Skip to main content

Advertisement

Log in

Gut-Derived Exosomes Mediate Memory Impairment After Intestinal Ischemia/Reperfusion via Activating Microglia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Intestinal ischemia/reperfusion is a grave condition with high morbidity and mortality in perioperative and critical care settings and causes multiple organ injuries beyond the intestine, including brain injury. Exosomes act as intercellular communication carriers by the transmission of their cargo to recipient cells. Here, we investigate whether exosomes derived from the intestine contribute to brain injury after intestinal ischemia/reperfusion via interacting with microglia in the brain. Intestinal ischemia/reperfusion was established in male C57/BL mice by clamping the superior mesenteric artery for 30 min followed by reperfusion. The sham surgery including laparotomy and isolation of the superior mesenteric artery without occlusion was performed as control. Male C57 mouse was intracerebral ventricular injected with intestinal exosomes from mice of intestinal ischemia/reperfusion or sham surgery. Primary microglia were cocultured with intestinal exosomes; HT-22 cells were treated with intestinal exosomes or microglia conditioned media. Intestinal ischemia/reperfusion-induced microglial activation, neuronal loss, synaptic stability decline, and cognitive deficit. Intracerebral ventricular injection of intestinal exosomes from intestinal ischemia/reperfusion mice causes microglial activation, neuronal loss, synaptic stability decline, and cognitive impairment. Microglia can incorporate intestinal exosomes both in vivo and in vitro. Microglia activated by intestinal exosomes increases neuron apoptotic rate and decreases synaptic stability. This study indicates that intestinal exosomes mediate memory impairment after intestinal ischemia/reperfusion via activating microglia. Inhibiting exosome secretion or suppressing microglial activation can be a therapeutic target to prevent memorial impairment after intestinal ischemia/reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed in the current study are available from the corresponding author on reasonable request.

Abbreviations

I/R:

ischemia/reperfusion

DMEM:

Dulbecco’s Modified Eagle Medium

FBS:

fetal bovine serum

CNS:

central nervous system

Iba-1:

ionized calcium-binding adaptor molecule1

ICV:

intracerebroventricular

SEM:

standard error of the mean

TNFα:

tumor necrosis factor-α

IL-1β:

interleukin-1β

IL-6:

interleukin-6

LPS:

lipopolysaccharide

PBS:

phosphate buffer solution

NeuN:

neuronal nuclei

PSD95:

postsynaptic density 95

CA1:

central amygdala 1

EpCAM:

epithelial cell adhesion molecule

POCD:

postoperative cognitive dysfunction

MAPK:

mitogen-activated protein kinase;

References

  1. Lorusso R, Mariscalco G, Vizzardi E, Bonadei I, Renzulli A, Gelsomino S (2014) Acute bowel ischemia after heart operations. Ann Thorac Surg 97(6):2219–2227. https://doi.org/10.1016/j.athoracsur.2014.01.029

    Article  PubMed  Google Scholar 

  2. Ultee KH, Zettervall SL, Soden PA, Darling J, Bertges DJ, Verhagen HJ, Schermerhorn ML (2016) Incidence of and risk factors for bowel ischemia after abdominal aortic aneurysm repair. J Vasc Surg 64(5):1384–1391. https://doi.org/10.1016/j.jvs.2016.05.045

    Article  PubMed  PubMed Central  Google Scholar 

  3. Suzuki S, Kondo H, Furukawa A, Kawai K, Yukaya T, Shimazui T, Tani M, Yamamoto M (2020) Prognostic Factors of Preoperative Examinations for Non-occlusive Mesenteric Ischemia: A Multicenter Retrospective Project Study Conducted by the Japanese Society for Abdominal Emergency Medicine. World J Surg 44(11):3687–3694. https://doi.org/10.1007/s00268-020-05678-w

    Article  PubMed  Google Scholar 

  4. Bertoni S, Ballabeni V, Barocelli E, Tognolini M (2018) Mesenteric ischemia-reperfusion: an overview of preclinical drug strategies. Drug Discov Today 23(7):1416–1425. https://doi.org/10.1016/j.drudis.2018.05.034

    Article  CAS  PubMed  Google Scholar 

  5. Hovens IB, van Leeuwen BL, Mariani MA, Kraneveld AD, Schoemaker RG (2016) Postoperative cognitive dysfunction and neuroinflammation. Cardiac surgery and abdominal surgery are not the same Brain Behav Immun 54:178–193. https://doi.org/10.1016/j.bbi.2016.02.003

    Article  CAS  Google Scholar 

  6. Zhou J, Huang WQ, Li C, Wu GY, Li YS, Wen SH, Lei WL, Liu KX (2012) Intestinal ischemia/reperfusion enhances microglial activation and induces cerebral injury and memory dysfunction in rats. Crit Care Med 40(8):2438–2448. https://doi.org/10.1097/CCM.0b013e3182546855

