Skip to main content

Advertisement

Log in

Melatonin Prevents Non-image-Forming Visual System Alterations Induced by Experimental Glaucoma in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glaucoma is a blindness-causing disease that involves selective damage to retinal ganglion cells (RGCs) and their axons. A subset of RGCs expressing the photopigment melanopsin regulates non-image-forming visual system functions, such as pupillary light reflex and circadian rhythms. We analyzed the effect of melatonin on the non-image-forming visual system alterations induced by experimental glaucoma. For this purpose, male Wistar rats were weekly injected with vehicle or chondroitin sulfate into the eye anterior chamber. The non-image-forming visual system was analyzed in terms of (1) melanopsin-expressing RGC number, (2) anterograde transport from the retina to the olivary pretectal nucleus and the suprachiasmatic nuclei, (3) blue- and white light-induced pupillary light reflex, (4) light-induced c-Fos expression in the suprachiasmatic nuclei, (5) daily rhythm of locomotor activity, and (6) mitochondria in melanopsin-expressing RGC cells. Melatonin prevented the effect of experimental glaucoma on melanopsin-expressing RGC number, blue- and white light-induced pupil constriction, retina-olivary pretectal nucleus, and retina- suprachiasmatic nuclei communication, light-induced c-Fos expression in the suprachiasmatic nuclei, and alterations in the locomotor activity daily rhythm. In addition, melatonin prevented the effect of glaucoma on melanopsin-expressing RGC mitochondrial alterations. These results support that melatonin protected the non-image-forming visual system against glaucoma, probably through a mitochondrial protective mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Some data may not be made available because of privacy or ethical restrictions.

References

  1. Belforte N, Sande P, de Zavalía N, Knepper PA, Rosenstein RE (2010) Effect of chondroitin sulfate on intraocular pressure in rats. Invest Ophthalmol Vis Sci 51:5768–5775. https://doi.org/10.1167/iovs.10-5660

    Article  PubMed  Google Scholar 

  2. Bordone MP, González Fleitas MF, Pasquini LA, Bosco A, Sande PH, Rosenstein RE, Dorfman D (2017) Involvement of microglia in early axoglial alterations of the optic nerve induced by experimental glaucoma. J Neurochem 142:323–337. https://doi.org/10.1111/jnc.14070

    Article  CAS  PubMed  Google Scholar 

  3. Esquiva G, Hannibal J (2019) Melanopsin-expressing retinal ganglion cells in aging and disease. Histol Histopathol 34:1299–1311. https://doi.org/10.14670/HH-18-138

    Article  CAS  PubMed  Google Scholar 

  4. Gooley JJ, Lu J, Fischer D, Saper CB (2003) A broad role for melanopsin in nonvisual photoreception. J Neurosci 23:7093–7106. https://doi.org/10.1523/JNEUROSCI.23-18-07093.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070. https://doi.org/10.1126/science.1069609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cui Q, Ren C, Sollars PJ, Pickard GE, So KF (2015) The injury resistant ability of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. Neuroscience 284:845–853. https://doi.org/10.1016/j.neuroscience.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  7. DeParis S, Caprara C, Grimm C (2012) Intrinsically photosensitive retinal ganglion cells are resistant to N-methyl-D-aspartic acid excitotoxicity. Mol Vis 18:2814–2827

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fernandez DC, Sande PH, de Zavalía N, Belforte N, Dorfman D, Casiraghi LP, Golombek D, Rosenstein RE (2013) Effect of experimental diabetic retinopathy on the non-image-forming visual system. Chronobiol Int 30:583–597. https://doi.org/10.3109/07420528.2012.754453

    Article  PubMed  Google Scholar 

  9. Georg B, Ghelli A, Giordano C, Ross-Cisneros FN, Sadun AA, Carelli V, Hannibal J, La Morgia C (2017) Melanopsin-expressing retinal ganglion cells are resistant to cell injury, but not always. Mitochondrion 36:77–84. https://doi.org/10.1016/j.mito.2017.04.003

    Article  CAS  PubMed  Google Scholar 

  10. González Fleitas MF, Bordone M, Rosenstein RE, Dorfman D (2015) Effect of retinal ischemia on the non-image-forming visual system. Chronobiol Int 32:152–163. https://doi.org/10.3109/07420528.2014.959526

    Article  PubMed  Google Scholar 

  11. Vidal-Sanz M, Galindo-Romero C, Valiente-Soriano FJ, Nadal-Nicolás FM, Ortin-Martinez A, Rovere G, Salinas-Navarro M, Lucas-Ruiz F et al (2017) Shared and differential retinal responses against optic nerve injury and ocular hypertension. Front Neurosci 11:235. https://doi.org/10.3389/fnins.2017.00235

