntingtin is a key pathogenic form. Nat Commun 11(1):2582. https://doi.org/10.1038/s41467-020-16318-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cyr DM, Hohfeld J, Patterson C (2002) Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem Sci 27(7):368–375. https://doi.org/10.1016/s0968-0004(02)02125-4

    Article  CAS  PubMed  Google Scholar 

  28. Hohfeld J, Cyr DM, Patterson C (2001) From the cradle to the grave: molecular chaperones that may choose between folding and degradation. EMBO Rep 2(10):885–890. https://doi.org/10.1093/embo-reports/kve206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP (2015) Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharmacol Toxicol 55:353–371. https://doi.org/10.1146/annurev-pharmtox-010814-124332

    Article  CAS  PubMed  Google Scholar 

  30. Joshi V, Amanullah A, Upadhyay A, Mishra R, Kumar A, Mishra A (2016) A decade of boon or burden: what has the CHIP ever done for cellular protein quality control mechanism implicated in neurodegeneration and aging? Front Mol Neurosci 9:93. https://doi.org/10.3389/fnmol.2016.00093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shin JY, Fang ZH, Yu ZX, Wang CE, Li SH, Li XJ (2005) Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol 171(6):1001–1012. https://doi.org/10.1083/jcb.200508072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hong Y, Zhao T, Li XJ, Li S (2016) Mutant Huntingtin impairs BDNF release from astrocytes by disrupting conversion of Rab3a-GTP into Rab3a-GDP. J Neurosci 36(34):8790–8801. https://doi.org/10.1523/JNEUROSCI.0168-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Petrucelli L, Dawson TM (2004) Mechanism of neurodegenerative disease: role of the ubiquitin proteasome system. Ann Med 36(4):315–320. https://doi.org/10.1080/07853890410031948

    Article  CAS  PubMed  Google Scholar 

  34. Jana NR, Dikshit P, Goswami A, Kotliarova S, Murata S, Tanaka K, Nukina N (2005) Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J Biol Chem 280(12):11635–11640. https://doi.org/10.1074/jbc.M412042200

    Article  CAS  PubMed  Google Scholar 

  35. Al-Ramahi I, Lam YC, Chen HK, de Gouyon B, Zhang M, Perez AM, Branco J, de Haro M et al (2006) CHIP protects from the neurotoxicity of expanded and wild-type ataxin-1 and promotes their ubiquitination and degradation. J Biol Chem 281(36):26714–26724. https://doi.org/10.1074/jbc.M601603200

    Article  CAS  PubMed  Google Scholar 

  36. Howarth JL, Glover CP, Uney JB (2009) HSP70 interacting protein prevents the accumulation of inclusions in polyglutamine disease. J Neurochem 108(4):945–951

  37. Dickey CA, Kamal A, Lundgren K, Klosak N, Bailey RM, Dunmore J, Ash P, Shoraka S et al (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117(3):648–658. https://doi.org/10.1172/JCI29715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kumar P, Ambasta RK, Veereshwarayya V, Rosen KM, Kosik KS, Band H, Mestril R, Patterson C et al (2007) CHIP and HSPs interact with beta-APP in a proteasome-dependent manner and influence Abeta metabolism. Hum Mol Genet 16(7):848–864. https://doi.org/10.1093/hmg/ddm030

    Article  CAS  PubMed  Google Scholar 

  39. Oddo S, Caccamo A, Tseng B, Cheng D, Vasilevko V, Cribbs DH, LaFerla FM (2008) Blocking Abeta42 accumulation delays the onset and progression of tau pathology via the C terminus of heat shock protein70-interacting protein: a mechanistic link between Abeta and tau pathology. J Neurosci 28(47):12163–12175. https://doi.org/10.1523/JNEUROSCI.2464-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dimant H, Zhu L, Kibuuka LN, Fan Z, Hyman BT, McLean PJ (2014) Direct visualization of CHIP-mediated degradation of alpha-synuclein in vivo: implications for PD therapeutics. PLoS One 9(3):e92098. https://doi.org/10.1371/journal.pone.0092098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen HJ, Mitchell JC, Novoselov S, Miller J, Nishimura AL, Scotter EL, Vance CA, Cheetham ME et al (2016) The heat shock response plays an important role in TDP-43 clearance: evidence for dysfunction in amyotrophic lateral sclerosis. Brain 139(Pt 5):1417–1432. https://doi.org/10.1093/brain/aww028

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jennifer Zhang for maintaining mouse lines and technical assistance.

Funding

This work is supported by the National Institutes of Health grants (R56 AG019206; R01NS101701), National Natural Science Foundation of China (81830032; 31872779; 32070534; 82071421), Guangzhou Key Research Program on Brain Science (202007030008), Key Field Research and Development Program of Guangdong province (2018B030337001), The National Key Research and Development Program of China, Stem Cell and Translational Research (2017YFA0105102).

Author information

Authors and Affiliations

Authors

Contributions

LJ, SL, and XL conceived and designed the experiments. LJ conducted most of experiments. SC, YP, QL, and WY provided technical assistance or performed part of experiments. LJ and XL wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiao-Jiang Li.

Ethics declarations

Declarations

All animal procedures were approved by the Institutional Animal Use and Care Committee at Emory University and carried out in accordance with the guidelines of Animal Use and Care of the National Institutes of Health (NIH).

Consent to Participate

None.

Consent for Publication

None.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, L., Cheng, S., Pan, Y. et al. Accumulation of Endogenous Mutant Huntingtin in Astrocytes Exacerbates Neuropathology of Huntington Disease in Mice. Mol Neurobiol 58, 5112–5126 (2021). https://doi.org/10.1007/s12035-021-02451-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02451-5

Keywords

Navigation