Skip to main content

Advertisement

Log in

A New Approach to Model Sporadic Alzheimer’s Disease by Intracerebroventricular Streptozotocin Injection in APP/PS1 Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common cause of dementia among elderly people. Majority of AD cases are sporadic (SAD) with unknown cause. Transgenic animal models closely reflect the familial (genetic) aspect of the disease but not the sporadic type. However, most new drug candidates which are tested positive in transgenic animal models failed in clinical studies so far. Herein, we aim to develop an AD animal model that combines most of the neuropathological features seen in sporadic AD in humans with amyloid plaques observed in transgenic mice. Four-month-old wild-type and APP/PS1 AD mice were given a single intracerebroventricular (ICV) injection of 3 mg/kg streptozotocin (STZ), a diabetogenic agent. Three weeks later, their cognitive behavior was assessed, and their brain tissues were collected for biochemical and histological analysis. STZ produced cognitive deficits in both non-transgenic mice and AD mice. Biochemical analysis showed a severe decline in synaptic proteins, increase in tau phosphorylation, oxidative stress, disturbed brain insulin signaling with extensive neuroinflammation, and cell death. Significant increase was also observed in the level of the soluble beta amyloid precursor protein (APP) fragments and robust accumulation of amyloid plaques in AD mice compared to the control. These results suggest that STZ ICV treatment causes disturbance in multiple metabolic and cell signaling pathways in the brain that facilitated amyloid plaque accumulation and tau phosphorylation. Therefore, this animal model can be used to evaluate new AD therapeutic agents for clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All of the data that was generated and analyzed in this study are included in this article.

References

  1. Alzheimer's Disease International: World Alzheimer Report 2018; The state of the art of dementia research: new frontiers (2018).

  2. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer's disease. Lancet (London, England) 368(9533):387–403. https://doi.org/10.1016/s0140-6736(06)69113-7

    Article  CAS  Google Scholar 

  3. Zetterberg H, Mattsson-Carlgren N (2014) Understanding the cause of sporadic Alzheimer’s disease. Expert review of neurotherapeutics 14:621–630. https://doi.org/10.1586/14737175.2014.915740

    Article  CAS  PubMed  Google Scholar 

  4. Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, Hebert LE, Hennekens CH et al (1989) Prevalence of Alzheimer's disease in a community population of older persons. Higher than previously reported. Jama 262(18):2551–2556

    Article  CAS  Google Scholar 

  5. Chakrabarti S, Khemka VK, Banerjee A, Chatterjee G, Ganguly A, Biswas A (2015) Metabolic risk factors of sporadic Alzheimer's disease: implications in the pathology, pathogenesis and treatment. Aging Dis 6 (4):282-299. https://doi.org/10.14336/AD.2014.002

  6. Ribeiro FM, Camargos ER, de Souza LC, Teixeira AL (2013) Animal models of neurodegenerative diseases. Revista brasileira de psiquiatria (Sao Paulo, Brazil : 1999) 35 Suppl 2:S82-91. https://doi.org/10.1590/1516-4446-2013-1157

  7. Li C, Ebrahimi A, Schluesener H (2013) Drug pipeline in neurodegeneration based on transgenic mice models of Alzheimer's disease. Ageing Research Reviews 12(1):116–140. https://doi.org/10.1016/j.arr.2012.09.002

    Article  PubMed  Google Scholar 

  8. Zahs KR, Ashe KH (2010) 'Too much good news'—are Alzheimer mouse models trying to tell us how to prevent, not cure, Alzheimer's disease? Trends Neurosci 33(8):381–389. https://doi.org/10.1016/j.tins.2010.05.004

    Article  CAS  PubMed  Google Scholar 

  9. Götz J, Streffer JR, David D, Schild A, Hoerndli F, Pennanen L, Kurosinski P, Chen F (2004) Transgenic animal models of Alzheimer's disease and related disorders: histopathology, behavior and therapy. Mol Psychiatry 9(7):664–683. https://doi.org/10.1038/sj.mp.4001508

    Article  CAS  PubMed  Google Scholar 

  10. Calhoun ME, Wiederhold KH, Abramowski D, Phinney AL, Probst A, Sturchler-Pierrat C, Staufenbiel M, Sommer B et al (1998) Neuron loss in APP transgenic mice. Nature 395(6704):755–756. https://doi.org/10.1038/27351