    Article  CAS  PubMed  Google Scholar 

  7. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750

  8. Kojima M, Gimenes-Junior JA, Chan TW, Eliceiri BP, Baird A, Costantini TW, Coimbra R (2018) Exosomes in postshock mesenteric lymph are key mediators of acute lung injury triggering the macrophage activation via Toll-like receptor 4. FASEB J 32(1):97–110. https://doi.org/10.1096/fj.201700488R

    Article  CAS  PubMed  Google Scholar 

  9. Gotanda K, Hirota T, Saito J, Fukae M, Egashira Y, Izumi N, Deguchi M, Kimura M et al (2016) Circulating intestine-derived exosomal miR-328 in plasma, a possible biomarker for estimating BCRP function in the human intestines. Sci Rep 6:32299–32299. https://doi.org/10.1038/srep32299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Van Niel G, Raposo G, Candalh C, Boussac M, Hershberg R, Cerf-Bensussan N, Heyman M (2001) Intestinal epithelial cells secrete exosome–like vesicles. Gastroenterology 121(2):337–349. https://doi.org/10.1053/gast.2001.26263

    Article  PubMed  Google Scholar 

  11. Van Niel G, Mallegol J, Bevilacqua C, Candalh C, Brugière S, Tomaskovic-Crook E, Heath JK, Cerf-Bensussan N et al (2003) Intestinal epithelial exosomes carry MHC class II/peptides able to inform the immune system in mice. Gut 52(12):1690–1697. https://doi.org/10.1136/gut.52.12.1690

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li JJ, Wang B, Kodali MC, Chen C, Kim E, Patters BJ, Lan L, Kumar S et al (2018) In vivo evidence for the contribution of peripheral circulating inflammatory exosomes to neuroinflammation. J Neuroinflammation 15(1):8. https://doi.org/10.1186/s12974-017-1038-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prinz M, Jung S, Priller J (2019) Microglia Biology: One Century of Evolving Concepts. Cell 179(2):292–311. https://doi.org/10.1016/j.cell.2019.08.053

    Article  CAS  PubMed  Google Scholar 

  14. Badimon A, Strasburger HJ, Ayata P, Chen X, Nair A, Ikegami A, Hwang P, Chan AT et al (2020) Negative feedback control of neuronal activity by microglia. Nature 586(7829):417–423. https://doi.org/10.1038/s41586-020-2777-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hickman S, Izzy S, Sen P, Morsett L, El Khoury J (2018) Microglia in neurodegeneration. Nat Neurosci 21(10):1359–1369. https://doi.org/10.1038/s41593-018-0242-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang B, Zhang L-Y, Chen Y, Bai Y-P, Jia J, Feng J-G, Liu K-X, Zhou J (2020) Melatonin alleviates intestinal injury, neuroinflammation and cognitive dysfunction caused by intestinal ischemia/reperfusion. Int Immunopharmacol 85:106596. https://doi.org/10.1016/j.intimp.2020.106596

    Article  CAS  PubMed  Google Scholar 

  17. Thion MS, Low D, Silvin A, Chen J, Grisel P, Schulte-Schrepping J, Blecher R, Ulas T et al (2018) Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell 172(3):500–516.e516. https://doi.org/10.1016/j.cell.2017.11.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18(7):965–977. https://doi.org/10.1038/nn.4030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chu C, Murdock MH, Jing D, Won TH, Chung H, Kressel AM, Tsaava T, Addorisio ME et al (2019) The microbiota regulate neuronal function and fear extinction learning. Nature 574(7779):543–548. https://doi.org/10.1038/s41586-019-1644-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paolicelli RC, Bergamini G, Rajendran L (2019) Cell-to-cell Communication by Extracellular Vesicles: Focus on Microglia. Neuroscience 405:148–157. https://doi.org/10.1016/j.neuroscience.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  21. Kojima M, Costantini TW, Eliceiri BP, Chan TW, Baird A, Coimbra R (2018) Gut epithelial cell-derived exosomes trigger posttrauma immune dysfunction. J Trauma Acute Care Surg 84(2):257–264. https://doi.org/10.1097/ta.0000000000001748

    Article  CAS  PubMed  Google Scholar 

  22. Zhang XY, Liang HS, Hu JJ, Wan YT, Zhao J, Liang GT, Luo YH, Liang HX et al (2020) Ribonuclease attenuates acute intestinal injury induced by intestinal ischemia reperfusion in mice. Int Immunopharmacol 83:106430. https://doi.org/10.1016/j.intimp.2020.106430

