Skip to main content

Advertisement

Log in

JM-20 Treatment After Mild Traumatic Brain Injury Reduces Glial Cell Pro-inflammatory Signaling and Behavioral and Cognitive Deficits by Increasing Neurotrophin Expression

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) is considered a public health problem and is often related to motor and cognitive disabilities, besides behavioral and emotional changes that may remain for the rest of the subject’s life. Resident astrocytes and microglia are the first cell types to start the inflammatory cascades following TBI. It is widely known that continuous or excessive neuroinflammation may trigger many neuropathologies. Despite the large numbers of TBI cases, there is no effective pharmacological treatment available. This study aimed to investigate the effects of the new hybrid molecule 3-ethoxycarbonyl-2-methyl-4-(2-nitrophenyl)-4,11-dihydro1H-pyrido[2,3-b][1,5]benzodiazepine (JM-20) on TBI outcomes. Male Wistar rats were submitted to a weight drop model of mild TBI and treated with a single dose of JM-20 (8 mg/kg). Twenty-four hours after TBI, JM-20–treated animals showed improvements on locomotor and exploratory activities, and short-term memory deficits induced by TBI improved as well. Brain edema was present in TBI animals and the JM-20 treatment was able to prevent this change. JM-20 was also able to attenuate neuroinflammation cascades by preventing glial cells—microglia and astrocytes—from exacerbated activation, consequently reducing pro-inflammatory cytokine levels (TNF-α and IL-1β). BDNF mRNA level was decreased 24 h after TBI because of neuroinflammation cascades; however, JM-20 restored the levels. JM-20 also increased GDNF and NGF levels. These results support the JM-20 neuroprotective role to treat mild TBI by reducing the initial damage and limiting long-term secondary degeneration after TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Menon DK, Schwab K, Wright DW, Maas AI, Demographics, Clinical Assessment Working Group of the I, Interagency Initiative toward Common Data Elements for Research on Traumatic Brain I, Psychological H (2010) Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil 91(11):1637–1640. https://doi.org/10.1016/j.apmr.2010.05.017

    Article  PubMed  Google Scholar 

  2. Roozenbeek B, Maas AIR, Menon DK (2013) Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol 9(4):231–236. https://doi.org/10.1038/nrneurol.2013.22

    Article  PubMed  Google Scholar 

  3. Ponsford JL, Spitz G, Cromarty F, Gifford D, Attwood D (2013) Costs of care after traumatic brain injury. J Neurotrauma 30(17):1498–1505. https://doi.org/10.1089/neu.2012.2843

    Article  PubMed  Google Scholar 

  4. Cassidy JD, Carroll LJ, Peloso PM, Borg J, von Holst H, Holm L, Kraus J, Coronado VG (2004) WHO collaborating centre task force on mild traumatic brain injury. Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO collaborating centre task force on mild traumatic brain injury. J Rehabil Med (43 Suppl):28–60. https://doi.org/10.1080/16501960410023732

  5. McGee J, Alekseeva N, Chernyshev O, Minagar A (2016) Traumatic brain injury and behavior: a practical approach. Neurol Clin 34(1):55–68. https://doi.org/10.1016/j.ncl.2015.08.004

    Article  PubMed  Google Scholar 

  6. Jassam YN, Izzy S, Whalen M, McGavern DB, El Khoury J (2017) Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron 95(6):1246–1265. https://doi.org/10.1016/j.neuron.2017.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Angeloni C, Prata C, Dalla Sega FV, Piperno R, Hrelia S (2015) Traumatic brain injury and NADPH oxidase: a deep relationship. Oxid Med Cell Longev 2015:370312. https://doi.org/10.1155/2015/370312

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kumar A, Loane DJ (2012) Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun 26(8):1191–1201. https://doi.org/10.1016/j.bbi.2012.06.008