    Article  CAS  PubMed  Google Scholar 

  11. Metaxas A, Thygesen C, Kempf SJ, Anzalone M, Vaitheeswaran R, Petersen S, Landau AM, Audrain H et al (2018) Tauopathy in the APPswe/PS1ΔE9 mouse model of familial Alzheimer’s disease. bioRxiv:405647. https://doi.org/10.1101/405647

  12. Jankowsky JL, Slunt HH, Gonzales V, Jenkins NA, Copeland NG, Borchelt DR (2004) APP processing and amyloid deposition in mice haplo-insufficient for presenilin 1. Neurobiol Aging 25(7):885–892. https://doi.org/10.1016/j.neurobiolaging.2003.09.008

    Article  CAS  PubMed  Google Scholar 

  13. Götz J, Deters N, Doldissen A, Bokhari L, Ke Y, Wiesner A, Schonrock N, Ittner LM (2007) A decade of tau transgenic animal models and beyond. Brain pathology (Zurich, Switzerland) 17(1):91–103. https://doi.org/10.1111/j.1750-3639.2007.00051.x

    Article  CAS  Google Scholar 

  14. Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nature Medicine 12(9):1005–1015. https://doi.org/10.1038/nm1484

    Article  PubMed  Google Scholar 

  15. Arendt T (2009) Synaptic degeneration in Alzheimer's disease. Acta Neuropathol 118(1):167–179. https://doi.org/10.1007/s00401-009-0536-x

    Article  PubMed  Google Scholar 

  16. Salkovic-Petrisic M, Osmanovic-Barilar J, Brückner MK, Hoyer S, Arendt T, Riederer P (2011) Cerebral amyloid angiopathy in streptozotocin rat model of sporadic Alzheimer's disease: a long-term follow up study. Journal of neural transmission (Vienna, Austria : 1996) 118(5):765–772. https://doi.org/10.1007/s00702-011-0651-4

    Article  CAS  Google Scholar 

  17. Chen Y, Liang Z, Blanchard J, Dai CL, Sun S, Lee MH, Grundke-Iqbal I, Iqbal K et al (2013) A non-transgenic mouse model (icv-STZ mouse) of Alzheimer's disease: similarities to and differences from the transgenic model (3xTg-AD mouse). Mol Neurobiol 47(2):711–725. https://doi.org/10.1007/s12035-012-8375-5

    Article  CAS  PubMed  Google Scholar 

  18. Chen Y, Liang Z, Tian Z, Blanchard J, Dai C-L, Chalbot S, Iqbal K, Liu F et al (2014) Intracerebroventricular streptozotocin exacerbates Alzheimer-like changes of 3xTg-AD mice. Mol Neurobiol 49(1):547–562. https://doi.org/10.1007/s12035-013-8539-y

    Article  CAS  PubMed  Google Scholar 

  19. Wang X, Zheng W, Xie JW, Wang T, Wang SL, Teng WP, Wang ZY (2010) Insulin deficiency exacerbates cerebral amyloidosis and behavioral deficits in an Alzheimer transgenic mouse model. Mol Neurodegener 5:46. https://doi.org/10.1186/1750-1326-5-46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clodfelder-Miller BJ, Zmijewska AA, Johnson GV, Jope RS (2006) Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes 55(12):3320–3325. https://doi.org/10.2337/db06-0485

    Article  CAS  PubMed  Google Scholar 

  21. Hoyer S (2000) Brain glucose and energy metabolism abnormalities in sporadic Alzheimer disease. Causes and consequences: an update. Experimental gerontology 35(9-10):1363–1372. https://doi.org/10.1016/s0531-5565(00)00156-x

    Article  CAS  PubMed  Google Scholar 

  22. Grieb P (2016) Intracerebroventricular streptozotocin injections as a model of Alzheimer's disease: in search of a relevant mechanism. Mol Neurobiol 53(3):1741–1752. https://doi.org/10.1007/s12035-015-9132-3

    Article  CAS  PubMed  Google Scholar 

  23. Hoyer S, Lannert H (2007) Long-term abnormalities in brain glucose/energy metabolism after inhibition of the neuronal insulin receptor: implication of tau-protein. Journal of neural transmission Supplementum 72:195–202. https://doi.org/10.1007/978-3-211-73574-9_25