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li RS, Chen BY, Tay DK, Chan HH, Pu ML, So KF (2006) Melanopsin-expressing retinal ganglion cells are more injury-resistant in a chronic ocular hypertension model. Invest Ophthalmol Vis Sci 47:2951–2958. https://doi.org/10.1167/iovs.05-1295

    Article  PubMed  Google Scholar 

  13. Adhikari P, Zele AJ, Thomas R, Feigl B (2016) Quadrant field pupillometry detects melanopsin dysfunction in glaucoma suspects and early glaucoma. Sci Rep 6:33373. https://doi.org/10.1038/srep33373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de Zavalía N, Plano SA, Fernandez DC, Lanzani MF, Salido E, Belforte N, Sarmiento MI, Golombek DA et al (2011) Effect of experimental glaucoma on the non-image-forming visual system. J Neurochem 117:904–914. https://doi.org/10.1111/j.1471-4159.2011.07260.x

    Article  CAS  PubMed  Google Scholar 

  15. Drouyer E, Dkhissi-Benyahya O, Chiquet C, WoldeMussie E, Ruiz G, Wheeler LA, Denis P, Cooper HM (2008) Glaucoma alters the circadian timing system. PLoS One 3:e3931. https://doi.org/10.1371/journal.pone.0003931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kankipati L, Girkin CA, Gamlin PD (2011) The post-illumination pupil response is reduced in glaucoma patients. Invest Ophthalmol Vis Sci 52:2287–2292. https://doi.org/10.1167/iovs.10-6023

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lanzani MF, de Zavalía N, Fontana H, Sarmiento MI, Golombek D, Rosenstein RE (2012) Alterations of locomotor activity rhythm and sleep parameters in patients with advanced glaucoma. Chronobiol Int 29:911–919. https://doi.org/10.3109/07420528.2012.691146

    Article  PubMed  Google Scholar 

  18. Obara EA, Hannibal J, Heegaard S, Fahrenkrug J (2016) Loss of melanopsin-expressing retinal ganglion cells in severely staged glaucoma patients. Invest Ophthalmol Vis Sci 57:4661–4667. https://doi.org/10.1167/iovs.16-19997

    Article  CAS  PubMed  Google Scholar 

  19. Pérez-Rico C, de la Villa P, Arribas-Gómez I, Blanco R (2010) Evaluation of functional integrity of the retinohypothalamic tract in advanced glaucoma using multifocal electroretinography and light-induced melatonin suppression. Exp Eye Res 91:578–583. https://doi.org/10.1016/j.exer.2010.07.012

    Article  CAS  PubMed  Google Scholar 

  20. Pfeffer M, Korf HW, Wicht H (2018) Synchronizing effects of melatonin on diurnal and circadian rhythms. Gen Comp Endocrinol 258:215–221. https://doi.org/10.1016/j.ygcen.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  21. González Fleitas MF, Devouassoux JD, Aranda ML, Calanni JS, Chianelli MS, Dorfman D, Rosenstein RE (2020) Enriched environment provides neuroprotection against experimental glaucoma. J Neurochem 152:103–121. https://doi.org/10.1111/jnc.14885

    Article  CAS  PubMed  Google Scholar 

  22. Aranda ML, González Fleitas MF, De Laurentiis A, Keller Sarmiento MI, Chianelli M, Sande PH, Dorfman D, Rosenstein RE (2016) Neuroprotective effect of melatonin in experimental optic neuritis in rats. J Pineal Res 60:360–372. https://doi.org/10.1111/jpi.12318

    Article  CAS  PubMed  Google Scholar 

  23. Belforte NA, Moreno MC, de Zavalía N, Sande PH, Chianelli MS, Keller Sarmiento MI, Rosenstein RE (2010) Melatonin: a novel neuroprotectant for the treatment of glaucoma. J Pineal Res 48:353–364. https://doi.org/10.1111/j.1600-079X.2010.00762.x

    Article  CAS  PubMed  Google Scholar 

  24. Sande PH, Fernandez DC, Aldana Marcos HJ, Chianelli MS, Aisemberg J, Silberman DM, Sáenz DA, Rosenstein RE (2008) Therapeutic effect of melatonin in experimental uveitis. Am J Pathol 173:1702–1713. https://doi.org/10.2353/ajpath.2008.080518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dorfman D, Fernandez DC, Chianelli M, Miranda M, Aranda ML, Rosenstein RE (2013) Post-ischemic environmental enrichment protects the retina from ischemic damage in adult rats. Exp Neurol 240:146–156. https://doi.org/10.1016/j.expneurol.2012.11.017