    Article  PubMed  Google Scholar 

  9. Krishna G, Agrawal R, Zhuang Y, Ying Z, Paydar A, Harris NG, Royes LFF (1863) Gomez-Pinilla F (2017) 7,8-Dihydroxyflavone facilitates the action exercise to restore plasticity and functionality: implications for early brain trauma recovery. Biochim Biophys Acta 6:1204–1213. https://doi.org/10.1016/j.bbadis.2017.03.007

    Article  CAS  Google Scholar 

  10. Fujimoto ST, Longhi L, Saatman KE, Conte V, Stocchetti N, McIntosh TK (2004) Motor and cognitive function evaluation following experimental traumatic brain injury. Neurosci Biobehav Rev 28(4):365–378. https://doi.org/10.1016/j.neubiorev.2004.06.002

    Article  PubMed  Google Scholar 

  11. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934. https://doi.org/10.1016/j.cell.2010.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morganti-Kossmann MC, Rancan M, Otto VI, Stahel PF, Kossmann T (2001) Role of cerebral inflammation after traumatic brain injury: a revisited concept. Shock 16(3):165–177. https://doi.org/10.1097/00024382-200116030-00001

    Article  CAS  PubMed  Google Scholar 

  13. Hernandez-Ontiveros DG, Tajiri N, Acosta S, Giunta B, Tan J, Borlongan CV (2013) Microglia activation as a biomarker for traumatic brain injury. Front Neurol 4:30. https://doi.org/10.3389/fneur.2013.00030

    Article  PubMed  PubMed Central  Google Scholar 

  14. Diaz-Arrastia R, Wang KK, Papa L, Sorani MD, Yue JK, Puccio AM, McMahon PJ, Inoue T, Yuh EL, Lingsma HF, Maas AI, Valadka AB, Okonkwo DO, Manley GT, Investigators T-T (2014) Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein. J Neurotrauma 31(1):19–25. https://doi.org/10.1089/neu.2013.3040

    Article  PubMed  PubMed Central  Google Scholar 

  15. David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12(7):388–399. https://doi.org/10.1038/nrn3053

    Article  CAS  PubMed  Google Scholar 

  16. Loane DJ, Kumar A (2016) Microglia in the TBI brain: the good, the bad, and the dysregulated. Exp Neurol 275(Pt 3):316–327. https://doi.org/10.1016/j.expneurol.2015.08.018

    Article  CAS  PubMed  Google Scholar 

  17. Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, El Khoury J (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16(12):1896–1905. https://doi.org/10.1038/nn.3554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Figueredo YN, Rodriguez EO, Reyes YV, Dominguez CC, Parra AL, Sanchez JR, Hernandez RD, Verdecia MP, Pardo Andreu GL (2013) Characterization of the anxiolytic and sedative profile of JM-20: a novel benzodiazepine-dihydropyridine hybrid molecule. Neurol Res 35(8):804–812. https://doi.org/10.1179/1743132813Y.0000000216

    Article  CAS  PubMed  Google Scholar 

  19. Nunez-Figueredo Y, Ramirez-Sanchez J, Pardo Andreu GL, Ochoa-Rodriguez E, Verdecia-Reyes Y, Souza DO (2018) Multi-targeting effects of a new synthetic molecule (JM-20) in experimental models of cerebral ischemia. Pharmacological reports : PR 70(4):699–704. https://doi.org/10.1016/j.pharep.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  20. Fonseca-Fonseca LA, Wong-Guerra M, Ramirez-Sanchez J, Montano-Peguero Y, Padron Yaquis AS, Rodriguez AM, da Silva VDA, Costa SL, Pardo-Andreu GL, Nunez-Figueredo Y (2019) JM-20, a novel hybrid molecule, protects against rotenone-induced neurotoxicity in experimental model of Parkinson’s disease. Neurosci Lett 690:29–35. https://doi.org/10.1016/j.neulet.2018.10.008