    Article  CAS  Google Scholar 

  24. Kamat PK, Kalani A, Rai S, Tota SK, Kumar A, Ahmad AS (2016) Streptozotocin Intracerebroventricular-induced neurotoxicity and brain insulin resistance: a therapeutic intervention for treatment of sporadic Alzheimer's disease (sAD)-like pathology. Mol Neurobiol 53(7):4548–4562. https://doi.org/10.1007/s12035-015-9384-y

    Article  CAS  PubMed  Google Scholar 

  25. Craft S, Peskind E, Schwartz MW, Schellenberg GD, Raskind M, Porte D Jr (1998) Cerebrospinal fluid and plasma insulin levels in Alzheimer's disease: relationship to severity of dementia and apolipoprotein E genotype. Neurology 50(1):164–168. https://doi.org/10.1212/wnl.50.1.164

    Article  CAS  PubMed  Google Scholar 

  26. Frölich L, Blum-Degen D, Riederer P, Hoyer S (1999) A disturbance in the neuronal insulin receptor signal transduction in sporadic Alzheimer's disease. Ann N Y Acad Sci 893:290–293. https://doi.org/10.1111/j.1749-6632.1999.tb07839.x

    Article  PubMed  Google Scholar 

  27. Borchelt DR, Ratovitski T, van Lare J, Lee MK, Gonzales V, Jenkins NA, Copeland NG, Price DL et al (1997) Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19(4):939–945. https://doi.org/10.1016/s0896-6273(00)80974-5

    Article  CAS  PubMed  Google Scholar 

  28. Health N, Medical Research Council (2013) Australian code for the care and use of animals for scientific purposes, 8th edition. Canberra: National Health and Medical Research Council. 2013

  29. Krstic D, Knuesel I (2013) Deciphering the mechanism underlying late-onset Alzheimer disease. Nature reviews Neurology 9(1):25–34. https://doi.org/10.1038/nrneurol.2012.236

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Tanila H, Puoliväli J, Kadish I, van Groen T (2003) Gender differences in the amount and deposition of amyloidbeta in APPswe and PS1 double transgenic mice. Neurobiol Dis 14(3):318–327. https://doi.org/10.1016/j.nbd.2003.08.009

    Article  CAS  PubMed  Google Scholar 

  31. Morris RG, Garrud P, Rawlins JN, O'Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297(5868):681–683. https://doi.org/10.1038/297681a0

    Article  CAS  PubMed  Google Scholar 

  32. Wolf A, Bauer B, Abner EL, Ashkenazy-Frolinger T, Hartz AMS (2016) A comprehensive behavioral test battery to assess learning and memory in 129S6/Tg2576 mice. PloS one 11(1):e0147733–e0147733. https://doi.org/10.1371/journal.pone.0147733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Groves TR, Wang J, Boerma M, Allen AR (2017) Assessment of hippocampal dendritic complexity in aged mice using the Golgi-Cox method. J Vis Exp 124:55696. https://doi.org/10.3791/55696

    Article  CAS  Google Scholar 

  34. Moore AH, O'Banion MK (2002) Neuroinflammation and anti-inflammatory therapy for Alzheimer's disease. Adv Drug Deliv Rev 54(12):1627–1656. https://doi.org/10.1016/s0169-409x(02)00162-x

    Article  CAS  PubMed  Google Scholar 

  35. Shimohama S (2000) Apoptosis in Alzheimer's disease—an update. Apoptosis : an international journal on programmed cell death 5(1):9–16. https://doi.org/10.1023/a:1009625323388

    Article  CAS  Google Scholar 

  36. Masliah E, Mallory M, Hansen L, DeTeresa R, Alford M, Terry R (1994) Synaptic and neuritic alterations during the progression of Alzheimer's disease. Neurosci Lett 174(1):67–72. https://doi.org/10.1016/0304-3940(94)90121-x

    Article  CAS  PubMed  Google Scholar 

  37. Hatanpää K, Isaacs KR, Shirao T, Brady DR, Rapoport SI (1999) Loss of proteins regulating synaptic plasticity in normal aging of the human brain and in Alzheimer disease. J Neuropathol Exp Neurol 58(6):637–643. https://doi.org/10.1097/00005072-199906000-00008

    Article  PubMed  Google Scholar 

  38. DeKosky ST, Scheff SW, Styren SD (1996) Structural correlates of cognition in dementia: quantification and assessment of synapse change. Neurodegeneration 5(4):417–421. https://doi.org/10.1006/neur.1996.0056

