Skip to main content

Advertisement

Log in

Genipin Attenuates Tau Phosphorylation and Aβ Levels in Cellular Models of Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a devastating brain disorder characterized by neurofibrillary tangles and amyloid plaques. Inhibiting Tau protein and amyloid-beta (Aβ) production or removing these molecules is considered potential therapeutic strategies for AD. Genipin is an aglycone and is isolated from the extract of Gardenia jasminoides Ellis fruit. In this study, the effect and molecular mechanisms of genipin on the inhibition of Tau aggregation and Aβ generation were investigated. The results showed that genipin bound to Tau and protected against heparin-induced Tau fibril formation. Moreover, genipin suppressed Tau phosphorylation probably by downregulating the expression of CDK5 and GSK-3β, and activated mTOR-dependent autophagy via the SIRT1/LKB1/AMPK signaling pathway in Tau-overexpressing cells. In addition, genipin decreased Aβ production by inhibiting BACE1 expression through the PERK/eIF2α signaling pathway in N2a/SweAPP cells. These data indicated that genipin could effectively lead to a significant reduction of phosphorylated Tau level and Aβ generation in vitro, suggesting that genipin might be developed into an effective therapeutic complement or a potential nutraceutical for preventing AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AD :

Alzheimer’s disease

:

amyloid-beta

ThT :

Thioflavin T

DMEM :

Dulbeco’s modified Eagle’s medium

FBS :

fetal bovine serum

CCK :

cell counting kit

MAP-2 :

microtubule-associated protein-2

CDK5 :

cyclin-dependent kinase 5

GSK-3β :

glycogen synthase kinase-3β

LC 3 :

microtubule-associated protein II light chain 3

SIRT1 :

silent information regulator of transcription 1

LKB1 :

liver kinase B1

AMPK :

adenosine monophosphate-activated protein kinase

mTOR :

mechanistic target of rapamycin

p70S6K :

p70 ribosomal protein S6 kinase

APP :

amyloid precursor protein

PERK :

protein kinase RNA-like endoplasmic reticulum kinase

eIF2α :

eukaryotic translation initiation factor-2α

BACE1 :

β-secretase 1

References

  1. Musi N, Valentine JM, Sickora KR, Baeuerle E, Thompson CS, Shen Q, Orr ME (2018) Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell 17(6):e12840. https://doi.org/10.1111/acel.12840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sebastián-Serrano Á, de Diego-García L, Díaz-Hernández M (2018) The neurotoxic role of extracellular tau protein. Int J Mol Sci 19(4). https://doi.org/10.3390/ijms19040998

  3. Nowacek A, Kosloski LM, Gendelman HE (2009) Neurodegenerative disorders and nanoformulated drug development. Nanomedicine (London) 4(5):541–555. https://doi.org/10.2217/nnm.09.37

    Article  CAS  PubMed Central  Google Scholar 

  4. Long JM, Holtzman DM (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179(2):312–339. https://doi.org/10.1016/j.cell.2019.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hara Y, McKeehan N, Fillit HM (2019) Translating the biology of aging into novel therapeutics for Alzheimer disease. Neurology 92(2):84–93. https://doi.org/10.1212/wnl.0000000000006745

    Article  PubMed  PubMed Central  Google Scholar 

  6. Congdon EE, Wu JW, Myeku N, Figueroa YH, Herman M, Marinec PS, Gestwicki JE, Dickey CA et al (2012) Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy 8(4):609–622. https://doi.org/10.4161/auto.19048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gauthier S, Feldman HH, Schneider LS, Wilcock GK, Frisoni GB, Hardlund JH, Moebius HJ, Bentham P et al (2016) Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet 388(10062):2873–2884. https://doi.org/10.1016/s0140-6736(16)31275-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Serenó L, Coma M, Rodríguez M, Sánchez-Ferrer P, Sánchez MB, Gich I, Agulló JM, Pérez M et al (2009) A novel GSK-3beta inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiol Dis 35(3):359–367. https://doi.org/10.1016/j.nbd.2009.05.025