    Article  CAS  PubMed  Google Scholar 

  21. Wong-Guerra M, Jimenez-Martin J, Fonseca-Fonseca LA, Ramirez-Sanchez J, Montano-Peguero Y, Rocha JB, Avila FD, de Assis AM, Souza DO, Pardo-Andreu GL, Del Valle RM, Lopez GA, Martinez OV, Garcia NM, Mondelo-Rodriguez A, Padron-Yaquis AS, Nunez-Figueredo Y (2019) JM-20 protects memory acquisition and consolidation on scopolamine model of cognitive impairment. Neurol Res 41(5):385–398. https://doi.org/10.1080/01616412.2019.1573285

    Article  CAS  PubMed  Google Scholar 

  22. Nunez-Figueredo Y, Ramirez-Sanchez J, Hansel G, Simoes Pires EN, Merino N, Valdes O, Delgado-Hernandez R, Parra AL, Ochoa-Rodriguez E, Verdecia-Reyes Y, Salbego C, Costa SL, Souza DO, Pardo-Andreu GL (2014) A novel multi-target ligand (JM-20) protects mitochondrial integrity, inhibits brain excitatory amino acid release and reduces cerebral ischemia injury in vitro and in vivo. Neuropharmacology 85:517–527. https://doi.org/10.1016/j.neuropharm.2014.06.009

    Article  CAS  PubMed  Google Scholar 

  23. Ramirez-Sanchez J, Pires ENS, Meneghetti A, Hansel G, Nunez-Figueredo Y, Pardo-Andreu GL, Ochoa-Rodriguez E, Verdecia-Reyes Y, Delgado-Hernandez R, Salbego C, Souza DO (2018) JM-20 treatment after MCAO Reduced astrocyte reactivity and neuronal death on peri-infarct regions of the rat brain. Mol Neurobiol 56(1):502–512. https://doi.org/10.1007/s12035-018-1087-8

    Article  CAS  PubMed  Google Scholar 

  24. Woodcock T, Morganti-Kossmann MC (2013) The role of markers of inflammation in traumatic brain injury. Front Neurol 4:18. https://doi.org/10.3389/fneur.2013.00018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ziebell JM, Morganti-Kossmann MC (2010) Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 7(1):22–30. https://doi.org/10.1016/j.nurt.2009.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99(1):4–9. https://doi.org/10.1093/bja/aem131

    Article  CAS  PubMed  Google Scholar 

  27. Meehan WP 3rd, Zhang J, Mannix R, Whalen MJ (2012) Increasing recovery time between injuries improves cognitive outcome after repetitive mild concussive brain injuries in mice. Neurosurgery 71(4):885–891. https://doi.org/10.1227/NEU.0b013e318265a439

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mychasiuk R, Farran A, Esser MJ (2014) Assessment of an experimental rodent model of pediatric mild traumatic brain injury. J Neurotrauma 31(8):749–757. https://doi.org/10.1089/neu.2013.3132

    Article  PubMed  Google Scholar 

  29. Walsh RN, Cummins RA (1976) The Open-Field test: a critical review. Psychol Bull 83(3):482–504

    Article  CAS  PubMed  Google Scholar 

  30. Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats 1.: Behavioral data. Behav Brain Res 31(1):47–59. https://doi.org/10.1016/0166-4328(88)90157-x

    Article  CAS  PubMed  Google Scholar 

  31. Chen W, Qi J, Feng F, Wang MD, Bao G, Wang T, Xiang M, Xie WF (2014) Neuroprotective effect of allicin against traumatic brain injury via Akt/endothelial nitric oxide synthase pathway-mediated anti-inflammatory and anti-oxidative activities. Neurochem Int 68:28–37. https://doi.org/10.1016/j.neuint.2014.01.015