    Article  CAS  PubMed  Google Scholar 

  26. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic Press, San Diego, CA

    Google Scholar 

  27. Crish S, Sappington M, Inman M, Horner J, Calkins D (2010) Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc Natl Acad Sci 107(11):5196–5201. https://doi.org/10.1073/pnas.0913141107

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schmid B, Helfrich-Förster C, Yoshii T (2011) A new ImageJ plug-in “ActogramJ” for chronobiological analyses. J Biol Rhythm 26:464–467. https://doi.org/10.1177/0748730411414264

    Article  Google Scholar 

  29. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stauffer W, Sheng H, Lim HN (2018) EzColocalization: an ImageJ plugin for visualizing and measuring colocalization in cells and organisms. Sci Rep 8:15764. https://doi.org/10.1038/s41598-018-33592-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Curtis MJ, Alexander S, Cirino G, Docherty JR, George CH, Giembycz MA, Hoyer D, Insel PA et al (2018) Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. Br J Pharmacol 175:987–993. https://doi.org/10.1111/bph.14153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guymer C, Wood JP, Chidlow G, Casson RJ (2019) Neuroprotection in glaucoma: recent advances and clinical translation. Clin Exp Ophthalmol 47:88–105. https://doi.org/10.1111/ceo.13336

    Article  PubMed  Google Scholar 

  33. Naik S, Pandey A, Lewis SA, Rao BSS, Mutalik S (2020) Neuroprotection: a versatile approach to combat glaucoma. Eur J Pharmacol 881:173208. https://doi.org/10.1016/j.ejphar.2020.173208

    Article  CAS  PubMed  Google Scholar 

  34. Di Polo A, Aigner LJ, Dunn RJ, Bray GM, Aguayo AJ (1998) Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected Müller cells temporarily rescues injured retinal ganglion cells. Proc Natl Acad Sci U S A 95:3978–3983. https://doi.org/10.1073/pnas.95.7.3978

    Article  PubMed  PubMed Central  Google Scholar 

  35. Domenici L, Origlia N, Falsini B, Cerri E, Barloscio D, Fabiani C, Sansò M, Giovannini L (2014) Rescue of retinal function by BDNF in a mouse model of glaucoma. PLoS One 9:e115579. https://doi.org/10.1371/journal.pone.0115579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ko ML, Hu DN, Ritch R, Sharma SC, Chen CF (2001) Patterns of retinal ganglion cell survival after brain-derived neurotrophic factor administration in hypertensive eyes of rats. Neurosci Lett 305:139–142. https://doi.org/10.1016/s0304-3940(01)01830-4

    Article  CAS  PubMed  Google Scholar 

  37. Osborne A, Khatib TZ, Songra L, Barber AC, Hall K, Kong GYX, Widdowson PS, Martin KR (2018) Neuroprotection of retinal ganglion cells by a novel gene therapy construct that achieves sustained enhancement of brain-derived neurotrophic factor/tropomyosin-related kinase receptor-B signaling. Cell Death Dis 9:1007. https://doi.org/10.1038/s41419-018-1041-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ren R, Li Y, Liu Z, Liu K, He S (2012) Long-term rescue of rat retinal ganglion cells and visual function by AAV-mediated BDNF expression after acute elevation of intraocular pressure. Invest Ophthalmol Vis Sci 53:1003–1011. https://doi.org/10.1167/iovs.11-8484

    Article  CAS  PubMed  Google Scholar 

  39. Valiente-Soriano FJ, Nadal-Nicolás FM, Salinas-Navarro M, Jiménez-López M, Bernal-Garro JM, Villegas-Pérez MP, Agudo-Barriuso M, Vidal-Sanz M (2015) BDNF rescues RGCs but not intrinsically photosensitive RGCs in ocular hypertensive albino rat retinas. Invest Ophthalmol Vis Sci 56:1924–1936. https://doi.org/10.1167/iovs.15-16454

    Article  CAS  PubMed  Google Scholar 

  40. Feigl B, Mattes D, Thomas R, Zele AJ (2011) Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma. Invest Ophthalmol Vis Sci 52:4362–4367. https://doi.org/10.1167/iovs.10-7069