    Article  CAS  PubMed  Google Scholar 

  9. Lovestone S, Boada M, Dubois B, Hüll M, Rinne JO, Huppertz HJ, Calero M, Andrés MV et al (2015) A phase II trial of tideglusib in Alzheimer’s disease. J Alzheimers Dis 45(1):75–88. https://doi.org/10.3233/jad-141959

    Article  CAS  PubMed  Google Scholar 

  10. Shanmugam MK, Shen H, Tang FR, Arfuso F, Rajesh M, Wang L, Kumar AP, Bian J et al (2018) Potential role of genipin in cancer therapy. Pharmacol Res 133:195–200. https://doi.org/10.1016/j.phrs.2018.05.007

    Article  CAS  PubMed  Google Scholar 

  11. Yang N, Liu YY, Hao WY (2010) Effects of crude extract of Cape Jasmine on learning and memory function in experimental dementia animal model. Chin J Rehabil Theory Pract 16(04):308–310. https://doi.org/10.3969/j.issn.1006-9771.2010.04.003

    Article  Google Scholar 

  12. Gao C, Liu Y, Jiang Y, Ding J, Li L (2014) Geniposide ameliorates learning memory deficits, reduces tau phosphorylation and decreases apoptosis via GSK3β pathway in streptozotocin-induced alzheimer rat model. Brain Pathol 24(3):261–269. https://doi.org/10.1111/bpa.12116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lv C, Wang L, Liu X, Yan S, Yan SS, Wang Y, Zhang W (2015) Multi-faced neuroprotective effects of geniposide depending on the RAGE-mediated signaling in an Alzheimer mouse model. Neuropharmacology 89:175–184. https://doi.org/10.1016/j.neuropharm.2014.09.019

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Xia Z, Liu J, Yin F (2015) Cell signaling mechanisms by which geniposide regulates insulin- degrading enzyme expression in primary cortical neurons. CNS Neurol Disord Drug Targets 14(3):370–377. https://doi.org/10.2174/1871527314666141229110156

    Article  CAS  PubMed  Google Scholar 

  15. Liu Z, Zhang Y, Liu J, Yin F (2017) Geniposide attenuates the level of Aβ(1-42) via enhancing leptin signaling in cellular and APP/PS1 transgenic mice. Arch Pharm Res 40(5):571–578. https://doi.org/10.1007/s12272-016-0875-9

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Yin F, Liu J, Liu Z, Guo L, Xia Z, Zidichouski J (2015) Geniposide attenuates insulin-deficiency-induced acceleration of β-amyloidosis in an APP/PS1 transgenic model of Alzheimer’s disease. Neurochem Int 89:7–16. https://doi.org/10.1016/j.neuint.2015.04.002

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Yin F, Liu J, Liu Z (2016) Geniposide attenuates the phosphorylation of tau protein in cellular and insulin-deficient APP/PS1 transgenic mouse model of Alzheimer’s disease. Chem Biol Drug Des 87(3):409–418. https://doi.org/10.1111/cbdd.12673

    Article  CAS  PubMed  Google Scholar 

  18. Yamazaki M, Chiba K, Yoshikawa C (2009) Genipin suppresses A23187-induced cytotoxicity in neuro2a cells. Biol Pharm Bull 32(6):1043–1046. https://doi.org/10.1248/bpb.32.1043

    Article  CAS  PubMed  Google Scholar 

  19. Cai N, Chen J, Bi D, Gu L, Yao L, Li X, Li H, Xu H et al (2020) Specific degradation of endogenous tau protein and inhibition of tau fibrillation by tanshinone IIA through the ubiquitin–proteasome pathway. J Agric Food Chem 68(7):2054–2062. https://doi.org/10.1021/acs.jafc.9b07022

    Article  CAS  PubMed  Google Scholar 

  20. Bi D, Yao L, Lin Z, Chi L, Li H, Xu H, Du X, Liu Q et al (2021) Unsaturated mannuronate oligosaccharide ameliorates β-amyloid pathology through autophagy in Alzheimer’s disease cell models. Carbohydr Polym 251:117124. https://doi.org/10.1016/j.carbpol.2020.117124