    Article  CAS  PubMed  Google Scholar 

  39. Biessels GJ, Kappelle LJ (2005) Increased risk of Alzheimer's disease in Type II diabetes: insulin resistance of the brain or insulin-induced amyloid pathology? Biochemical Society transactions 33(Pt 5):1041–1044. https://doi.org/10.1042/bst0331041

    Article  CAS  PubMed  Google Scholar 

  40. Hoyer S (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. European Journal of Pharmacology 490(1):115–125. https://doi.org/10.1016/j.ejphar.2004.02.049

    Article  CAS  PubMed  Google Scholar 

  41. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR et al (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease—is this type 3 diabetes? J Alzheimers Dis 7(1):63–80. https://doi.org/10.3233/jad-2005-7107

    Article  CAS  PubMed  Google Scholar 

  42. Lannert H, Hoyer S (1998) Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behavioral neuroscience 112(5):1199–1208. https://doi.org/10.1037//0735-7044.112.5.1199

    Article  CAS  PubMed  Google Scholar 

  43. Sharma M, Gupta YK (2001) Intracerebroventricular injection of streptozotocin in rats produces both oxidative stress in the brain and cognitive impairment. Life sciences 68(9):1021–1029. https://doi.org/10.1016/s0024-3205(00)01005-5

    Article  CAS  PubMed  Google Scholar 

  44. Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiological research 50(6):537–546

    CAS  PubMed  Google Scholar 

  45. Blondel O, Portha B (1989) Early appearance of in vivo insulin resistance in adult streptozotocin-injected rats. Diabete & metabolisme 15(6):382–387

    CAS  Google Scholar 

  46. Kadowaki T, Kasuga M, Akanuma Y, Ezaki O, Takaku F (1984) Decreased autophosphorylation of the insulin receptor-kinase in streptozotocin-diabetic rats. J Biol Chem 259(22):14208–14216

    Article  CAS  Google Scholar 

  47. Nitsch R, Hoyer S (1991) Local action of the diabetogenic drug, streptozotocin, on glucose and energy metabolism in rat brain cortex. Neuroscience letters 128(2):199–202. https://doi.org/10.1016/0304-3940(91)90260-z

    Article  CAS  PubMed  Google Scholar 

  48. Shoham S, Bejar C, Kovalev E, Weinstock M (2003) Intracerebroventricular injection of streptozotocin causes neurotoxicity to myelin that contributes to spatial memory deficits in rats. Experimental Neurology 184(2):1043–1052. https://doi.org/10.1016/j.expneurol.2003.08.015

    Article  CAS  PubMed  Google Scholar 

  49. Weinstock M, Shoham S (2004) Rat models of dementia based on reductions in regional glucose metabolism, cerebral blood flow and cytochrome oxidase activity. Journal of neural transmission (Vienna, Austria : 1996) 111(3):347–366. https://doi.org/10.1007/s00702-003-0058-y

    Article  CAS  Google Scholar 

  50. Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D, Stoltze L, Calhoun ME, Jäggi F et al (2006) Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep 7(9):940–946. https://doi.org/10.1038/sj.embor.7400784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Reyes-Marin KE, Nuñez A (2017) Seizure susceptibility in the APP/PS1 mouse model of Alzheimer's disease and relationship with amyloid β plaques. Brain Res 1677:93–100. https://doi.org/10.1016/j.brainres.2017.09.026

    Article  CAS  PubMed  Google Scholar 

  52. Su B, Wang X, Nunomura A, Moreira PI, Lee H, Perry G, Smith MA, Zhu X (2008) Oxidative stress signaling in Alzheimer's disease. Current Alzheimer research 5(6):525–532. https://doi.org/10.2174/156720508786898451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Takasu N, Komiya I, Asawa T, Nagasawa Y, Yamada T (1991) Streptozocin- and Alloxan-induced H2O2 generation and DNA fragmentation in pancreatic islets: H2O2 as mediator for DNA fragmentation. Diabetes 40(9):1141–1145. https://doi.org/10.2337/diab.40.9.1141