    Article  CAS  PubMed  Google Scholar 

  41. Rukmini AV, Milea D, Baskaran M, How AC, Perera SA, Aung T, Gooley JJ (2015) Pupillary responses to high-irradiance blue light correlate with glaucoma severity. Ophthalmology 122:1777–1785. https://doi.org/10.1016/j.ophtha.2015.06.002

    Article  PubMed  Google Scholar 

  42. Gracitelli CP, Duque-Chica GL, Moura AL, Roizenblatt M, Nagy BV, de Melo GR, Borba PD, Teixeira SH et al (2016) Relationship between daytime sleepiness and intrinsically photosensitive retinal ganglion cells in glaucomatous disease. J Ophthalmol 2016:5317371–5317379. https://doi.org/10.1155/2016/5317371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Qiu M, Ramulu PY, Boland MV (2019) Association between sleep parameters and glaucoma in the United States population: national health and nutrition examination survey. J Glaucoma 28:97–104. https://doi.org/10.1097/IJG.0000000000001169

    Article  PubMed  Google Scholar 

  44. Martínez-Águila A, Fonseca B, Pérez de Lara MJ, Pintor J (2016) Effect of melatonin and 5-methoxycarbonylamino-N-acetyltryptamine on the intraocular pressure of normal and glaucomatous mice. J Pharmacol Exp Ther 357:293–299. https://doi.org/10.1124/jpet.115.231456

    Article  CAS  PubMed  Google Scholar 

  45. Ito YA, Di Polo A (2017) Mitochondrial dynamics, transport, and quality control: a bottleneck for retinal ganglion cell viability in optic neuropathies. Mitochondrion 36:186–192. https://doi.org/10.1016/j.mito.2017.08.014

    Article  CAS  PubMed  Google Scholar 

  46. Osborne NN, Núñez-Álvarez C, Joglar B, Del Olmo-Aguado S (2016) Glaucoma: focus on mitochondria in relation to pathogenesis and neuroprotection. Eur J Pharmacol 787:127–133. https://doi.org/10.1016/j.ejphar.2016.04.032

    Article  CAS  PubMed  Google Scholar 

  47. Acuña Castroviejo D, López LC, Escames G, López A, García JA, Reiter RJ (2011) Melatonin-mitochondria interplay in health and disease. Curr Top Med Chem 11:221–240. https://doi.org/10.2174/156802611794863517

    Article  PubMed  Google Scholar 

  48. Tan DX, Manchester LC, Qin L, Reiter RJ (2016) Melatonin: a mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int J Mol Sci 17:2124. https://doi.org/10.3390/ijms17122124

    Article  CAS  PubMed Central  Google Scholar 

  49. Wongprayoon P, Govitrapong P (2017) Melatonin as a mitochondrial protector in neurodegenerative diseases. Cell Mol Life Sci 74:3999–4014. https://doi.org/10.1007/s00018-017-2614-x

    Article  CAS  PubMed  Google Scholar 

  50. Balaker AE, Ishiyama P, Lopez IA, Ishiyama G, Ishiyama A (2013) Immunocytochemical localization of the translocase of the outer mitochondrial membrane (Tom20) in the human cochlea. Anat Rec (Hoboken) 296:326–332. https://doi.org/10.1002/ar.22622

    Article  CAS  Google Scholar 

  51. Donahue RJ, Maes ME, Grosser JA, Nickells RW (2020) BAX-depleted retinal ganglion cells survive and become quiescent following optic nerve damage. Mol Neurobiol 57:1070–1084. https://doi.org/10.1007/s12035-019-01783-7

    Article  CAS  PubMed  Google Scholar 

  52. Cai X, Li J, Wang M, She M, Tang Y, Li J, Li H, Hui H (2017) GLP-1 treatment improves diabetic retinopathy by alleviating autophagy through GLP-1R-ERK1/2-HDAC6 signaling pathway. Int J Med Sci 14:1203–1212. https://doi.org/10.7150/ijms.20962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Edwards G, Perkins GA, Kim KY, Kong Y, Lee Y, Choi S, Liu Y, Skowronska-Krawczyk D et al (2020) Loss of AKAP1 triggers Drp1 dephosphorylation-mediated mitochondrial fission and loss in retinal ganglion cells. Cell Death Dis 11:254. https://doi.org/10.1038/s41419-020-2456-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cho JH, Tae HJ, Kim IS, Song M, Kim H, Lee TK, Kim YM, Ryoo S et al (2019) Melatonin alleviates asphyxial cardiac arrest-induced cerebellar Purkinje cell death by attenuation of oxidative stress. Exp Neurol 320:112983. https://doi.org/10.1016/j.expneurol.2019.112983