    Article  CAS  PubMed  Google Scholar 

  32. Gerbatin RDR, Cassol G, Dobrachinski F, Ferreira APO, Quines CB, Pace IDD, Busanello GL, Gutierres JM, Nogueira CW, Oliveira MS, Soares FA, Morsch VM, Fighera MR, Royes LFF (2017) Guanosine protects against traumatic brain injury-induced functional impairments and neuronal loss by modulating excitotoxicity, mitochondrial dysfunction, and inflammation. Mol Neurobiol 54(10):7585–7596. https://doi.org/10.1007/s12035-016-0238-z

    Article  CAS  PubMed  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  34. Masel BE, DeWitt DS (2010) Traumatic brain injury: a disease process, not an event. J Neurotrauma 27(8):1529–1540. https://doi.org/10.1089/neu.2010.1358

    Article  PubMed  Google Scholar 

  35. Shen M, Wang S, Wen X, Han XR, Wang YJ, Zhou XM, Zhang MH, Wu DM, Lu J, Zheng YL (2017) Dexmedetomidine exerts neuroprotective effect via the activation of the PI3K/Akt/mTOR signaling pathway in rats with traumatic brain injury. Neural Regen Res 95:885–893. https://doi.org/10.1016/j.biopha.2017.08.125

  36. Manley GT, Maas AI (2013) Traumatic brain injury: an international knowledge-based approach. JAMA 310(5):473–474. https://doi.org/10.1001/jama.2013.169158

    Article  CAS  PubMed  Google Scholar 

  37. Bawa P, Pradeep P, Kumar P, Choonara YE, Modi G, Pillay V (2016) Multi-target therapeutics for neuropsychiatric and neurodegenerative disorders. Drug Discovery Today 21(12):1886–1914. https://doi.org/10.1016/j.drudis.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  38. Yoo CB, Jones PA (2006) Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discovery 5(1):37–50. https://doi.org/10.1038/nrd1930

    Article  CAS  PubMed  Google Scholar 

  39. Kinoshita K (2016) Traumatic brain injury: pathophysiology for neurocritical care. J Intensive Care 4:29. https://doi.org/10.1186/s40560-016-0138-3

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shamsi Meymandi M, Soltani Z, Sepehri G, Amiresmaili S, Farahani F, Moeini Aghtaei M (2018) Effects of pregabalin on brain edema, neurologic and histologic outcomes in experimental traumatic brain injury. Brain Res Bull 140:169–175. https://doi.org/10.1016/j.brainresbull.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  41. Beziaud T, Ru Chen X, El Shafey N, Frechou M, Teng F, Palmier B, Beray-Berthat V, Soustrat M, Margaill I, Plotkine M, Marchand-Leroux C, Besson VC (2011) Simvastatin in traumatic brain injury: effect on brain edema mechanisms. Crit Care Med 39(10):2300–2307. https://doi.org/10.1097/CCM.0b013e3182227e4a

    Article  CAS  PubMed  Google Scholar 

  42. Jullienne A, Obenaus A, Ichkova A, Savona-Baron C, Pearce WJ, Badaut J (2016) Chronic cerebrovascular dysfunction after traumatic brain injury. J Neurosci Res 94(7):609–622. https://doi.org/10.1002/jnr.23732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32(12):638–647. https://doi.org/10.1016/j.tins.2009.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Loane DJ, Byrnes KR (2010) Role of microglia in neurotrauma. Neurotherapeutics 7(4):366–377. https://doi.org/10.1016/j.nurt.2010.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Karve IP, Taylor JM, Crack PJ (2016) The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol 173(4):692–702. https://doi.org/10.1111/bph.13125

    Article  CAS  PubMed  Google Scholar 

  46. Gonzalez H, Elgueta D, Montoya A, Pacheco R (2014) Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol 274(1–2):1–13. https://doi.org/10.1016/j.jneuroim.2014.07.012

    Article  CAS  PubMed  Google Scholar 

  47. Holmin S, Mathiesen T (2000) Intracerebral administration of interleukin-1beta and induction of inflammation, apoptosis, and vasogenic edema. J Neurosurg 92(1):108–120. https://doi.org/10.3171/jns.2000.92.1.0108