    Article  CAS  PubMed  Google Scholar 

  23. Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K, Hirakawa A, Takeuchi H et al (2013) Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis 4(3):e525. https://doi.org/10.1038/cddis.2013.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen XD, Zhao J, Yan Z, Zhou BW, Huang WF, Liu WF, Li C, Liu KX (2020) Isolation of extracellular vesicles from intestinal tissue in a mouse model of intestinal ischemia/reperfusion injury. BioTechniques. 68(5):257–262. https://doi.org/10.2144/btn-2019-0159

    Article  CAS  PubMed  Google Scholar 

  25. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  26. Au-González Ibanez F, Au-Picard K, Au-Bordelau M, Au-Sharma K, Au-Bisht K, Au-Tremblay M-È (2019) Immunofluorescence Staining Using IBA1 and TMEM119 for Microglial Density, Morphology and Peripheral Myeloid Cell Infiltration Analysis in Mouse Brain. J Vis Exp (152):e60510. https://doi.org/10.3791/60510

  27. Ji R-R, Suter MR (2007) p38 MAPK, microglial signaling, and neuropathic pain. Mol Pain 3:33–33. https://doi.org/10.1186/1744-8069-3-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hovens IB, van Leeuwen BL, Nyakas C, Heineman E, van der Zee EA, Schoemaker RG (2015) Postoperative cognitive dysfunction and microglial activation in associated brain regions in old rats. Neurobiol Learn Mem 118:74–79. https://doi.org/10.1016/j.nlm.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  29. Hsieh YH, McCartney K, Moore TA, Thundyil J, Gelderblom M, Manzanero S, Arumugam TV (2011) Intestinal ischemia-reperfusion injury leads to inflammatory changes in the brain. Shock 36(4):424–430. https://doi.org/10.1097/SHK.0b013e3182295f91

    Article  CAS  PubMed  Google Scholar 

  30. Hovens IB, Schoemaker RG, van der Zee EA, Absalom AR, Heineman E, van Leeuwen BL (2014) Postoperative cognitive dysfunction: Involvement of neuroinflammation and neuronal functioning. Brain Behav Immun 38:202–210. https://doi.org/10.1016/j.bbi.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  31. Bister N, Pistono C, Huremagic B, Jolkkonen J, Giugno R, Malm T (2020) Hypoxia and extracellular vesicles: A review on methods, vesicular cargo and functions. J Extracell Vesicles 10(1):e12002. https://doi.org/10.1002/jev2.12002

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sakamoto W, Masuno T, Yokota H, Takizawa T (2017) Expression profiles and circulation dynamics of rat mesenteric lymph microRNAs. Mol Med Rep 15(4):1989–1996. https://doi.org/10.3892/mmr.2017.6259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morad G, Carman CV, Hagedorn EJ, Perlin JR, Zon LI, Mustafaoglu N, Park T-E, Ingber DE et al (2019) Tumor-Derived Extracellular Vesicles Breach the Intact Blood–Brain Barrier via Transcytosis. ACS Nano 13(12):13853–13865. https://doi.org/10.1021/acsnano.9b04397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen CC, Liu L, Ma F, Wong CW, Guo XE, Chacko JV, Farhoodi HP, Zhang SX et al (2016) Elucidation of Exosome Migration across the Blood-Brain Barrier Model In Vitro. Cell Mol Bioeng 9(4):509–529. https://doi.org/10.1007/s12195-016-0458-3

    Article  CAS  PubMed  Google Scholar 

  35. Catalano M, O'Driscoll L (2019) Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J Extracell Vesicles 9(1):1703244–1703244. https://doi.org/10.1080/20013078.2019.1703244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dinkins MB, Dasgupta S, Wang G, Zhu G, Bieberich E (2014) Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer's disease. Neurobiol Aging 35(8):1792–1800. https://doi.org/10.1016/j.neurobiolaging.2014.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Panigrahi GK, Praharaj PP, Peak TC, Long J, Singh R, Rhim JS, Abd Elmageed ZY, Deep G (2018) Hypoxia-induced exosome secretion promotes survival of African-American and Caucasian prostate cancer cells. Sci Rep 8(1):3853. https://doi.org/10.1038/s41598-018-22068-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Feng X, Valdearcos M, Uchida Y, Lutrin D, Maze M, Koliwad SK (2017) Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice. JCI Insight 2(7):e91229–e91229. https://doi.org/10.1172/jci.insight.91229

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang J, He H, Qiao Y, Zhou T, He H, Yi S, Zhang L, Mo L et al (2020) Priming of microglia with IFN-γ impairs adult hippocampal neurogenesis and leads to depression-like behaviors and cognitive defects. Glia. 68(12):2674–2692. https://doi.org/10.1002/glia.23878