    Article  CAS  PubMed  Google Scholar 

  54. Agrawal R, Tyagi E, Shukla R, Nath C (2009) A study of brain insulin receptors, AChE activity and oxidative stress in rat model of ICV STZ induced dementia. Neuropharmacology 56(4):779–787. https://doi.org/10.1016/j.neuropharm.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  55. Rai S, Kamat PK, Nath C, Shukla R (2014) Glial activation and post-synaptic neurotoxicity: the key events in Streptozotocin (ICV) induced memory impairment in rats. Pharmacology Biochemistry and Behavior 117:104–117. https://doi.org/10.1016/j.pbb.2013.11.035

    Article  CAS  Google Scholar 

  56. Evin G, Zhu A, Holsinger RM, Masters CL, Li QX (2003) Proteolytic processing of the Alzheimer's disease amyloid precursor protein in brain and platelets. Journal of neuroscience research 74(3):386–392. https://doi.org/10.1002/jnr.10745

    Article  CAS  PubMed  Google Scholar 

  57. Tong Y, Zhou W, Fung V, Christensen MA, Qing H, Sun X, Song W (2005) Oxidative stress potentiates BACE1 gene expression and Abeta generation. Journal of neural transmission (Vienna, Austria : 1996) 112(3):455–469. https://doi.org/10.1007/s00702-004-0255-3

    Article  CAS  Google Scholar 

  58. Tamagno E, Guglielmotto M, Aragno M, Borghi R, Autelli R, Giliberto L, Muraca G, Danni O et al (2008) Oxidative stress activates a positive feedback between the gamma- and beta-secretase cleavages of the beta-amyloid precursor protein. J Neurochem 104(3):683–695. https://doi.org/10.1111/j.1471-4159.2007.05072.x

    Article  CAS  PubMed  Google Scholar 

  59. Grünblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S (2007) Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 101(3):757–770. https://doi.org/10.1111/j.1471-4159.2006.04368.x

    Article  CAS  PubMed  Google Scholar 

  60. Savage MJ, Lin Y-G, Ciallella JR, Flood DG, Scott RW (2002) Activation of c-Jun N-Terminal Kinase and p38 in an Alzheimer's disease model is associated with amyloid deposition. The Journal of Neuroscience 22(9):3376–3385. https://doi.org/10.1523/jneurosci.22-09-03376.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu SJ, Zhang AH, Li HL, Wang Q, Deng HM, Netzer WJ, Xu H, Wang JZ (2003) Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J Neurochem 87(6):1333–1344. https://doi.org/10.1046/j.1471-4159.2003.02070.x

    Article  CAS  PubMed  Google Scholar 

  62. Beeler N, Riederer BM, Waeber G, Abderrahmani A (2009) Role of the JNK-interacting protein 1/islet brain 1 in cell degeneration in Alzheimer disease and diabetes. Brain research bulletin 80(4-5):274–281. https://doi.org/10.1016/j.brainresbull.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  63. Yarza R, Vela S, Solas M, Ramirez MJ (2015) c-Jun N-terminal kinase (JNK) signaling as a therapeutic target for Alzheimer's disease. Front Pharmacol 6:321. https://doi.org/10.3389/fphar.2015.00321

    Article  CAS  PubMed  Google Scholar 

  64. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378(6559):785–789. https://doi.org/10.1038/378785a0

    Article  CAS  PubMed  Google Scholar 

  65. Salkovic-Petrisic M, Tribl F, Schmidt M, Hoyer S, Riederer P (2006) Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem 96(4):1005–1015. https://doi.org/10.1111/j.1471-4159.2005.03637.x

    Article  CAS  PubMed  Google Scholar 

  66. Pei JJ, Tanaka T, Tung YC, Braak E, Iqbal K, Grundke-Iqbal I (1997) Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. Journal of neuropathology and experimental neurology 56(1):70–78. https://doi.org/10.1097/00005072-199701000-00007

    Article  CAS  PubMed  Google Scholar 

  67. Pei JJ, Khatoon S, An WL, Nordlinder M, Tanaka T, Braak H, Tsujio I, Takeda M et al (2003) Role of protein kinase B in Alzheimer's neurofibrillary pathology. Acta Neuropathol 105(4):381–392. https://doi.org/10.1007/s00401-002-0657-y

    Article  CAS  PubMed  Google Scholar 

  68. Preece P, Virley DJ, Costandi M, Coombes R, Moss SJ, Mudge AW, Jazin E, Cairns NJ (2003) Beta-secretase (BACE) and GSK-3 mRNA levels in Alzheimer's disease. Brain research Molecular brain research 116(1-2):155–158. https://doi.org/10.1016/s0169-328x(03)00233-x