    Article  CAS  PubMed  Google Scholar 

  48. Ramilo O, Saez-Llorens X, Mertsola J, Jafari H, Olsen KD, Hansen EJ, Yoshinaga M, Ohkawara S, Nariuchi H, McCracken GH Jr (1990) Tumor necrosis factor alpha/cachectin and interleukin 1 beta initiate meningeal inflammation. J Exp Med 172(2):497–507. https://doi.org/10.1084/jem.172.2.497

    Article  CAS  PubMed  Google Scholar 

  49. Yan EB, Hellewell SC, Bellander BM, Agyapomaa DA, Morganti-Kossmann MC (2011) Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury. J Neuroinflammation 8:147. https://doi.org/10.1186/1742-2094-8-147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dalgard CL, Cole JT, Kean WS, Lucky JJ, Sukumar G, McMullen DC, Pollard HB, Watson WD (2012) The cytokine temporal profile in rat cortex after controlled cortical impact. Front Mol Neurosci 5:6. https://doi.org/10.3389/fnmol.2012.00006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chao CC, Hu S, Ehrlich L, Peterson PK (1995) Interleukin-1 and tumor necrosis factor-alpha synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-D-aspartate receptors. Brain Behav Immun 9(4):355–365. https://doi.org/10.1006/brbi.1995.1033

    Article  CAS  PubMed  Google Scholar 

  52. Franco R, Fernandez-Suarez D (2015) Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 131:65–86. https://doi.org/10.1016/j.pneurobio.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  53. Jha MK, Jo M, Kim JH, Suk K (2019) Microglia-astrocyte crosstalk: an intimate molecular conversation. Neuroscientist 25(3):227–240. https://doi.org/10.1177/1073858418783959

    Article  CAS  PubMed  Google Scholar 

  54. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487. https://doi.org/10.1038/nature21029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Weissmiller AM, Wu C (2012) Current advances in using neurotrophic factors to treat neurodegenerative disorders. Transl Neurodegener 1(1):14. https://doi.org/10.1186/2047-9158-1-14

    Article  PubMed  PubMed Central  Google Scholar 

  56. Oyesiku NM, Evans CO, Houston S, Darrell RS, Smith JS, Fulop ZL, Dixon CE, Stein DG (1999) Regional changes in the expression of neurotrophic factors and their receptors following acute traumatic brain injury in the adult rat brain. Brain Res 833(2):161–172. https://doi.org/10.1016/s0006-8993(99)01501-2

    Article  CAS  PubMed  Google Scholar 

  57. Choi SH, Bylykbashi E, Chatila ZK, Lee SW, Pulli B, Clemenson, GD, Kim E, Rompala A, Oram MK, Asselin C, Aronson J, Zhang C, Miller SJ, Lesinski A, Chen JW, Kim DY, van Praag H, Spiegelman BM, Gage FH, Tanzi RE (2018) Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 361(6406):eaan8821. https://doi.org/10.1126/science.aan8821

  58. Zhao Z, Alam S, Oppenheim RW, Prevette DM, Evenson A, Parsadanian A (2004) Overexpression of glial cell line-derived neurotrophic factor in the CNS rescues motoneurons from programmed cell death and promotes their long-term survival following axotomy. Exp Neurol 190(2):356–372. https://doi.org/10.1016/j.expneurol.2004.06.015

    Article  CAS  PubMed  Google Scholar 

  59. Lau CL, Perreau VM, Chen MJ, Cate HS, Merlo D, Cheung NS, O’Shea RD, Beart PM (2012) Transcriptomic profiling of astrocytes treated with the Rho kinase inhibitor fasudil reveals cytoskeletal and pro-survival responses. J Cell Physiol 227(3):1199–1211. https://doi.org/10.1002/jcp.22838