    Article  CAS  PubMed  Google Scholar 

  21. Tanaka M, Yamazaki M, Chiba K (2009) Neuroprotective action of genipin on tunicamycin-induced cytotoxicity in neuro2a cells. Biol Pharm Bull 32(7):1220–1223. https://doi.org/10.1248/bpb.32.1220

    Article  CAS  PubMed  Google Scholar 

  22. Yamazaki M, Sakura N, Chiba K, Mohri T (2001) Prevention of the neurotoxicity of the amyloid beta protein by genipin. Biol Pharm Bull 24(12):1454–1455. https://doi.org/10.1248/bpb.24.1454

    Article  CAS  PubMed  Google Scholar 

  23. Armstrong RA (2009) The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer's disease. Folia Neuropathol 47(4):289–299

    CAS  PubMed  Google Scholar 

  24. Šimić G, Babić Leko M, Wray S, Harrington C, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L et al (2016) Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules 6(1):6. https://doi.org/10.3390/biom6010006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hashiguchi M, Saito T, Hisanaga S, Hashiguchi T (2002) Truncation of CDK5 activator p35 induces intensive phosphorylation of Ser202/Thr205 of human tau. J Biol Chem 277(46):44525–44530. https://doi.org/10.1074/jbc.M207426200

    Article  CAS  PubMed  Google Scholar 

  26. Gao Y, Tan L, Yu JT, Tan L (2018) Tau in Alzheimer’s disease: mechanisms and therapeutic strategies. Curr Alzheimer Res 15(3):283–300. https://doi.org/10.2174/1567205014666170417111859

    Article  CAS  PubMed  Google Scholar 

  27. Jayapalan S, Natarajan J (2013) The role of CDK5 and GSK3B kinases in hyperphosphorylation of microtubule associated protein tau (MAPT) in Alzheimer’s disease. Bioinformation 9(20):1023–1030. https://doi.org/10.6026/97320630091023

    Article  PubMed  PubMed Central  Google Scholar 

  28. Posada-Duque RA, López-Tobón A, Piedrahita D, González-Billault C, Cardona-Gomez GP (2015) p35 and Rac1 underlie the neuroprotection and cognitive improvement induced by CDK5 silencing. J Neurochem 134(2):354–370. https://doi.org/10.1111/jnc.13127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reinhardt L, Kordes S, Reinhardt P, Glatza M, Baumann M, Drexler HCA, Menninger S, Zischinsky G et al (2019) Dual inhibition of GSK3β and CDK5 protects the cytoskeleton of neurons from neuroinflammatory-mediated degeneration in vitro and in vivo. Stem Cell Rep 12(3):502–517. https://doi.org/10.1016/j.stemcr.2019.01.015

    Article  CAS  Google Scholar 

  30. Zheng S, Han F, Shi Y, Wen L, Han D (2017) Single-prolonged-stress-induced changes in autophagy-related proteins Beclin-1, LC3, and p62 in the medial prefrontal cortex of rats with post-traumatic stress disorder. J Mol Neurosci 62(1):43–54. https://doi.org/10.1007/s12031-017-0909-x

    Article  CAS  PubMed  Google Scholar 

  31. Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 29(11):1792–1802. https://doi.org/10.1038/emboj.2010.74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sahani MH, Itakura E, Mizushima N (2014) Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy 10(3):431–441. https://doi.org/10.4161/auto.27344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peidu J (2014) Autophagy and human diseases. Cell Res 24:69–79. https://doi.org/10.1038/cr.2013.161

    Article  CAS  Google Scholar 

  34. Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ (2010) p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6(8):1090–1106. https://doi.org/10.4161/auto.6.8.13426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 101(10):3329–3335. https://doi.org/10.1073/pnas.0308061100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ganesan R, Hos NJ, Gutierrez S, Fischer J, Stepek JM, Daglidu E, Krönke M, Robinson N (2017) Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. PLoS Pathog 13(2):e1006227. https://doi.org/10.1371/journal.ppat.1006227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lan F, Cacicedo JM, Ruderman N, Ido Y (2008) SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem 283(41):27628–27635. https://doi.org/10.1074/jbc.M805711200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Couch FJ, Wang X-Y, Wu G-J, Qian J, Jenkins RB, James CD (1999) Localization of <em>PS6K</em> to chromosomal region 17q23 and determination of its amplification in breast cancer. Cancer Res 59(7):1408–1411

