Skip to main content

Advertisement

Log in

Mutant Ataxin-3–Containing Aggregates (MATAGGs) in Spinocerebellar Ataxia Type 3: Dynamics of the Disorder

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia type 3 (SCA3) is the most common type of SCA worldwide caused by abnormal polyglutamine expansion in the coding region of the ataxin-3 gene. Ataxin-3 is a multi-faceted protein involved in various cellular processes such as deubiquitination, cytoskeletal organisation, and transcriptional regulation. The presence of an expanded poly(Q) stretch leads to altered processing and misfolding of the protein culminating in the production of insoluble protein aggregates in the cell. Various post-translational modifications affect ataxin-3 fibrillation and aggregation. This review provides an exhaustive assessment of the various pathogenic mechanisms undertaken by the mutant ataxin-3–containing aggregates (MATAGGs) for disease induction and neurodegeneration. This includes in-depth discussion on MATAGG dynamics including their formation, role in neuronal pathogenesis, and the debate over the toxic v/s protective nature of the MATAGGs in disease progression. Additionally, the currently available therapeutic strategies against SCA3 have been reviewed. The shift in the focus of such strategies, from targeting the steps that lead to or reduce aggregate formation to targeting the expression of mutant ataxin-3 itself via RNA-based therapeutics, has also been presented. We also discuss the intriguing promise that various growth and neurotrophic factors, especially the insulin pathway, hold in the modulation of SCA3 progression. These emerging areas show the newer directions through which SCA3 can be targeted including various preclinical and clinical trials. All these advances made in the last three decades since the discovery of the ataxin-3 gene have been critically reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

ASO(s):

Antisense oligonucleotides

ATXN3 :

Ataxin-3

CBP:

CREB-binding protein

COX-2:

Cyclooxygenase 2

CRISPR:

Clustered regularly interspaced short palindromic repeats

DUB:

Deubiquitinase

FOXO:

Forkhead box O

GSK3β:

Glycogen synthase kinase 3 β

HD:

Huntington’s disease

HDAC(s):

Histone deacetylase(s)

Hsp:

Heat shock protein

IBs:

Inclusion bodies

IGF-1:

Insulin-like growth factor 1

IL-1β:

Interleukin 1β

JD:

Josephin domain

LC3:

Microtubule-associated protein 1A/1B-light chain 3

MATAGG:

Mutant ataxin-3–containing aggregates

MATIB(s):

Mutant ataxin-3–containing inclusion bodies

MJD:

Machado-Joseph disease

mTOR:

Mammalian target of rapamycin

PD:

Parkinson’s disease

SARA:

Scale for the assessment rating of ataxia

SBMA:

Spinal and bulbar muscular atrophy

SCA:

Spinocerebellar ataxia

TNF:

Tumour necrosis factor

UIM:

Ubiquitin-interacting motifs

UPS:

Ubiquitin-proteasome system

VCP:

Valosin-containing protein

References

  1. Costa Mdo C, Paulson HL (2012) Toward understanding Machado-Joseph disease. Prog Neurobiol 97(2):239–257. https://doi.org/10.1016/j.pneurobio.2011.11.006

    Article  CAS  PubMed  Google Scholar 

  2. Coutinho P, Andrade C (1978) Autosomal dominant system degeneration in Portuguese families of the Azores Islands. A new genetic disorder involving cerebellar, pyramidal, extrapyramidal and spinal cord motor functions. Neurology 28(7):703–709. https://doi.org/10.1212/wnl.28.7.703

    Article  CAS  PubMed  Google Scholar 

  3. Takiyama Y, Nishizawa M, Tanaka H, Kawashima S, Sakamoto H, Karube Y, Shimazaki H, Soutome M et al (1993) The gene for Machado-Joseph disease maps to human chromosome 14q. Nat Genet 4(3):300–304. https://doi.org/10.1038/ng0793-300

    Article  CAS  PubMed  Google Scholar 

  4. Gispert S, Twells R, Orozco G, Brice A, Weber J, Heredero L, Scheufler K, Riley B et al (1993) Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23-24.1. Nat Genet 4(3):295–299. https://doi.org/10.1038/ng0793-295

    Article  CAS  PubMed  Google Scholar 

  5. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S et al (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 8(3):221–228. https://doi.org/10.1038/ng1194-221

    Article  CAS  PubMed  Google Scholar 

  6. Matos CA, de Almeida LP, Nobrega C (2019) Machado-Joseph disease/spinocerebellar ataxia type 3: lessons from disease pathogenesis and clues into therapy. J Neurochem 148(1):8–28. https://doi.org/10.1111/jnc.14541

    Article  CAS  PubMed  Google Scholar 

  7. Chen Z, Wang P, Wang C, Peng Y, Hou X, Zhou X, Li T, Peng H et al (2018) Updated frequency analysis of spinocerebellar ataxia in China. Brain 141(4):e22. https://doi.org/10.1093/brain/awy016

    Article  PubMed  Google Scholar 

  8. Jardim LB, Silveira I, Pereira ML, Ferro A, Alonso I, do Ceu Moreira M, Mendonca P, Ferreirinha F, Sequeiros J, Giugliani R (2001) A survey of spinocerebellar ataxia in South Brazil - 66 new cases with Machado-Joseph disease, SCA7, SCA8, or unidentified disease-causing mutations. J Neurol 248 (10):870-876. doi:https://doi.org/10.1007/s004150170072

  9. Zaltzman R, Sharony R, Klein C, Gordon CR (2016) Spinocerebellar ataxia type 3 in Israel: phenotype and genotype of a Jew Yemenite subpopulation. J Neurol 263(11):2207–2214. https://doi.org/10.1007/s00415-016-8251-8

    Article  PubMed  Google Scholar 

  10. Tsuji S, Onodera O, Goto J, Nishizawa M, Study Group on Ataxic D (2008) Sporadic ataxias in Japan--a population-based epidemiological study. Cerebellum 7(2):189–197. https://doi.org/10.1007/s12311-008-0028-x

    Article  CAS  Google Scholar 

  11. Coutinho P, Ruano L, Loureiro JL, Cruz VT, Barros J, Tuna A, Barbot C, Guimaraes J et al (2013) Hereditary ataxia and spastic paraplegia in Portugal: a population-based prevalence study. JAMA Neurol 70(6):746–755. https://doi.org/10.1001/jamaneurol.2013.1707

    Article  PubMed  Google Scholar 

  12. Cintra VP, Lourenco CM, Marques SE, de Oliveira LM, Tumas V, Marques W Jr (2014) Mutational screening of 320 Brazilian patients with autosomal dominant spinocerebellar ataxia. J Neurol Sci 347(1-2):375–379. https://doi.org/10.1016/j.jns.2014.10.036

    Article  PubMed  Google Scholar 

  13. Stevanin G, Cancel G, Didierjean O, Durr A, Abbas N, Cassa E, Feingold J, Agid Y et al (1995) Linkage disequilibrium at the Machado-Joseph disease/spinal cerebellar ataxia 3 locus: evidence for a common founder effect in French and Portuguese-Brazilian families as well as a second ancestral Portuguese-Azorean mutation. Am J Hum Genet 57(5):1247–1250

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Verbeek DS, Piersma SJ, Hennekam EF, Ippel EF, Pearson PL, Sinke RJ (2004) Haplotype study in Dutch SCA3 and SCA6 families: evidence for common founder mutations. Eur J Hum Genet 12(6):441–446. https://doi.org/10.1038/sj.ejhg.5201167

    Article  CAS  PubMed  Google Scholar 

  15. Li T, Martins S, Peng Y, Wang P, Hou X, Chen Z, Wang C, Tang Z et al (2019) Is the High Frequency of Machado-Joseph Disease in China Due to New Mutational Origins? Front Genet 9:740. https://doi.org/10.3389/fgene.2018.00740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ogun SA, Martins S, Adebayo PB, Dawodu CO, Sequeiros J, Finkel MF (2015) Machado-Joseph disease in a Nigerian family: mutational origin and review of the literature. Eur J Hum Genet 23(2):271–273. https://doi.org/10.1038/ejhg.2014.77

    Article  PubMed  Google Scholar 

  17. Martins S, Sequeiros J (2018) Origins and Spread of Machado-Joseph Disease Ancestral Mutations Events. Adv Exp Med Biol 1049:243–254. https://doi.org/10.1007/978-3-319-71779-1_12

    Article  CAS  PubMed  Google Scholar 

  18. Martins S, Calafell F, Gaspar C, Wong VC, Silveira I, Nicholson GA, Brunt ER, Tranebjaerg L et al (2007) Asian origin for the worldwide-spread mutational event in Machado-Joseph disease. Arch Neurol 64(10):1502–1508. https://doi.org/10.1001/archneur.64.10.1502