    Article  CAS  PubMed  Google Scholar 

  60. Hu X, Liou AK, Leak RK, Xu M, An C, Suenaga J, Shi Y, Gao Y, Zheng P, Chen J (2014) Neurobiology of microglial action in CNS injuries: receptor-mediated signaling mechanisms and functional roles. Prog Neurobiol 119–120:60–84. https://doi.org/10.1016/j.pneurobio.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  61. Calabrese F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R (2014) Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci 8:430. https://doi.org/10.3389/fncel.2014.00430

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260(5111):1130–1132. https://doi.org/10.1126/science.8493557

    Article  CAS  PubMed  Google Scholar 

  63. Minnich JE, Mann SL, Stock M, Stolzenbach KA, Mortell BM, Soderstrom KE, Bohn MC, Kozlowski DA (2010) Glial cell line-derived neurotrophic factor (GDNF) gene delivery protects cortical neurons from dying following a traumatic brain injury. Restor Neurol Neurosci 28(3):293–309. https://doi.org/10.3233/RNN-2010-0528

    Article  CAS  PubMed  Google Scholar 

  64. Rocha SM, Cristovao AC, Campos FL, Fonseca CP, Baltazar G (2012) Astrocyte-derived GDNF is a potent inhibitor of microglial activation. Neurobiol Dis 47(3):407–415. https://doi.org/10.1016/j.nbd.2012.04.014

    Article  CAS  PubMed  Google Scholar 

  65. Liu GX, Yang YX, Yan J, Zhang T, Zou YP, Huang XL, Gan HT (2014) Glial-derived neurotrophic factor reduces inflammation and improves delayed colonic transit in rat models of dextran sulfate sodium-induced colitis. Int Immunopharmacol 19(1):145–152. https://doi.org/10.1016/j.intimp.2014.01.008

    Article  CAS  PubMed  Google Scholar 

  66. Collier TJ, Sortwell CE (1999) Therapeutic potential of nerve growth factors in Parkinson’s disease. Drugs Aging 14(4):261–287. https://doi.org/10.2165/00002512-199914040-00003

    Article  CAS  PubMed  Google Scholar 

  67. Cattaneo E, McKay R (1990) Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 347(6295):762–765. https://doi.org/10.1038/347762a0

    Article  CAS  PubMed  Google Scholar 

  68. Pechan PA, Yoshida T, Panahian N, Moskowitz MA, Breakefield XO (1995) Genetically modified fibroblasts producing NGF protect hippocampal neurons after ischemia in the rat. NeuroReport 6(4):669–672. https://doi.org/10.1097/00001756-199503000-00021

    Article  CAS  PubMed  Google Scholar 

  69. Arsenijevic D, Hernadfalvi N, von Meyenburg C, Onteniente B, Richard D, Langhans W (2007) Role for nerve growth factor in the in vivo regulation of glutathione in response to LPS in mice. Eur Cytokine Netw 18(2):93–101. https://doi.org/10.1684/ecn.2007.0091

    Article  CAS  PubMed  Google Scholar 

  70. Budni J, Bellettini-Santos T, Mina F, Garcez ML, Zugno AI (2015) The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease. Aging Dis 6(5):331–341. https://doi.org/10.14336/AD.2015.0825

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pan W, Kastin AJ, Rigai T, McLay R, Pick CG (2003) Increased hippocampal uptake of tumor necrosis factor alpha and behavioral changes in mice. Exp Brain Res 149(2):195–199. https://doi.org/10.1007/s00221-002-1355-7

    Article  CAS  PubMed  Google Scholar 

  72. Wang JY, Huang YN, Chiu CC, Tweedie D, Luo W, Pick CG, Chou SY, Luo Y, Hoffer BJ, Greig NH, Wang JY (2016) Pomalidomide mitigates neuronal loss, neuroinflammation, and behavioral impairments induced by traumatic brain injury in rat. J Neuroinflammation 13(1):168. https://doi.org/10.1186/s12974-016-0631-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lopez NE, Lindsay G, Karina LR, Mary HA, Putnam J, Eliceiri B, Coimbra R, Bansal V (2014) Ghrelin decreases motor deficits after traumatic brain injury. J Surg Res 187(1):230–236. https://doi.org/10.1016/j.jss.2013.09.030