    Article  CAS  PubMed  Google Scholar 

  55. Chen W, Chen X, Chen AC, Shi Q, Pan G, Pei M, Yang H, Liu T et al (2020) Melatonin restores the osteoporosis-impaired osteogenic potential of bone marrow mesenchymal stem cells by preserving SIRT1-mediated intracellular antioxidant properties. Free Radic Biol Med 146:92–106. https://doi.org/10.1016/j.freeradbiomed.2019.10.412

    Article  CAS  PubMed  Google Scholar 

  56. Diéguez HH, González Fleitas MF, Aranda ML, Calanni JS, Keller Sarmiento MI, Chianelli MS, Alaimo A, Sande PH et al (2020) Melatonin protects the retina from experimental nonexudative age-related macular degeneration in mice. J Pineal Res 68:e12643. https://doi.org/10.1111/jpi.12643

    Article  CAS  PubMed  Google Scholar 

  57. Sheng WL, Chen WY, Yang XL, Zhong YM, Weng SJ (2015) Co-expression of two subtypes of melatonin receptor on rat M1-type intrinsically photosensitive retinal ganglion cells. PLoS One 10:e0117967. https://doi.org/10.1371/journal.pone.0117967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tan DX, Reiter RJ (2019) Mitochondria: the birth place, battle ground and the site of melatonin metabolism in cells. Melatonin Res 2:44. https://doi.org/10.32794/mr11250011

    Article  Google Scholar 

  59. Abbott SM, Malkani RG, Zee PC (2020) Circadian disruption and human health: a bidirectional relationship. Eur J Neurosci 51:567–583. https://doi.org/10.1111/ejn.14298

    Article  PubMed  Google Scholar 

  60. Ksendzovsky A, Pomeraniec IJ, Zaghloul KA, Provencio JJ, Provencio I (2017) Clinical implications of the melanopsin-based non-image-forming visual system. Neurology 88:1282–1290. https://doi.org/10.1212/WNL.0000000000003761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim JY, Jeong AR, Chin HS, Kim NR (2019) Melatonin levels in patients with primary open-angle glaucoma with high or low intraocular pressure. J Glaucoma 28:154–160. https://doi.org/10.1097/IJG.0000000000001130

    Article  PubMed  Google Scholar 

  62. Yoshikawa T, Obayashi K, Miyata K, Saeki K, Ogata N (2020) Decreased melatonin secretion in patients with glaucoma: quantitative association with glaucoma severity in the LIGHT study. J Pineal Res 69:e12662. https://doi.org/10.1111/jpi.12662

    Article  CAS  PubMed  Google Scholar 

  63. Moreno MC, Campanelli J, Sande P, Sánez DA, Keller Sarmiento MI, Rosenstein RE (2004) Retinal oxidative stress induced by high intraocular pressure. Free Radic Biol Med 37:803–812. https://doi.org/10.1016/j.freeradbiomed.2004.06.001

    Article  CAS  PubMed  Google Scholar 

Download references

Code Availability

Not applicable.

Funding

This research was supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica [PICT 1563, PICT 2731], The University of Buenos Aires [20020100100678], and Consejo Nacional de Investigaciones Científicas y Técnicas [PIP 0707], Argentina. The funding organizations have no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Contributions

María F González Fleitas: contributions to concept/design, acquisition of data, data analysis/interpretation; Julián Devouassoux: acquisition of data; Marcos L. Aranda: acquisition of data; Hernán H. Dieguez: acquisition of data; Juan S.Calanni: acquisition of data; Agustina Iaquinandi: acquisition of data; Pablo H. Sande: acquisition of data; Damian Dorfman: design/concept, interpretation/data analysis and manuscript drafting. Ruth E. Rosenstein: design/concept, interpretation/data analysis, manuscript drafting and article final approval.

Corresponding author

Correspondence to Ruth E. Rosenstein.

Ethics declarations

Ethics Approval

All animal procedures were approved by the ethics committee of the School of Medicine, University of Buenos Aires (Institutional Committee for the Care and Use of Laboratory Animals (CICUAL)) and were approved according to the Research Reporting of In-Vivo Experiments (ARRIVE) guidelines. All efforts were to minimize animal suffering.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González Fleitas, M.F., Devouassoux, J., Aranda, M.L. et al. Melatonin Prevents Non-image-Forming Visual System Alterations Induced by Experimental Glaucoma in Rats. Mol Neurobiol 58, 3653–3664 (2021). https://doi.org/10.1007/s12035-021-02374-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02374-1

Keywords

Navigation