    CAS  PubMed  Google Scholar 

  39. Kim BR, Jeong YA, Kim DY, Kim JL, Jeong S, Na YJ, Yun HK, Park SH et al (2020) Genipin increases oxaliplatin-induced cell death through autophagy in gastric cancer. J Cancer 11(2):460–467. https://doi.org/10.7150/jca.34773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wei M, Wu Y, Liu H, Xie C (2020) Genipin induces autophagy and suppresses cell growth of oral squamous cell carcinoma via PI3K/AKT/MTOR pathway. Drug Des Devel Ther 14:395–405. https://doi.org/10.2147/dddt.S222694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Uddin MS, Stachowiak A, Mamun AA, Tzvetkov NT, Takeda S, Atanasov AG, Bergantin LB, Abdel-Daim MM et al (2018) Autophagy and Alzheimer’s disease: from molecular mechanisms to therapeutic implications. Front Aging Neurosci 10:04. https://doi.org/10.3389/fnagi.2018.00004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun YX, Ji X, Mao X, Xie L, Jia J, Galvan V, Greenberg DA, Jin K (2014) Differential activation of mTOR complex 1 signaling in human brain with mild to severe Alzheimer’s disease. J Alzheimers Dis 38(2):437–444. https://doi.org/10.3233/jad-131124

    Article  CAS  PubMed  Google Scholar 

  43. Nilsson P, Loganathan K, Sekiguchi M, Matsuba Y, Hui K, Tsubuki S, Tanaka M, Iwata N et al (2013) Aβ secretion and plaque formation depend on autophagy. Cell Rep 5(1):61–69. https://doi.org/10.1016/j.celrep.2013.08.042

    Article  CAS  PubMed  Google Scholar 

  44. Rozpedek W, Markiewicz L, Diehl JA, Pytel D, Majsterek I (2015) Unfolded protein response and PERK kinase as a new therapeutic target in the pathogenesis of Alzheimer’s disease. Curr Med Chem 22(27):3169–3184. https://doi.org/10.2174/0929867322666150818104254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Instrumental Analysis Center of Shenzhen University (Xili Campus) for their assistance in our experiments.

Availability of Data and Material

All data is real and guarantees the validity of experimental results.

Funding

This work was supported financially by National Natural Science Foundation of China (31871734), National Key R&D Program of China (2018YFD0901106), National Natural Science Foundation of China (31970366), Guangdong Natural Science Foundation (2018A0303130054 and 2018A030313507), the Science and Technology Innovation Commission of Shenzhen (JCYJ20190808141415052, JCYJ20180507182405562, JCYJ20180305124211995 and JCYJ20180305125619343), National Key Project for Synthetic Biology (SQ2018YFA090029).

Author information

Authors and Affiliations

Authors

Contributions

Meiting Li, Nan Cai, Liang Gu, Hui Li, and Zhangli Hu conceived and designed the project. Meiting Li, Nan Cai, Liang Gu, Lijun Yao, and Decheng Bi performed majority of the experiments. Meiting Li, Nan Cai, Weishan Fang, Zhijian Lin, and Hong Xu performed data analyzes. Meiting Li, Nan Cai, Xu Xu, Weishan Fang, Zhijian Lin, Hong Xu, Hui Li, and Zhangli Hu wrote the manuscript. Xu Xu, Meiting Li, Nan Cai, and Yan Wu revised the paper. Xu Xu supervised the paper.

Corresponding author

Correspondence to Xu Xu.

Ethics declarations

Compliance with Ethical Standards

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 2480 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Cai, N., Gu, L. et al. Genipin Attenuates Tau Phosphorylation and Aβ Levels in Cellular Models of Alzheimer’s Disease. Mol Neurobiol 58, 4134–4144 (2021). https://doi.org/10.1007/s12035-021-02389-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02389-8

Keywords

Navigation