    Article  CAS  PubMed  Google Scholar 

  74. Greve KW, Bianchini KJ, Mathias CW, Houston RJ, Crouch JA (2003) Detecting malingered performance on the Wechsler Adult Intelligence Scale. Validation of Mittenberg’s approach in traumatic brain injury. Arch Clin Neuropsychol 18(3):245–260

  75. Baxter MG (2010) “I’ve seen it all before” explaining age-related impairments in object recognition. Theoretical comment on Burke et al. (2010). Behav Neurosci 124(5):706–709. https://doi.org/10.1037/a0021029

    Article  PubMed  Google Scholar 

  76. Hart T, Sander A (2017) Memory and traumatic brain injury. Arch Phys Med Rehabil 98(2):407–408. https://doi.org/10.1016/j.apmr.2016.09.112

    Article  PubMed  Google Scholar 

  77. Kaplan GB, Vasterling JJ, Vedak PC (2010) Brain-derived neurotrophic factor in traumatic brain injury, post-traumatic stress disorder, and their comorbid conditions: role in pathogenesis and treatment. Behav Pharmacol 21(5–6):427–437. https://doi.org/10.1097/FBP.0b013e32833d8bc9

    Article  CAS  PubMed  Google Scholar 

  78. Voss JL, Bridge DJ, Cohen NJ, Walker JA (2017) A closer look at the hippocampus and memory. Trends Cogn Sci 21(8):577–588. https://doi.org/10.1016/j.tics.2017.05.008

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rossato JI, Bevilaqua LR, Myskiw JC, Medina JH, Izquierdo I, Cammarota M (2007) On the role of hippocampal protein synthesis in the consolidation and reconsolidation of object recognition memory. Learn Mem 14(1):36–46. https://doi.org/10.1101/lm.422607

    Article  PubMed  PubMed Central  Google Scholar 

  80. Radiske A, Rossato JI, Gonzalez MC, Kohler CA, Bevilaqua LR, Cammarota M (2017) BDNF controls object recognition memory reconsolidation. Neurobiol Learn Mem 142(Pt A):79–84. https://doi.org/10.1016/j.nlm.2017.02.018

    Article  CAS  PubMed  Google Scholar 

  81. Aarse J, Herlitze S, Manahan-Vaughan D (2016) The requirement of BDNF for hippocampal synaptic plasticity is experience-dependent. Hippocampus 26(6):739–751. https://doi.org/10.1002/hipo.22555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bonafina A, Trinchero MF, Rios AS, Bekinschtein P, Schinder AF, Paratcha G, Ledda F (2019) GDNF and GFRalpha1 Are required for proper integration of adult-born hippocampal neurons. Cell Rep 29(13):4308-4319 e4304. https://doi.org/10.1016/j.celrep.2019.11.100

    Article  CAS  PubMed  Google Scholar 

  83. Petukhova EO, Mukhamedshina YO, Salafutdinov II, Garanina EE, Kaligin MS, Leushina AV, Rizvanov AA, Reis HJ, Palotas A, Zefirov AL, Mukhamedyarov MA (2019) Effects of transplanted umbilical cord blood mononuclear cells overexpressing GDNF on spatial memory and hippocampal synaptic proteins in a mouse model of Alzheimer’s disease. J Alzheimer’s Dis 69(2):443–453. https://doi.org/10.3233/JAD-190150

  84. Korsching S, Auburger G, Heumann R, Scott J, Thoenen H (1985) Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation. EMBO J 4(6):1389–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dixon CE, Flinn P, Bao J, Venya R, Hayes RL (1997) Nerve growth factor attenuates cholinergic deficits following traumatic brain injury in rats. Exp Neurol 146(2):479–490. https://doi.org/10.1006/exnr.1997.6557