    Article  PubMed  Google Scholar 

  19. Paulson HL (2007) Dominantly inherited ataxias: lessons learned from Machado-Joseph disease/spinocerebellar ataxia type 3. Semin Neurol 27(2):133–142. https://doi.org/10.1055/s-2007-971172

    Article  PubMed  Google Scholar 

  20. Paulson HL, Shakkottai VG, Clark HB, Orr HT (2017) Polyglutamine spinocerebellar ataxias - from genes to potential treatments. Nat Rev Neurosci 18 (10):613-626. doi:nrn.2017.92 [pii]10.1038/nrn.2017.92

  21. Rub U, Brunt ER, Deller T (2008) New insights into the pathoanatomy of spinocerebellar ataxia type 3 (Machado-Joseph disease). Curr Opin Neurol 21(2):111–116. https://doi.org/10.1097/WCO.0b013e3282f7673d00019052-200804000-00002 [pii]

    Article  PubMed  Google Scholar 

  22. Durr A, Stevanin G, Cancel G, Duyckaerts C, Abbas N, Didierjean O, Chneiweiss H, Benomar A et al (1996) Spinocerebellar ataxia 3 and Machado-Joseph disease: clinical, molecular, and neuropathological features. Ann Neurol 39(4):490–499. https://doi.org/10.1002/ana.410390411

    Article  CAS  PubMed  Google Scholar 

  23. Riess O, Rub U, Pastore A, Bauer P, Schols L (2008) SCA3: neurological features, pathogenesis and animal models. Cerebellum 7(2):125–137. https://doi.org/10.1007/s12311-008-0013-4

    Article  CAS  PubMed  Google Scholar 

  24. Tuite PJ, Rogaeva EA, St George-Hyslop PH, Lang AE (1995) Dopa-responsive parkinsonism phenotype of Machado-Joseph disease: confirmation of 14q CAG expansion. Ann Neurol 38(4):684–687. https://doi.org/10.1002/ana.410380422

    Article  CAS  PubMed  Google Scholar 

  25. Moro A, Munhoz RP, Arruda WO, Raskin S, Moscovich M, Teive HA (2014) Spinocerebellar ataxia type 3: subphenotypes in a cohort of Brazilian patients. Arq Neuropsiquiatr 72 (9):659-662. doi:10.1590/0004-282 × 20140129

  26. Lopes TM, D'Abreu A, Franca MC Jr, Yasuda CL, Betting LE, Samara AB, Castellano G, Somazz JC et al (2013) Widespread neuronal damage and cognitive dysfunction in spinocerebellar ataxia type 3. J Neurol 260(9):2370–2379. https://doi.org/10.1007/s00415-013-6998-8

    Article  CAS  PubMed  Google Scholar 

  27. Diallo A, Jacobi H, Cook A, Labrum R, Durr A, Brice A, Charles P, Marelli C, Mariotti C, Nanetti L, Panzeri M, Rakowicz M, Sobanska A, Sulek A, Schmitz-Hubsch T, Schols L, Hengel H, Melegh B, Filla A, Antenora A, Infante J, Berciano J, van de Warrenburg BP, Timmann D, Boesch S, Pandolfo M, Schulz JB, Bauer P, Giunti P, Kang JS, Klockgether T, Tezenas du Montcel S (2018) Survival in patients with spinocerebellar ataxia types 1, 2, 3, and 6 (EUROSCA): a longitudinal cohort study. Lancet Neurol 17 (4):327-334. doi:S1474-4422(18)30042-5 [pii]10.1016/S1474-4422(18)30042-5

  28. Da Silva JD, Teixeira-Castro A, Maciel P (2019) From Pathogenesis to Novel Therapeutics for Spinocerebellar Ataxia Type 3: Evading Potholes on the Way to Translation. Neurotherapeutics 16(4):1009–1031. https://doi.org/10.1007/s13311-019-00798-110.1007/s13311-019-00798-1 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  29. Maciel P, Gaspar C, DeStefano AL, Silveira I, Coutinho P, Radvany J, Dawson DM, Sudarsky L et al (1995) Correlation between CAG repeat length and clinical features in Machado-Joseph disease. Am J Hum Genet 57(1):54–61

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Scott SSO, Pedroso JL, Barsottini OGP, Franca-Junior MC, Braga-Neto P (2020) Natural history and epidemiology of the spinocerebellar ataxias: Insights from the first description to nowadays. J Neurol Sci 417:117082. https://doi.org/10.1016/j.jns.2020.117082

    Article  PubMed  Google Scholar 

  31. Leotti VB, de Vries JJ, Oliveira CM, de Mattos EP, Te Meerman GJ, Brunt ER, Kampinga HH, Jardim LB et al (2020) CAG Repeat Size Influences the Progression Rate of Spinocerebellar Ataxia Type 3. Ann Neurol. https://doi.org/10.1002/ana.25919

  32. Sasaki H, Wakisaka A, Fukazawa T, Iwabuchi K, Hamada T, Takada A, Mukai E, Matsuura T et al (1995) CAG repeat expansion of Machado-Joseph disease in the Japanese: analysis of the repeat instability for parental transmission, and correlation with disease phenotype. J Neurol Sci 133(1-2):128–133. https://doi.org/10.1016/0022-510x(95)00175-2

    Article  CAS  PubMed  Google Scholar 

  33. Zhao H, Yang L, Dong Y, Wu ZY (2020) Phenotypic variance in monozygotic twins with SCA3. Mol Genet Genomic Med 8(10):e1438. https://doi.org/10.1002/mgg3.1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Akcimen F, Martins S, Liao C, Bourassa CV, Catoire H, Nicholson GA, Riess O, Raposo M, Franca MC, Vasconcelos J, Lima M, Lopes-Cendes I, Saraiva-Pereira ML, Jardim LB, Sequeiros J, Dion PA, Rouleau GA (2020) Genome-wide association study identifies genetic factors that modify age at onset in Machado-Joseph disease. Aging (Albany NY) 12 (6):4742-4756. doi:10.18632/aging.102825

  35. Cagnoli C, Brussino A, Mancini C, Ferrone M, Orsi L, Salmin P, Pappi P, Giorgio E et al (2018) Spinocerebellar Ataxia Tethering PCR: A Rapid Genetic Test for the Diagnosis of Spinocerebellar Ataxia Types 1, 2, 3, 6, and 7 by PCR and Capillary Electrophoresis. J Mol Diagn 20(3):289–297. https://doi.org/10.1016/j.jmoldx.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  36. Sequeiros J, Martindale J, Seneca S, Giunti P, Kamarainen O, Volpini V, Weirich H, Christodoulou K et al (2010) EMQN Best Practice Guidelines for molecular genetic testing of SCAs. Eur J Hum Genet 18(11):1173–1176. https://doi.org/10.1038/ejhg.2010.8

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chatzikyriakidou A, Yapijakis C, Sofikitis N, Vassilopoulos D, Georgiou I (2005) Real-time PCR analysis of trinucleotide repeat allele expansions in the androgen receptor gene. Mol Diagn 9(4):217–219. https://doi.org/10.1007/BF03260095

    Article  PubMed  Google Scholar 

  38. Melo AR, Ramos A, Kazachkova N, Raposo M, Bettencourt BF, Rendeiro AR, Kay T, Vasconcelos J et al (2016) Triplet Repeat Primed PCR (TP-PCR) in Molecular Diagnostic Testing for Spinocerebellar Ataxia Type 3 (SCA3). Mol Diagn Ther 20(6):617–622. https://doi.org/10.1007/s40291-016-0235-y

    Article  CAS  PubMed  Google Scholar 

  39. Cancel G, Gourfinkel-An I, Stevanin G, Didierjean O, Abbas N, Hirsch E, Agid Y, Brice A (1998) Somatic mosaicism of the CAG repeat expansion in spinocerebellar ataxia type 3/Machado-Joseph disease. Hum Mutat 11(1):23–27. https://doi.org/10.1002/(SICI)1098-1004(1998)11:1<23::AID-HUMU4>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  40. Lopes-Cendes I, Maciel P, Kish S, Gaspar C, Robitaille Y, Clark HB, Koeppen AH, Nance M et al (1996) Somatic mosaicism in the central nervous system in spinocerebellar ataxia type 1 and Machado-Joseph disease. Ann Neurol 40(2):199–206. https://doi.org/10.1002/ana.410400211

    Article  CAS  PubMed  Google Scholar 

  41. Friedman JE (2011) Anticipation in hereditary disease: the history of a biomedical concept. Hum Genet 130(6):705–714. https://doi.org/10.1007/s00439-011-1022-9