    Article  PubMed  Google Scholar 

  40. Hainmueller T, Bartos M (2020) Dentate gyrus circuits for encoding, retrieval and discrimination of episodic memories. Nat Rev Neurosci 21(3):153–168. https://doi.org/10.1038/s41583-019-0260-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sass KJ, Buchanan CP, Kraemer S, Westerveld M, Kim JH, Spencer DD (1995) Verbal memory impairment resulting from hippocampal neuron loss among epileptic patients with structural lesions. Neurology 45(12):2154–2158. https://doi.org/10.1212/wnl.45.12.2154

    Article  CAS  PubMed  Google Scholar 

  42. Rausch R, Babb TL (1993) Hippocampal Neuron Loss and Memory Scores Before and After Temporal Lobe Surgery for Epilepsy. Arch Neurol 50(8):812–817. https://doi.org/10.1001/archneur.1993.00540080023008

    Article  CAS  PubMed  Google Scholar 

  43. Duan W, Zhang Y-P, Hou Z, Huang C, Zhu H, Zhang C-Q, Yin Q (2016) Novel Insights into NeuN: from Neuronal Marker to Splicing Regulator. Mol Neurobiol 53(3):1637–1647. https://doi.org/10.1007/s12035-015-9122-5

    Article  CAS  PubMed  Google Scholar 

  44. Wang H, Peng R-Y (2016) Basic roles of key molecules connected with NMDAR signaling pathway on regulating learning and memory and synaptic plasticity. Mil Med Res 3(1):26–26. https://doi.org/10.1186/s40779-016-0095-0

    Article  PubMed  PubMed Central  Google Scholar 

  45. Berry KP, Nedivi E (2017) Spine Dynamics: Are They All the Same? Neuron 96(1):43–55. https://doi.org/10.1016/j.neuron.2017.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Linker KE, Elabd MG, Tawadrous P, Cano M, Green KN, Wood MA, Leslie FM (2020) Microglial activation increases cocaine self-administration following adolescent nicotine exposure. Nat Commun 11(1):306. https://doi.org/10.1038/s41467-019-14173-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dai J, Ding Z, Zhang J, Xu W, Guo Q, Zou W, Xiong Y, Weng Y et al (2019) Minocycline Relieves Depressive-Like Behaviors in Rats With Bone Cancer Pain by Inhibiting Microglia Activation in Hippocampus. Anesth Analg 129(6):1733–1741. https://doi.org/10.1213/ane.0000000000004063

    Article  CAS  PubMed  Google Scholar 

  48. Berens SC, Bird CM, Harrison NA (2020) Minocycline differentially modulates human spatial memory systems. Neuropsychopharmacology. 45(13):2162–2169. https://doi.org/10.1038/s41386-020-00811-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S et al (2019) The Microbiota-Gut-Brain Axis. Physiol Rev 99(4):1877–2013. https://doi.org/10.1152/physrev.00018.2018

    Article  CAS  PubMed  Google Scholar 

  50. Lee KE, Kim JK, Han SK, Lee DY, Lee HJ, Yim SV, Kim DH (2020) The extracellular vesicle of gut microbial Paenalcaligenes hominis is a risk factor for vagus nerve-mediated cognitive impairment. Microbiome 8(1):107. https://doi.org/10.1186/s40168-020-00881-2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Zhiji Han from Sun Yat-sen University for his generous help in the preparation of the manuscript.

Funding

This work was supported by grants from National Natural Science Foundation, Beijing, China (81671955 to Ke-Xuan Liu), Key Program of National Natural Science Foundation, Beijing, China (81730058 to Ke-Xuan Liu).

Author information

Authors and Affiliations

Authors

Contributions

(1) Study conception/design: XD Chen, KX Liu, C Li

(2) Conduct of experiments: XD Chen, J Zhao, X Yang, BW Zhou

(3) Data analysis: J Zhao, Z Yan, WF Liu, C Li

(4) Drafting of paper: XD Chen

(5) Editing/revision of paper: C Li, KX Liu

(6) Reading and approval of the final version of the paper: all authors

Corresponding authors

Correspondence to Cai Li or Ke-Xuan Liu.

Ethics declarations

Ethics Approval and Consent to Participate

All animal experimental protocols were approved by the Experimental Animal Ethisc Committee of Southern Medical University.

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Figure S1.

Intestinal exosomes are CD45 negative. SP: spleen, EV1: exosomes from the normal intestine, EV2: exosomes from ischemic/reperfused intestine. (PNG 763 kb)

High Resolution Image (TIF 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, XD., Zhao, J., Yang, X. et al. Gut-Derived Exosomes Mediate Memory Impairment After Intestinal Ischemia/Reperfusion via Activating Microglia. Mol Neurobiol 58, 4828–4841 (2021). https://doi.org/10.1007/s12035-021-02444-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02444-4

Keywords

Navigation