    Article  CAS  PubMed  Google Scholar 

  86. Lin Y, Wan JQ, Gao GY, Pan YH, Ding SH, Fan YL, Wang Y, Jiang JY (2015) Direct hippocampal injection of pseudo lentivirus-delivered nerve growth factor gene rescues the damaged cognitive function after traumatic brain injury in the rat. Biomaterials 69:148–157. https://doi.org/10.1016/j.biomaterials.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  87. Zhao J, Hylin MJ, Kobori N, Hood KN, Moore AN, Dash PK (2018) Post-injury administration of galantamine reduces traumatic brain injury pathology and improves outcome. J Neurotrauma 35(2):362–374. https://doi.org/10.1089/neu.2017.5102

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zhang B, Chen X, Lin Y, Tan T, Yang Z, Dayao C, Liu L, Jiang R, Zhang J (2011) Impairment of synaptic plasticity in hippocampus is exacerbated by methylprednisolone in a rat model of traumatic brain injury. Brain Res 1382:165–172. https://doi.org/10.1016/j.brainres.2011.01.065

    Article  CAS  PubMed  Google Scholar 

  89. Cattaruzza M, Wachter R, Wagner AH, Hecker M (2000) Modulation by dihydropyridine-type calcium channel antagonists of cytokine-inducible gene expression in vascular smooth muscle cells. Br J Pharmacol 129(6):1155–1162. https://doi.org/10.1038/sj.bjp.0703192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Komoda H, Inoue T, Node K (2010) Anti-inflammatory properties of azelnidipine, a dihydropyridine-based calcium channel blocker. Clin Exp Hypertens 32(2):121–128. https://doi.org/10.3109/10641960903254414

    Article  CAS  PubMed  Google Scholar 

  91. Chen X, Wu S, Chen C, Xie B, Fang Z, Hu W, Chen J, Fu H, He H (2017) Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-kappaB pathway following experimental traumatic brain injury. J Neuroinflammation 14(1):143. https://doi.org/10.1186/s12974-017-0917-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Abdul-Muneer PM, Chandra N, Haorah J (2015) Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol Neurobiol 51(3):966–979. https://doi.org/10.1007/s12035-014-8752-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Universidade Federal de Santa Maria (UFSM), Universidade Federal da Bahia (UFBA), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) on 09/2018 Process 307539/2018-0, PI Fellowship to SLC; Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção—INCTEN); Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and Programa de Apoio a Núcleos Emergentes (PRONEM) for the financial support. S.L.C, F.A.A.S and L.F.F.R is grateful to CNPQ for the fellowship.

Funding

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (PROEX Process Number: 88882.182135/2018–01 financial support number: 0737/2018), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and Programa de Apoio a Núcleos Emergentes (PRONEM) [grant number16/2551–0000248-7], Foundation for Research Support of the State of Bahia (FAPESB, Process number INT 0016/2016).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to carrying out and designing this study. The first manuscript draft was written by Andrezza Bond Vieira Furtado and all the authors commented on the previous versions. All the authors read and approved the final manuscript version.

Corresponding author

Correspondence to Félix Alexandre Antunes Soares.

Ethics declarations

Ethics Approval

All procedures with animals followed the Committee on Care and Use of Experimental Animal Resources Guidelines of the Federal University of Santa Maria, Brazil (9426190418).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furtado, A.B.V., Gonçalves, D.F., Hartmann, D.D. et al. JM-20 Treatment After Mild Traumatic Brain Injury Reduces Glial Cell Pro-inflammatory Signaling and Behavioral and Cognitive Deficits by Increasing Neurotrophin Expression. Mol Neurobiol 58, 4615–4627 (2021). https://doi.org/10.1007/s12035-021-02436-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02436-4

Keywords

Navigation