    Article  PubMed  Google Scholar 

  42. Maltecca F, Filla A, Castaldo I, Coppola G, Fragassi NA, Carella M, Bruni A, Cocozza S et al (2003) Intergenerational instability and marked anticipation in SCA-17. Neurology 61(10):1441–1443. https://doi.org/10.1212/01.wnl.0000094123.09098.a0

    Article  CAS  PubMed  Google Scholar 

  43. Burnett BG, Pittman RN (2005) The polyglutamine neurodegenerative protein ataxin 3 regulates aggresome formation. Proc Natl Acad Sci U S A 102 (12):4330-4335. doi:0407252102 [pii]10.1073/pnas.0407252102

  44. Yao TP (2010) The role of ubiquitin in autophagy-dependent protein aggregate processing. Genes Cancer 1(7):779–786. https://doi.org/10.1177/1947601910383277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McLoughlin HS, Moore LR, Paulson HL (2020) Pathogenesis of SCA3 and implications for other polyglutamine diseases. Neurobiol Dis 134:104635. doi:S0969-9961(19)30310-9 [pii]10.1016/j.nbd.2019.104635

  46. Burnett B, Li F, Pittman RN (2003) The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum Mol Genet 12(23):3195–3205. https://doi.org/10.1093/hmg/ddg344ddg344 [pii]

    Article  CAS  PubMed  Google Scholar 

  47. Winborn BJ, Travis SM, Todi SV, Scaglione KM, Xu P, Williams AJ, Cohen RE, Peng J, Paulson HL (2008) The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits Lys63 linkages in mixed linkage ubiquitin chains. J Biol Chem 283 (39):26436-26443. doi:M803692200 [pii]10.1074/jbc.M803692200

  48. Deriu MA, Grasso G, Licandro G, Danani A, Gallo D, Tuszynski JA, Morbiducci U (2014) Investigation of the Josephin Domain protein-protein interaction by molecular dynamics. PLoS One 9(9):e108677. https://doi.org/10.1371/journal.pone.0108677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ferro A, Carvalho AL, Teixeira-Castro A, Almeida C, Tome RJ, Cortes L, Rodrigues AJ, Logarinho E et al (2007) NEDD8: a new ataxin-3 interactor. Biochim Biophys Acta 1773(11):1619–1627. https://doi.org/10.1016/j.bbamcr.2007.07.012

    Article  CAS  PubMed  Google Scholar 

  50. Wang Q, Li L, Ye Y (2006) Regulation of retrotranslocation by p97-associated deubiquitinating enzyme ataxin-3. J Cell Biol 174 (7):963-971. doi:jcb.200605100 [pii]10.1083/jcb.200605100

  51. Zhong X, Pittman RN (2006) Ataxin-3 binds VCP/p97 and regulates retrotranslocation of ERAD substrates. Hum Mol Genet 15 (16):2409-2420. doi:ddl164 [pii]10.1093/hmg/ddl164

  52. Laco MN, Cortes L, Travis SM, Paulson HL, Rego AC (2012) Valosin-containing protein (VCP/p97) is an activator of wild-type ataxin-3. PLoS One 7(9):e43563. https://doi.org/10.1371/journal.pone.0043563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Trottier Y, Cancel G, An-Gourfinkel I, Lutz Y, Weber C, Brice A, Hirsch E, Mandel JL (1998) Heterogeneous intracellular localization and expression of ataxin-3. Neurobiol Dis 5 (5):335-347. doi:S0969-9961(98)90208-X [pii]10.1006/nbdi.1998.0208

  54. Macedo-Ribeiro S, Cortes L, Maciel P, Carvalho AL (2009) Nucleocytoplasmic shuttling activity of ataxin-3. PLoS One 4(6):e5834. https://doi.org/10.1371/journal.pone.0005834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kettner M, Willwohl D, Hubbard GB, Rub U, Dick EJ Jr, Cox AB, Trottier Y, Auburger G et al (2002) Intranuclear aggregation of nonexpanded ataxin-3 in marinesco bodies of the nonhuman primate substantia nigra. Exp Neurol 176(1):117–121. https://doi.org/10.1006/exnr.2002.7916

    Article  CAS  PubMed  Google Scholar 

  56. Paulson HL, Das SS, Crino PB, Perez MK, Patel SC, Gotsdiner D, Fischbeck KH, Pittman RN (1997) Machado-Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann Neurol 41(4):453–462. https://doi.org/10.1002/ana.410410408

    Article  CAS  PubMed  Google Scholar 

  57. Schmidt T, Landwehrmeyer GB, Schmitt I, Trottier Y, Auburger G, Laccone F, Klockgether T, Volpel M et al (1998) An isoform of ataxin-3 accumulates in the nucleus of neuronal cells in affected brain regions of SCA3 patients. Brain Pathol 8(4):669–679. https://doi.org/10.1111/j.1750-3639.1998.tb00193.x

    Article  CAS  PubMed  Google Scholar 

  58. Breuer P, Haacke A, Evert BO, Wüllner U (2010) Nuclear aggregation of polyglutamine-expanded ataxin-3: fragments escape the cytoplasmic quality control. J Biol Chem 285(9):6532–6537. https://doi.org/10.1074/jbc.M109.036335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Goto J, Watanabe M, Ichikawa Y, Yee SB, Ihara N, Endo K, Igarashi S, Takiyama Y, Gaspar C, Maciel P, Tsuji S, Rouleau GA, Kanazawa I (1997) Machado-Joseph disease gene products carrying different carboxyl termini. Neurosci Res 28 (4):373-377. doi:S0168-0102(97)00056-4 [pii]10.1016/s0168-0102(97)00056-4

  60. Masino L, Musi V, Menon RP, Fusi P, Kelly G, Frenkiel TA, Trottier Y, Pastore A (2003) Domain architecture of the polyglutamine protein ataxin-3: a globular domain followed by a flexible tail. FEBS Lett 549 (1-3):21-25. doi:S0014579303007488 [pii]10.1016/s0014-5793(03)00748-8

  61. Warrick JM, Morabito LM, Bilen J, Gordesky-Gold B, Faust LZ, Paulson HL, Bonini NM (2005) Ataxin-3 suppresses polyglutamine neurodegeneration in Drosophila by a ubiquitin-associated mechanism. Mol Cell 18 (1):37-48. doi:S1097-2765(05)01147-0 [pii]10.1016/j.molcel.2005.02.030

  62. Weishäupl D, Schneider J, Peixoto Pinheiro B, Ruess C, Dold SM, von Zweydorf F, Gloeckner CJ, Schmidt J et al (2019) Physiological and pathophysiological characteristics of ataxin-3 isoforms. J Biol Chem 294(2):644–661. https://doi.org/10.1074/jbc.RA118.005801

    Article  PubMed  Google Scholar 

  63. Harris GM, Dodelzon K, Gong L, Gonzalez-Alegre P, Paulson HL (2010) Splice isoforms of the polyglutamine disease protein ataxin-3 exhibit similar enzymatic yet different aggregation properties. PLoS One 5(10):e13695. https://doi.org/10.1371/journal.pone.0013695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Johnson SL, Blount JR, Libohova K, Ranxhi B, Paulson HL, Tsou WL, Todi SV (2019) Differential toxicity of ataxin-3 isoforms in Drosophila models of Spinocerebellar Ataxia Type 3. Neurobiol Dis 132:104535. https://doi.org/10.1016/j.nbd.2019.104535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Johnson SL, Ranxhi B, Libohova K, Tsou WL, Todi SV (2020) Ubiquitin-interacting motifs of ataxin-3 regulate its polyglutamine toxicity through Hsc70-4-dependent aggregation. Elife 9. https://doi.org/10.7554/eLife.60742

  66. Fontaine SN, Martin MD, Akoury E, Assimon VA, Borysov S, Nordhues BA, Sabbagh JJ, Cockman M et al (2015) The active Hsc70/tau complex can be exploited to enhance tau turnover without damaging microtubule dynamics. Hum Mol Genet 24(14):3971–3981. https://doi.org/10.1093/hmg/ddv135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Paulson HL, Perez MK, Trottier Y, Trojanowski JQ, Subramony SH, Das SS, Vig P, Mandel JL, Fischbeck KH, Pittman RN (1997) Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19 (2):333-344. doi:S0896-6273(00)80943-5 [pii]10.1016/s0896-6273(00)80943-5

  68. Hayashi M, Kobayashi K, Furuta H (2003) Immunohistochemical study of neuronal intranuclear and cytoplasmic inclusions in Machado-Joseph disease. Psychiatry Clin Neurosci 57(2):205–213. https://doi.org/10.1046/j.1440-1819.2003.01102.x