    Article  CAS  PubMed  Google Scholar 

  69. Rickle A, Bogdanovic N, Volkman I, Winblad B, Ravid R, Cowburn RF (2004) Akt activity in Alzheimer's disease and other neurodegenerative disorders. Neuroreport 15(6):955–959. https://doi.org/10.1097/00001756-200404290-00005

    Article  CAS  PubMed  Google Scholar 

  70. Vogelsberg-Ragaglia V, Schuck T, Trojanowski JQ, Lee VM (2001) PP2A mRNA expression is quantitatively decreased in Alzheimer's disease hippocampus. Exp Neurol 168(2):402–412. https://doi.org/10.1006/exnr.2001.7630

    Article  CAS  PubMed  Google Scholar 

  71. Gong CX, Shaikh S, Wang JZ, Zaidi T, Grundke-Iqbal I, Iqbal K (1995) Phosphatase activity toward abnormally phosphorylated tau: decrease in Alzheimer disease brain. J Neurochem 65(2):732–738. https://doi.org/10.1046/j.1471-4159.1995.65020732.x

    Article  CAS  PubMed  Google Scholar 

  72. Millward TA, Zolnierowicz S, Hemmings BA (1999) Regulation of protein kinase cascades by protein phosphatase 2A. Trends in biochemical sciences 24(5):186–191. https://doi.org/10.1016/s0968-0004(99)01375-4

    Article  CAS  PubMed  Google Scholar 

  73. Phiel CJ, Wilson CA, Lee VM, Klein PS (2003) GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides. Nature 423(6938):435–439. https://doi.org/10.1038/nature01640

    Article  CAS  PubMed  Google Scholar 

  74. Kaytor MD, Orr HT (2002) The GSK3 beta signaling cascade and neurodegenerative disease. Current opinion in neurobiology 12(3):275–278. https://doi.org/10.1016/s0959-4388(02)00320-3

    Article  CAS  PubMed  Google Scholar 

  75. Planel E, Yasutake K, Fujita SC, Ishiguro K (2001) Inhibition of protein phosphatase 2A overrides tau protein kinase I/glycogen synthase kinase 3 beta and cyclin-dependent kinase 5 inhibition and results in tau hyperphosphorylation in the hippocampus of starved mouse. J Biol Chem 276(36):34298–34306. https://doi.org/10.1074/jbc.M102780200

    Article  CAS  PubMed  Google Scholar 

  76. Wang JZ, Grundke-Iqbal I, Iqbal K (2007) Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. The European journal of neuroscience 25(1):59–68. https://doi.org/10.1111/j.1460-9568.2006.05226.x

    Article  PubMed  PubMed Central  Google Scholar 

  77. Planel E, Tatebayashi Y, Miyasaka T, Liu L, Wang L, Herman M, Yu WH, Luchsinger JA et al (2007) Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. J Neurosci 27(50):13635–13648. https://doi.org/10.1523/JNEUROSCI.3949-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Krstic D, Madhusudan A, Doehner J, Vogel P, Notter T, Imhof C, Manalastas A, Hilfiker M et al (2012) Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. Journal of Neuroinflammation 9(1):151. https://doi.org/10.1186/1742-2094-9-151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhu X, Raina AK, Rottkamp CA, Aliev G, Perry G, Boux H, Smith MA (2001) Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer's disease. J Neurochem 76(2):435–441. https://doi.org/10.1046/j.1471-4159.2001.00046.x

    Article  CAS  PubMed  Google Scholar 

  80. Pei J-J, Braak E, Braak H, Grundke-Iqbal I, Iqbal K, Winblad B, Cowburn RF (2001) Localization of active forms of C-jun kinase (JNK) and p38 kinase in Alzheimer's disease brains at different stages of neurofibrillary degeneration. Journal of Alzheimer's Disease 3:41–48. https://doi.org/10.3233/JAD-2001-3107

    Article  CAS  PubMed  Google Scholar 

  81. Yao M, Nguyen TV, Pike CJ (2005) Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. J Neurosci 25(5):1149–1158. https://doi.org/10.1523/jneurosci.4736-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Quiroz-Baez R, Rojas E, Arias C (2009) Oxidative stress promotes JNK-dependent amyloidogenic processing of normally expressed human APP by differential modification of alpha-, beta- and gamma-secretase expression. Neurochem Int 55(7):662–670. https://doi.org/10.1016/j.neuint.2009.06.012