    Article  PubMed  Google Scholar 

  69. Seidel K, den Dunnen WF, Schultz C, Paulson H, Frank S, de Vos RA, Brunt ER, Deller T et al (2010) Axonal inclusions in spinocerebellar ataxia type 3. Acta Neuropathol 120(4):449–460. https://doi.org/10.1007/s00401-010-0717-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Seidel K, Siswanto S, Fredrich M, Bouzrou M, den Dunnen WFA, Ozerden I, Korf HW, Melegh B et al (2017) On the distribution of intranuclear and cytoplasmic aggregates in the brainstem of patients with spinocerebellar ataxia type 2 and 3. Brain Pathol 27(3):345–355. https://doi.org/10.1111/bpa.12412

    Article  CAS  PubMed  Google Scholar 

  71. Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90 (3):537-548. doi:S0092-8674(00)80513-9 [pii]10.1016/s0092-8674(00)80513-9

  72. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431 (7010):805-810. doi:nature02998 [pii]10.1038/nature02998

  73. Rub U, de Vos RA, Brunt ER, Sebesteny T, Schols L, Auburger G, Bohl J, Ghebremedhin E, Gierga K, Seidel K, den Dunnen W, Heinsen H, Paulson H, Deller T (2006) Spinocerebellar ataxia type 3 (SCA3): thalamic neurodegeneration occurs independently from thalamic ataxin-3 immunopositive neuronal intranuclear inclusions. Brain Pathol 16 (3):218-227. doi:BPA022 [pii]10.1111/j.1750-3639.2006.00022.x

  74. Bowman AB, Yoo SY, Dantuma NP, Zoghbi HY (2005) Neuronal dysfunction in a polyglutamine disease model occurs in the absence of ubiquitin-proteasome system impairment and inversely correlates with the degree of nuclear inclusion formation. Hum Mol Genet 14 (5):679-691. doi:ddi064 [pii]10.1093/hmg/ddi064

  75. Takahashi T, Katada S, Onodera O (2010) Polyglutamine diseases: where does toxicity come from? what is toxicity? where are we going? J Mol Cell Biol 2 (4):180-191. doi:mjq005 [pii]10.1093/jmcb/mjq005

  76. Takahashi T, Kikuchi S, Katada S, Nagai Y, Nishizawa M, Onodera O (2008) Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Hum Mol Genet 17 (3):345-356. doi:ddm311 [pii]10.1093/hmg/ddm311

  77. Lajoie P, Snapp EL (2010) Formation and toxicity of soluble polyglutamine oligomers in living cells. PLoS One 5(12):e15245. https://doi.org/10.1371/journal.pone.0015245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chai Y, Wu L, Griffin JD, Paulson HL (2001) The role of protein composition in specifying nuclear inclusion formation in polyglutamine disease. J Biol Chem 276(48):44889–44897. https://doi.org/10.1074/jbc.M106575200M106575200 [pii]

    Article  CAS  PubMed  Google Scholar 

  79. Sanchez I, Mahlke C, Yuan J (2003) Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421(6921):373–379. https://doi.org/10.1038/nature01301

    Article  CAS  PubMed  Google Scholar 

  80. Todd TW, Lim J (2013) Aggregation formation in the polyglutamine diseases: protection at a cost? Mol Cell 36(3):185–194. https://doi.org/10.1007/s10059-013-0167-x

    Article  CAS  Google Scholar 

  81. Bevivino AE, Loll PJ (2001) An expanded glutamine repeat destabilizes native ataxin-3 structure and mediates formation of parallel beta -fibrils. Proc Natl Acad Sci U S A 98(21):11955–11960. https://doi.org/10.1073/pnas.211305198211305198 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lathrop RH, Casale M, Tobias DJ, Marsh JL, Thompson LM (1998) Modeling protein homopolymeric repeats: possible polyglutamine structural motifs for Huntington's disease. Proc Int Conf Intell Syst Mol Biol 6:105–114

    CAS  PubMed  Google Scholar 

  83. Stott K, Blackburn JM, Butler PJ, Perutz M (1995) Incorporation of glutamine repeats makes protein oligomerize: implications for neurodegenerative diseases. Proc Natl Acad Sci U S A 92(14):6509–6513. https://doi.org/10.1073/pnas.92.14.6509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tanaka M, Morishima I, Akagi T, Hashikawa T, Nukina N (2001) Intra- and intermolecular beta-pleated sheet formation in glutamine-repeat inserted myoglobin as a model for polyglutamine diseases. J Biol Chem 276(48):45470–45475. https://doi.org/10.1074/jbc.M107502200M107502200 [pii]

    Article  CAS  PubMed  Google Scholar 

  85. Thakur AK, Wetzel R (2002) Mutational analysis of the structural organization of polyglutamine aggregates. Proc Natl Acad Sci U S A 99(26):17014–17019. https://doi.org/10.1073/pnas.252523899252523899 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ellisdon AM, Thomas B, Bottomley SP (2006) The two-stage pathway of ataxin-3 fibrillogenesis involves a polyglutamine-independent step. J Biol Chem 281(25):16888–16896

    Article  CAS  PubMed  Google Scholar 

  87. Gales L, Cortes L, Almeida C, Melo CV, Costa MC, Maciel P, Clarke DT, Damas AM, Macedo-Ribeiro S (2005) Towards a structural understanding of the fibrillization pathway in Machado-Josephʼs disease: trapping early oligomers of non-expanded ataxin-3. J Mol Biol 353 (3):642-654. doi:S0022-2836(05)01014-4 [pii]10.1016/j.jmb.2005.08.061

  88. Natalello A, Frana AM, Relini A, Apicella A, Invernizzi G, Casari C, Gliozzi A, Doglia SM et al (2011) A major role for side-chain polyglutamine hydrogen bonding in irreversible ataxin-3 aggregation. PLoS One 6(4):e18789. https://doi.org/10.1371/journal.pone.0018789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Scarff CA, Almeida B, Fraga J, Macedo-Ribeiro S, Radford SE, Ashcroft AE (2015) Examination of Ataxin-3 (atx-3) Aggregation by Structural Mass Spectrometry Techniques: A Rationale for Expedited Aggregation upon Polyglutamine (polyQ) Expansion. Mol Cell Proteomics 14 (5):1241-1253. doi:M114.044610 [pii]10.1074/mcp.M114.044610

  90. Lupton CJ, Steer DL, Wintrode PL, Bottomley SP, Hughes VA, Ellisdon AM (2015) Enhanced molecular mobility of ordinarily structured regions drives polyglutamine disease. J Biol Chem 290 (40):24190-24200. doi:M115.659532 [pii]10.1074/jbc.M115.659532

  91. Masino L, Nicastro G, Calder L, Vendruscolo M, Pastore A (2011) Functional interactions as a survival strategy against abnormal aggregation. FASEB J 25 (1):45-54. doi:fj.10-161208 [pii]10.1096/fj.10-161208

  92. Dantuma NP, Herzog LK (2020) Machado-Joseph Disease: A Stress Combating Deubiquitylating Enzyme Changing Sides. Adv Exp Med Biol 1233:237–260. https://doi.org/10.1007/978-3-030-38266-7_10

    Article  CAS  PubMed  Google Scholar 

  93. Blount JR, Tsou WL, Ristic G, Burr AA, Ouyang M, Galante H, Scaglione KM, Todi SV (2014) Ubiquitin-binding site 2 of ataxin-3 prevents its proteasomal degradation by interacting with Rad23. Nat Commun 5:4638. https://doi.org/10.1038/ncomms5638

    Article  CAS  PubMed  Google Scholar 

  94. Sutton JR, Blount JR, Libohova K, Tsou WL, Joshi GS, Paulson HL, Costa MDC, Scaglione KM et al (2017) Interaction of the polyglutamine protein ataxin-3 with Rad23 regulates toxicity in Drosophila models of Spinocerebellar Ataxia Type 3. Hum Mol Genet 26(8):1419–1431. https://doi.org/10.1093/hmg/ddx039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Robertson AL, Headey SJ, Saunders HM, Ecroyd H, Scanlon MJ, Carver JA, Bottomley SP (2010) Small heat-shock proteins interact with a flanking domain to suppress polyglutamine aggregation. Proc Natl Acad Sci U S A 107 (23):10424–10429. doi:0914773107 [pii]10.1073/pnas.0914773107

  96. Behrends C, Langer CA, Boteva R, Bottcher UM, Stemp MJ, Schaffar G, Rao BV, Giese A et al (2006) Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol Cell 23(6):887–897

    Article  CAS  PubMed  Google Scholar 

  97. Bilen J, Bonini NM (2007) Genome-wide screen for modifiers of ataxin-3 neurodegeneration in Drosophila. PLoS Genet 3 (10):1950-1964. doi:07-PLGE-RA-0090 [pii]10.1371/journal.pgen.0030177

  98. Chai Y, Koppenhafer SL, Bonini NM, Paulson HL (1999) Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J Neurosci 19(23):10338–10347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jana NR, Dikshit P, Goswami A, Kotliarova S, Murata S, Tanaka K, Nukina N (2005) Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J Biol Chem 280 (12):11635-11640. https://doi.org/10.1074/jbc.M412042200

  100. Warrick JM, Chan HY, Gray-Board GL, Chai Y, Paulson HL, Bonini NM (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23(4):425–428. https://doi.org/10.1038/70532

    Article  CAS  PubMed  Google Scholar 

  101. Huen NY, Chan HY (2005) Dynamic regulation of molecular chaperone gene expression in polyglutamine disease. Biochem Biophys Res Commun 334 (4):1074-1084. doi:S0006-291X(05)01455-5 [pii]10.1016/j.bbrc.2005.07.008

  102. Teixeira-Castro A, Ailion M, Jalles A, Brignull HR, Vilaca JL, Dias N, Rodrigues P, Oliveira JF, Neves-Carvalho A, Morimoto RI, Maciel P (2011) Neuron-specific proteotoxicity of mutant ataxin-3 in C. elegans: rescue by the DAF-16 and HSF-1 pathways. Hum Mol Genet 20 (15):2996-3009. doi:ddr203 [pii]10.1093/hmg/ddr203

  103. Reina CP, Nabet BY, Young PD, Pittman RN (2012) Basal and stress-induced Hsp70 are modulated by ataxin-3. Cell Stress Chaperones 17(6):729–742. https://doi.org/10.1007/s12192-012-0346-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zijlstra MP, Rujano MA, Van Waarde MA, Vis E, Brunt ER, Kampinga HH (2010) Levels of DNAJB family members (HSP40) correlate with disease onset in patients with spinocerebellar ataxia type 3. Eur J Neurosci 32 (5):760-770. doi:EJN7352 [pii]10.1111/j.1460-9568.2010.07352.x

  105. Seidel K, Vinet J, Dunnen WF, Brunt ER, Meister M, Boncoraglio A, Zijlstra MP, Boddeke HW et al (2012) The HSPB8-BAG3 chaperone complex is upregulated in astrocytes in the human brain affected by protein aggregation diseases. Neuropathol Appl Neurobiol 38(1):39–53. https://doi.org/10.1111/j.1365-2990.2011.01198.x

    Article  CAS  PubMed  Google Scholar 

  106. Doss-Pepe EW, Stenroos ES, Johnson WG, Madura K (2003) Ataxin-3 interactions with rad23 and valosin-containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis. Mol Cell Biol 23(18):6469–6483. https://doi.org/10.1128/mcb.23.18.6469-6483.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ristic G, Sutton JR, Libohova K, Todi SV (2018) Toxicity and aggregation of the polyglutamine disease protein, ataxin-3 is regulated by its binding to VCP/p97 in Drosophila melanogaster. Neurobiol Dis 116:78–92. https://doi.org/10.1016/j.nbd.2018.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Berke SJ, Chai Y, Marrs GL, Wen H, Paulson HL (2005) Defining the role of ubiquitin-interacting motifs in the polyglutamine disease protein, ataxin-3. J Biol Chem 280 (36):32026-32034. doi:M506084200 [pii]10.1074/jbc.M506084200

  109. Chai Y, Koppenhafer SL, Shoesmith SJ, Perez MK, Paulson HL (1999) Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro. Hum Mol Genet 8 (4):673-682. doi:ddc073 [pii]10.1093/hmg/8.4.673

  110. Donaldson KM, Li W, Ching KA, Batalov S, Tsai CC, Joazeiro CA (2003) Ubiquitin-mediated sequestration of normal cellular proteins into polyglutamine aggregates. Proc Natl Acad Sci U S A 100(15):8892–8897. https://doi.org/10.1073/pnas.15302121001530212100 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kim S, Nollen EA, Kitagawa K, Bindokas VP, Morimoto RI (2002) Polyglutamine protein aggregates are dynamic. Nat Cell Biol 4(10):826–831. https://doi.org/10.1038/ncb863ncb863 [pii]

    Article  CAS  PubMed  Google Scholar 

  112. Vos MJ, Zijlstra MP, Kanon B, van Waarde-Verhagen MA, Brunt ER, Oosterveld-Hut HM, Carra S, Sibon OC et al (2010) HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum Mol Genet 19(23):4677–4693. https://doi.org/10.1093/hmg/ddq398

    Article  CAS  PubMed  Google Scholar 

  113. Iwata A, Christianson JC, Bucci M, Ellerby LM, Nukina N, Forno LS, Kopito RR (2005) Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc Natl Acad Sci U S A 102(37):13135–13140. https://doi.org/10.1073/pnas.0505801102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, Schmitt I, Wullner U, Evert BO, O'Kane CJ, Rubinsztein DC (2006) Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet 15 (3):433-442. doi:ddi458 [pii]10.1093/hmg/ddi458

  115. Raj K, Sarkar S (2019) Tissue-Specific Upregulation of Drosophila Insulin Receptor (InR) Mitigates Poly(Q)-Mediated Neurotoxicity by Restoration of Cellular Transcription Machinery. Mol Neurobiol 56(2):1310–1329. https://doi.org/10.1007/s12035-018-1160-310.1007/s12035-018-1160-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  116. Sittler A, Muriel MP, Marinello M, Brice A, den Dunnen W, Alves S (2018) Deregulation of autophagy in postmortem brains of Machado-Joseph disease patients. Neuropathology 38(2):113–124. https://doi.org/10.1111/neup.12433

    Article  CAS  PubMed  Google Scholar 

  117. Kuhlbrodt K, Janiesch PC, Kevei E, Segref A, Barikbin R, Hoppe T (2011) The Machado-Joseph disease deubiquitylase ATX-3 couples longevity and proteostasis. Nat Cell Biol 13 (3):273-281. doi:ncb2200 [pii]10.1038/ncb2200

  118. Leidal AM, Levine B, Debnath J (2018) Autophagy and the cell biology of age-related disease. Nat Cell Biol 20(12):1338–1348. https://doi.org/10.1038/s41556-018-0235-8

    Article  CAS  PubMed  Google Scholar 

  119. Herzog LK, Kevei E, Marchante R, Bottcher C, Bindesboll C, Lystad AH, Pfeiffer A, Gierisch ME et al (2020) The Machado-Joseph disease deubiquitylase ataxin-3 interacts with LC3C/GABARAP and promotes autophagy. Aging Cell 19(1):e13051. https://doi.org/10.1111/acel.13051

    Article  CAS  PubMed  Google Scholar 

  120. Ashkenazi A, Bento CF, Ricketts T, Vicinanza M, Siddiqi F, Pavel M, Squitieri F, Hardenberg MC, Imarisio S, Menzies FM, Rubinsztein DC (2017) Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature 545 (7652):108-111. doi:nature22078 [pii]10.1038/nature22078

  121. Nascimento-Ferreira I, Santos-Ferreira T, Sousa-Ferreira L, Auregan G, Onofre I, Alves S, Dufour N, Colomer Gould VF, Koeppen A, Deglon N, Pereira de Almeida L (2011) Overexpression of the autophagic beclin-1 protein clears mutant ataxin-3 and alleviates Machado-Joseph disease. Brain 134 (Pt 5):1400-1415. doi:awr047 [pii]10.1093/brain/awr047

  122. Perutz MF, Johnson T, Suzuki M, Finch JT (1994) Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci U S A 91(12):5355–5358. https://doi.org/10.1073/pnas.91.12.5355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Okazawa H (2003) Polyglutamine diseases: a transcription disorder? Cell Mol Life Sci 60(7):1427–1439. https://doi.org/10.1007/s00018-003-3013-z

    Article  CAS  PubMed  Google Scholar 

  124. Chou AH, Yeh TH, Ouyang P, Chen YL, Chen SY, Wang HL (2008) Polyglutamine-expanded ataxin-3 causes cerebellar dysfunction of SCA3 transgenic mice by inducing transcriptional dysregulation. Neurobiol Dis 31 (1):89-101. doi:S0969-9961(08)00067-3 [pii]10.1016/j.nbd.2008.03.011

  125. Evert BO, Araujo J, Vieira-Saecker AM, de Vos RA, Harendza S, Klockgether T, Wullner U (2006) Ataxin-3 represses transcription via chromatin binding, interaction with histone deacetylase 3, and histone deacetylation. J Neurosci 26 (44):11474-11486. doi:26/44/11474 [pii]10.1523/JNEUROSCI.2053-06.2006