    Article  CAS  PubMed  Google Scholar 

  83. Yoon SO, Park DJ, Ryu JC, Ozer HG, Tep C, Shin YJ, Lim TH, Pastorino L et al (2012) JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron 75(5):824–837. https://doi.org/10.1016/j.neuron.2012.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Selznick LA, Holtzman DM, Han BH, Gökden M, Srinivasan AN, Johnson EM Jr, Roth KA (1999) In situ immunodetection of neuronal caspase-3 activation in Alzheimer disease. Journal of neuropathology and experimental neurology 58(9):1020–1026. https://doi.org/10.1097/00005072-199909000-00012

    Article  CAS  PubMed  Google Scholar 

  85. Rissman RA, Poon WW, Blurton-Jones M, Oddo S, Torp R, Vitek MP, LaFerla FM, Rohn TT et al (2004) Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest 114(1):121–130. https://doi.org/10.1172/JCI20640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cotman CW, Poon WW, Rissman RA, Blurton-Jones M (2005) The role of caspase cleavage of tau in Alzheimer disease neuropathology. Journal of Neuropathology & Experimental Neurology 64(2):104–112. https://doi.org/10.1093/jnen/64.2.104

    Article  CAS  Google Scholar 

  87. Gervais FG, Xu D, Robertson GS, Vaillancourt JP, Zhu Y, Huang J, LeBlanc A, Smith D et al (1999) Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell 97(3):395–406. https://doi.org/10.1016/s0092-8674(00)80748-5

    Article  CAS  PubMed  Google Scholar 

  88. Mattson MP, Keller JN, Begley JG (1998) Evidence for synaptic apoptosis. Exp Neurol 153(1):35–48. https://doi.org/10.1006/exnr.1998.6863

    Article  CAS  PubMed  Google Scholar 

  89. Puro D, Agardh E (1984) Insulin-mediated regulation of neuronal maturation. Science 225(4667):1170–1172. https://doi.org/10.1126/science.6089343

    Article  CAS  PubMed  Google Scholar 

  90. Van Der Heide LP, Kamal A, Artola A, Gispen WH, Ramakers GMJ (2005) Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner. Journal of Neurochemistry 94(4):1158–1166. https://doi.org/10.1111/j.1471-4159.2005.03269.x

    Article  CAS  PubMed  Google Scholar 

  91. Trinchese F, Liu S, Battaglia F, Walter S, Mathews P, Arancio O (2004) Progressive age-related development of Alzheimer-like pathology in APP/PS1 mice. Annals of Neurology 55:801–814. https://doi.org/10.1002/ana.20101

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided to S. Kelliny by Commonwealth Research and Training scholarship and Egyptian Ministry of Higher Education. We would like to thank Dr Lewis Vaughan for technical assistance regarding the surgical procedure and Mr. Andrew Beck for suggestions regarding histological techniques and imaging.

Funding

This study was supported by the National Health and Medical Research Council (NHMRC) grants (1020567, 1021409) and supporting grant from the University of South Australia.

Author information

Authors and Affiliations

Authors

Contributions

Larisa Bobrovskaya and Xin-Fu Zhou contributed to the study conception and design. Material preparation, experiments, data collection, and analysis were performed by Sally Kelliny. Liying Lin participated in tissue staining experiments; Isaac Deng, Jing Xiong, Fiona Zhou, and Mohammed Al-Hawwas collaborated in animal studies. The first draft of the manuscript was written by Sally Kelliny and all authors commented on previous versions of the manuscript. Larisa Bobrovskaya and Xin-Fu Zhou supervised the study. All the authors reviewed and approved the final version of the manuscript submitted.

Corresponding authors

Correspondence to Larisa Bobrovskaya or Xin-Fu Zhou.

Ethics declarations

Ethics Approval

All procedures were compliant with the approved protocol (U26-15) from the Animal Ethics Committee of the University of South Australia and the South Australia animal welfare act and the “Australian code of practice and use of animals for scientific purposes.”

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelliny, S., Lin, L., Deng, I. et al. A New Approach to Model Sporadic Alzheimer’s Disease by Intracerebroventricular Streptozotocin Injection in APP/PS1 Mice. Mol Neurobiol 58, 3692–3711 (2021). https://doi.org/10.1007/s12035-021-02338-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02338-5

Keywords

Navigation