  126. Araujo J, Breuer P, Dieringer S, Krauss S, Dorn S, Zimmermann K, Pfeifer A, Klockgether T, Wuellner U, Evert BO (2011) FOXO4-dependent upregulation of superoxide dismutase-2 in response to oxidative stress is impaired in spinocerebellar ataxia type 3. Hum Mol Genet 20 (15):2928-2941. doi:ddr197 [pii]10.1093/hmg/ddr197

  127. Chatterjee A, Saha S, Chakraborty A, Silva-Fernandes A, Mandal SM, Neves-Carvalho A, Liu Y, Pandita RK et al (2015) The role of the mammalian DNA end-processing enzyme polynucleotide kinase 3'-phosphatase in spinocerebellar ataxia type 3 pathogenesis. PLoS Genet 11(1):e1004749. https://doi.org/10.1371/journal.pgen.1004749PGENETICS-D-14-00709 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  128. Gao R, Liu Y, Silva-Fernandes A, Fang X, Paulucci-Holthauzen A, Chatterjee A, Zhang HL, Matsuura T et al (2015) Inactivation of PNKP by mutant ATXN3 triggers apoptosis by activating the DNA damage-response pathway in SCA3. PLoS Genet 11(1):e1004834. https://doi.org/10.1371/journal.pgen.1004834PGENETICS-D-14-00714 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  129. Bras J, Alonso I, Barbot C, Costa MM, Darwent L, Orme T, Sequeiros J, Hardy J, Coutinho P, Guerreiro R (2015) Mutations in PNKP cause recessive ataxia with oculomotor apraxia type 4. Am J Hum Genet 96 (3):474-479. doi:S0002-9297(15)00013-0 [pii]10.1016/j.ajhg.2015.01.005

  130. Tzoulis C, Sztromwasser P, Johansson S, Gjerde IO, Knappskog P, Bindoff LA (2017) PNKP Mutations Identified by Whole-Exome Sequencing in a Norwegian Patient with Sporadic Ataxia and Edema. Cerebellum 16(1):272–275. https://doi.org/10.1007/s12311-016-0784-y10.1007/s12311-016-0784-y [pii]

    Article  CAS  PubMed  Google Scholar 

  131. Raposo M, Bettencourt C, Maciel P, Gao F, Ramos A, Kazachkova N, Vasconcelos J, Kay T et al (2015) Novel candidate blood-based transcriptional biomarkers of Machado-Joseph disease. Mov Disord 30(7):968–975. https://doi.org/10.1002/mds.26238

    Article  CAS  PubMed  Google Scholar 

  132. Fiebich BL, Akter S, Akundi RS (2014) The two-hit hypothesis for neuroinflammation: role of exogenous ATP in modulating inflammation in the brain. Front Cell Neurosci 8:260. https://doi.org/10.3389/fncel.2014.00260

    Article  PubMed  PubMed Central  Google Scholar 

  133. Pons V, Serhan N, Gayral S, Malaval C, Nauze M, Malet N, Laffargue M, Gales C et al (2014) Role of the ubiquitin-proteasome system in the regulation of P2Y13 receptor expression: impact on hepatic HDL uptake. Cell Mol Life Sci 71(9):1775–1788. https://doi.org/10.1007/s00018-013-1471-5

    Article  CAS  PubMed  Google Scholar 

  134. Espada S, Ortega F, Molina-Jijon E, Rojo AI, Perez-Sen R, Pedraza-Chaverri J, Miras-Portugal MT, Cuadrado A (2010) The purinergic P2Y(13) receptor activates the Nrf2/HO-1 axis and protects against oxidative stress-induced neuronal death. Free Radic Biol Med 49(3):416–426. https://doi.org/10.1016/j.freeradbiomed.2010.04.031

    Article  CAS  PubMed  Google Scholar 

  135. Ortega F, Perez-Sen R, Miras-Portugal MT (2008) Gi-coupled P2Y-ADP receptor mediates GSK-3 phosphorylation and beta-catenin nuclear translocation in granule neurons. J Neurochem 104(1):62–73. https://doi.org/10.1111/j.1471-4159.2007.05021.x

    Article  CAS  PubMed  Google Scholar 

  136. Kyrargyri V, Madry C, Rifat A, Arancibia-Carcamo IL, Jones SP, Chan VTT, Xu Y, Robaye B et al (2020) P2Y13 receptors regulate microglial morphology, surveillance, and resting levels of interleukin 1beta release. Glia 68(2):328–344. https://doi.org/10.1002/glia.23719

    Article  PubMed  Google Scholar 

  137. Li YX, Sibon OCM, Dijkers PF (2018) Inhibition of NF-kappaB in astrocytes is sufficient to delay neurodegeneration induced by proteotoxicity in neurons. J Neuroinflammation 15(1):261. https://doi.org/10.1186/s12974-018-1278-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Evert BO, Schelhaas J, Fleischer H, de Vos RA, Brunt ER, Stenzel W, Klockgether T, Wullner U (2006) Neuronal intranuclear inclusions, dysregulation of cytokine expression and cell death in spinocerebellar ataxia type 3. Clin Neuropathol 25(6):272–281

    CAS  PubMed  Google Scholar 

  139. Raposo M, Bettencourt C, Ramos A, Kazachkova N, Vasconcelos J, Kay T, Bruges-Armas J, Lima M (2017) Promoter Variation and Expression Levels of Inflammatory Genes IL1A, IL1B, IL6 and TNF in Blood of Spinocerebellar Ataxia Type 3 (SCA3) Patients. NeuroMolecular Med 19(1):41–45. https://doi.org/10.1007/s12017-016-8416-810.1007/s12017-016-8416-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  140. Silva-Fernandes A, Costa Mdo C, Duarte-Silva S, Oliveira P, Botelho CM, Martins L, Mariz JA, Ferreira T, Ribeiro F, Correia-Neves M, Costa C, Maciel P (2010) Motor uncoordination and neuropathology in a transgenic mouse model of Machado-Joseph disease lacking intranuclear inclusions and ataxin-3 cleavage products. Neurobiol Dis 40 (1):163-176. doi:S0969-9961(10)00183-X [pii]10.1016/j.nbd.2010.05.021

  141. Akundi RS, Huang Z, Eason J, Pandya JD, Zhi L, Cass WA, Sullivan PG, Bueler H (2011) Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice. PLoS One 6(1):e16038. https://doi.org/10.1371/journal.pone.0016038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bjorkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, Raibon E, Lee RV et al (2008) A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. J Exp Med 205(8):1869–1877. https://doi.org/10.1084/jem.20080178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wertz MH, Pineda SS, Lee H, Kulicke R, Kellis M, Heiman M (2020) Interleukin-6 deficiency exacerbates Huntington's disease model phenotypes. Mol Neurodegener 15(1):29. https://doi.org/10.1186/s13024-020-00379-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Klockgether T, Schols L, Abele M, Burk K, Topka H, Andres F, Amoiridis G, Ludtke R et al (1999) Age related axonal neuropathy in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD). J Neurol Neurosurg Psychiatry 66(2):222–224. https://doi.org/10.1136/jnnp.66.2.222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mazzucchelli S, De Palma A, Riva M, D'Urzo A, Pozzi C, Pastori V, Comelli F, Fusi P et al (2009) Proteomic and biochemical analyses unveil tight interaction of ataxin-3 with tubulin. Int J Biochem Cell Biol 41(12):2485–2492. https://doi.org/10.1016/j.biocel.2009.08.003

    Article  CAS  PubMed  Google Scholar 

  146. Lieberman AP, Shakkottai VG, Albin RL (2019) Polyglutamine Repeats in Neurodegenerative Diseases. Annu Rev Pathol 14:1–27. https://doi.org/10.1146/annurev-pathmechdis-012418-012857

    Article  CAS  PubMed  Google Scholar 

  147. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115(6):727–738. https://doi.org/10.1016/s0092-8674(03)00939-5

    Article  CAS  PubMed  Google Scholar 

  148. Neves-Carvalho A, Logarinho E, Freitas A, Duarte-Silva S, Costa Mdo C, Silva-Fernandes A, Martins M, Serra SC et al (2015) Dominant negative effect of polyglutamine expansion perturbs normal function of ataxin-3 in neuronal cells. Hum Mol Genet 24(1):100–117. https://doi.org/10.1093/hmg/ddu422

    Article  CAS  PubMed  Google Scholar 

  149. do Carmo Costa M, Bajanca F, Rodrigues AJ, Tome RJ, Corthals G, Macedo-Ribeiro S, Paulson HL, Logarinho E, Maciel P (2010) Ataxin-3 plays a role in mouse myogenic differentiation through regulation of integrin subunit levels. PLoS One 5 (7):e11728. doi:https://doi.org/10.1371/journal.pone.0011728

  150. Khan LA, Bauer PO, Miyazaki H, Lindenberg KS, Landwehrmeyer BG, Nukina N (2006) Expanded polyglutamines impair synaptic transmission and ubiquitin-proteasome system in Caenorhabditis elegans. J Neurochem 98 (2):576-587. doi:JNC3895 [pii]10.1111/j.1471-4159.2006.03895.x

  151. Rosselli-Murai LK, Joseph JG, Lopes-Cendes I, Liu AP, Murai MJ (2020) The Machado-Joseph disease-associated form of ataxin-3 impacts dynamics of clathrin-coated pits. Cell Biol Int 44(5):1252–1259. https://doi.org/10.1002/cbin.11312

    Article  CAS  PubMed  Google Scholar 

  152. Toonen LJA, Overzier M, Evers MM, Leon LG, van der Zeeuw SAJ, Mei H, Kielbasa SM, Goeman JJ, Hettne KM, Magnusson OT, Poirel M, Seyer A, t Hoen PAC, van Roon-Mom WMC (2018) Transcriptional profiling and biomarker identification reveal tissue specific effects of expanded ataxin-3 in a spinocerebellar ataxia type 3 mouse model. Mol Neurodegener 13 (1):31. doi:https://doi.org/10.1186/s13024-018-0261-910.1186/s13024-018-0261-9 [pii]

  153. Kazachkova N, Raposo M, Montiel R, Cymbron T, Bettencourt C, Silva-Fernandes A, Silva S, Maciel P et al (2013) Patterns of mitochondrial DNA damage in blood and brain tissues of a transgenic mouse model of Machado-Joseph disease. Neurodegener Dis 11(4):206–214. https://doi.org/10.1159/000339207

    Article  CAS  PubMed  Google Scholar 

  154. Hsu JY, Jhang YL, Cheng PH, Chang YF, Mao SH, Yang HI, Lin CW, Chen CM et al (2017) The Truncated C-terminal Fragment of Mutant ATXN3 Disrupts Mitochondria Dynamics in Spinocerebellar Ataxia Type 3 Models. Front Mol Neurosci 10:196. https://doi.org/10.3389/fnmol.2017.00196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Akundi RS, Zhi L, Sullivan PG, Bueler H (2013) Shared and cell type-specific mitochondrial defects and metabolic adaptations in primary cells from PINK1-deficient mice. Neurodegener Dis 12(3):136–149. https://doi.org/10.1159/000345689

    Article  CAS  PubMed  Google Scholar 

  156. Harmuth T, Prell-Schicker C, Weber JJ, Gellerich F, Funke C, Driessen S, Magg JCD, Krebiehl G et al (2018) Mitochondrial Morphology, Function and Homeostasis Are Impaired by Expression of an N-terminal Calpain Cleavage Fragment of Ataxin-3. Front Mol Neurosci 11:368. https://doi.org/10.3389/fnmol.2018.00368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Durcan TM, Kontogiannea M, Thorarinsdottir T, Fallon L, Williams AJ, Djarmati A, Fantaneanu T, Paulson HL et al (2011) The Machado-Joseph disease-associated mutant form of ataxin-3 regulates parkin ubiquitination and stability. Hum Mol Genet 20(1):141–154. https://doi.org/10.1093/hmg/ddq452

    Article  CAS  PubMed  Google Scholar 

  158. Durcan TM, Fon EA (2011) Mutant ataxin-3 promotes the autophagic degradation of parkin. Autophagy 7(2):233–234. https://doi.org/10.4161/auto.7.2.14224

    Article  PubMed  Google Scholar 

  159. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131. https://doi.org/10.1038/ncb2012

    Article  CAS  PubMed  Google Scholar 

  160. Pozzi C, Valtorta M, Tedeschi G, Galbusera E, Pastori V, Bigi A, Nonnis S, Grassi E et al (2008) Study of subcellular localization and proteolysis of ataxin-3. Neurobiol Dis 30(2):190–200. https://doi.org/10.1016/j.nbd.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  161. Bettencourt C, Santos C, Coutinho P, Rizzu P, Vasconcelos J, Kay T, Cymbron T, Raposo M et al (2011) Parkinsonian phenotype in Machado-Joseph disease (MJD/SCA3): a two-case report. BMC Neurol 11:131. https://doi.org/10.1186/1471-2377-11-131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Berke SJ, Schmied FA, Brunt ER, Ellerby LM, Paulson HL (2004) Caspase-mediated proteolysis of the polyglutamine disease protein ataxin-3. J Neurochem 89(4):908–918. https://doi.org/10.1111/j.1471-4159.2004.02369.xJNC2369 [pii]

    Article  CAS  PubMed  Google Scholar 

  163. Haacke A, Hartl FU, Breuer P (2007) Calpain inhibition is sufficient to suppress aggregation of polyglutamine-expanded ataxin-3. J Biol Chem 282 (26):18851-18856. doi:M611914200 [pii]10.1074/jbc.M611914200

  164. Liman J, Deeg S, Voigt A, Vossfeldt H, Dohm CP, Karch A, Weishaupt J, Schulz JB et al (2014) CDK5 protects from caspase-induced Ataxin-3 cleavage and neurodegeneration. J Neurochem 129(6):1013–1023. https://doi.org/10.1111/jnc.12684

    Article  CAS  PubMed  Google Scholar 

  165. Simoes AT, Goncalves N, Koeppen A, Deglon N, Kugler S, Duarte CB, Pereira de Almeida L (2012) Calpastatin-mediated inhibition of calpains in the mouse brain prevents mutant ataxin 3 proteolysis, nuclear localization and aggregation, relieving Machado-Joseph disease. Brain 135 (Pt 8):2428-2439. doi:aws177 [pii]10.1093/brain/aws177

  166. Weber JJ, Haas E, Maringer Y, Hauser S, Casadei NLP, Chishti AH, Riess O, Hubener-Schmid J (2020) Calpain-1 ablation partially rescues disease-associated hallmarks in models of Machado-Joseph disease. Hum Mol Genet 29 (6):892-906. doi:5710189 [pii]10.1093/hmg/ddaa010

  167. Antony PM, Mantele S, Mollenkopf P, Boy J, Kehlenbach RH, Riess O, Schmidt T (2009) Identification and functional dissection of localization signals within ataxin-3. Neurobiol Dis 36 (2):280-292. doi:S0969-9961(09)00199-5 [pii]10.1016/j.nbd.2009.07.020

  168. Yoshizawa T, Yamagishi Y, Koseki N, Goto J, Yoshida H, Shibasaki F, Shoji S, Kanazawa I (2000) Cell cycle arrest enhances the in vitro cellular toxicity of the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Hum Mol Genet 9 (1):69-78. doi:ddd004 [pii]10.1093/hmg/9.1.69

  169. Simoes AT, Goncalves N, Nobre RJ, Duarte CB, Pereira de Almeida L (2014) Calpain inhibition reduces ataxin-3 cleavage alleviating neuropathology and motor impairments in mouse models of Machado-Joseph disease. Hum Mol Genet 23 (18):4932-4944. doi:ddu209 [pii]10.1093/hmg/ddu209

  170. Koch P, Breuer P, Peitz M, Jungverdorben J, Kesavan J, Poppe D, Doerr J, Ladewig J, Mertens J, Tuting T, Hoffmann P, Klockgether T, Evert BO, Wullner U, Brustle O (2011) Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease. Nature 480 (7378):543-546. doi:nature10671 [pii]10.1038/nature10671

  171. Matos CA, Nobrega C, Louros SR, Almeida B, Ferreiro E, Valero J, Pereira de Almeida L, Macedo-Ribeiro S, Carvalho AL (2016) Ataxin-3 phosphorylation decreases neuronal defects in spinocerebellar ataxia type 3 models. J Cell Biol 212 (4):465-480. doi:jcb.201506025 [pii]10.1083/jcb.201506025

  172. Fei E, Jia N, Zhang T, Ma X, Wang H, Liu C, Zhang W, Ding L, Nukina N, Wang G (2007) Phosphorylation of ataxin-3 by glycogen synthase kinase 3beta at serine 256 regulates the aggregation of ataxin-3. Biochem Biophys Res Commun 357 (2):487-492. doi:S0006-291X(07)00665-1 [pii]10.1016/j.bbrc.2007.03.160

  173. Mueller T, Breuer P, Schmitt I, Walter J, Evert BO, Wullner U (2009) CK2-dependent phosphorylation determines cellular localization and stability of ataxin-3. Hum Mol Genet 18 (17):3334-3343. doi:ddp274 [pii]10.1093/hmg/ddp274

  174. Todi SV, Winborn BJ, Scaglione KM, Blount JR, Travis SM, Paulson HL (2009) Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3. EMBO J 28 (4):372-382. doi:emboj2008289 [pii]10.1038/emboj.2008.289

  175. Nicastro G, Masino L, Esposito V, Menon RP, De Simone A, Fraternali F, Pastore A (2009) Josephin domain of ataxin-3 contains two distinct ubiquitin-binding sites. Biopolymers 91(12):1203–1214. https://doi.org/10.1002/bip.21210

    Article  CAS  PubMed  Google Scholar 

  176. Todi SV, Scaglione KM, Blount JR, Basrur V, Conlon KP, Pastore A, Elenitoba-Johnson K, Paulson HL (2010) Activity and cellular functions of the deubiquitinating enzyme and polyglutamine disease protein ataxin-3 are regulated by ubiquitination at lysine 117. J Biol Chem 285 (50):39303-39313. doi:M110.181610 [pii]10.1074/jbc.M110.181610

  177. Song AX, Zhou CJ, Peng Y, Gao XC, Zhou ZR, Fu QS, Hong J, Lin DH et al (2010) Structural transformation of the tandem ubiquitin-interacting motifs in ataxin-3 and their cooperative interactions with ubiquitin chains. PLoS One 5(10):e13202. https://doi.org/10.1371/journal.pone.0013202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Matsumoto M, Yada M, Hatakeyama S, Ishimoto H, Tanimura T, Tsuji S, Kakizuka A, Kitagawa M et al (2004) Molecular clearance of ataxin-3 is regulated by a mammalian E4. EMBO J 23(3):659–669. https://doi.org/10.1038/sj.emboj.76000817600081 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Almeida B, Abreu IA, Matos CA, Fraga JS, Fernandes S, Macedo MG, Gutierrez-Gallego R, Pereira PJ, Carvalho AL, Macedo-Ribeiro S (2015) SUMOylation of the brain-predominant Ataxin-3 isoform modulates its interaction with p97. Biochim Biophys Acta 1852 (9):1950-1959. doi:S0925-4439(15)00176-3 [pii]10.1016/j.bbadis.2015.06.010

  180. Chen YS, Hong ZX, Lin SZ, Harn HJ (2020) Identifying Therapeutic Targets for Spinocerebellar Ataxia Type 3/Machado-Joseph Disease through Integration of Pathological Biomarkers and Therapeutic Strategies. Int J Mol Sci 21 (9). doi:ijms21093063 [pii]10.3390/ijms21093063

  181. Bordet T, Berna P, Abitbol JL, Pruss RM (2010) Olesoxime (TRO19622): A Novel Mitochondrial-Targeted Neuroprotective Compound. Pharmaceuticals (Basel) 3(2):345–368. https://doi.org/10.3390/ph3020345

  182. Clemens LE, Weber JJ, Wlodkowski TT, Yu-Taeger L, Michaud M, Calaminus C, Eckert SH, Gaca J et al (2015) Olesoxime suppresses calpain activation and mutant huntingtin fragmentation in the BACHD rat. Brain 138(Pt 12):3632–3653. https://doi.org/10.1093/brain/awv290

    Article  PubMed  Google Scholar 

  183. Hansen SK, Stummann TC, Borland H, Hasholt LF, Tumer Z, Nielsen JE, Rasmussen MA, Nielsen TT et al (2016) Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3. Stem Cell Res 17(2):306–317. https://doi.org/10.1016/j.scr.2016.07.004

    Article  CAS  PubMed  Google Scholar 

  184. Duarte-Silva S, Neves-Carvalho A, Soares-Cunha C, Silva JM, Teixeira-Castro A, Vieira R, Silva-Fernandes A, Maciel P (2018) Neuroprotective Effects of Creatine in the CMVMJD135 Mouse Model of Spinocerebellar Ataxia Type 3. Mov Disord 33(5):815–826. https://doi.org/10.1002/mds.27292

    Article  CAS  PubMed  Google Scholar 

  185. Hersch SM, Schifitto G, Oakes D, Bredlau AL, Meyers CM, Nahin R, Rosas HD, Huntington Study Group C-EI, Coordinators (2017) The CREST-E study of creatine for Huntington disease: A randomized controlled trial. Neurology 89(6):594–601. https://doi.org/10.1212/WNL.0000000000004209

    Article  CAS  Google Scholar 

  186. Nagai Y, Fujikake N, Ohno K, Higashiyama H, Popiel HA, Rahadian J, Yamaguchi M, Strittmatter WJ et al (2003) Prevention of polyglutamine oligomerization and neurodegeneration by the peptide inhibitor QBP1 in Drosophila. Hum Mol Genet 12(11):1253–1259. https://doi.org/10.1093/hmg/ddg144

    Article  CAS  PubMed  Google Scholar 

  187. Kazemi-Esfarjani P, Benzer S (2000) Genetic suppression of polyglutamine toxicity in Drosophila. Science 287 (5459):1837-1840. doi:8327 [pii]10.1126/science.287.5459.1837

  188. Cushman-Nick M, Bonini NM, Shorter J (2013) Hsp104 suppresses polyglutamine-induced degeneration post onset in a drosophila MJD/SCA3 model. PLoS Genet 9(9):e1003781. https://doi.org/10.1371/journal.pgen.1003781PGENETICS-D-13-00866 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Yoshida H, Yoshizawa T, Shibasaki F, Shoji S, Kanazawa I (2002) Chemical chaperones reduce aggregate formation and cell death caused by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Neurobiol Dis 10(2):88–99. https://doi.org/10.1006/nbdi.2002.0502

    Article  CAS  PubMed  Google Scholar 

  190. Chang KH, Chen WL, Lee LC, Lin CH, Kung PJ, Lin TH, Wu YC, Wu YR et al (2013) Aqueous Extract of Paeonia lactiflora and Paeoniflorin as Aggregation Reducers Targeting Chaperones in Cell Models of Spinocerebellar Ataxia 3. Evid Based Complement Alternat Med 2013:471659. https://doi.org/10.1155/2013/471659

    Article  PubMed  PubMed Central  Google Scholar 

  191. Lin CH, Wu YR, Kung PJ, Chen WL, Lee LC, Lin TH, Chao CY, Chen CM et al (2014) The potential of indole and a synthetic derivative for polyQ aggregation reduction by enhancement of the chaperone and autophagy systems. ACS Chem Neurosci 5(10):1063–1074. https://doi.org/10.1021/cn500075u

    Article  CAS  PubMed  Google Scholar 

  192. Noorasyikin MA, Azizan EA, Teh PC, Farah Waheeda T, Siti Hajar MD, Long KC, Norlinah MI (2020) Oral trehalose maybe helpful for patients with spinocerebellar ataxia 3 and should be better evaluated. Parkinsonism Relat Disord 70:42–44. https://doi.org/10.1016/j.parkreldis.2019.12.007

    Article  CAS  PubMed  Google Scholar 

  193. Lin CH, Wu YR, Yang JM, Chen WL, Chao CY, Chen IC, Lin TH, Wu YC et al (2016) Novel Lactulose and Melibiose Targeting Autophagy to Reduce PolyQ Aggregation in Cell Models of Spinocerebellar Ataxia 3. CNS Neurol Disord Drug Targets 15(3):351–359. https://doi.org/10.2174/1871527314666150821101522

    Article  CAS  PubMed  Google Scholar 

  194. Santana MM, Paixao S, Cunha-Santos J, Silva TP, Trevino-Garcia A, Gaspar LS, Nobrega C, Nobre RJ et al (2020) Trehalose alleviates the phenotype of Machado-Joseph disease mouse models. J Transl Med 18(1):161. https://doi.org/10.1186/s12967-020-02302-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Menzies FM, Huebener J, Renna M, Bonin M, Riess O, Rubinsztein DC (2010) Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain 133 (Pt 1):93-104. doi:awp292 [pii]10.1093/brain/awp292

  196. Marcelo A, Brito F, Carmo-Silva S, Matos CA, Alves-Cruzeiro J, Vasconcelos-Ferreira A, Koppenol R, Mendonca L et al (2019) Cordycepin activates autophagy through AMPK phosphorylation to reduce abnormalities in Machado-Joseph disease models. Hum Mol Genet 28(1):51–63. https://doi.org/10.1093/hmg/ddy328

    Article  CAS  PubMed  Google Scholar 

  197. Silva-Fernandes A, Duarte-Silva S, Neves-Carvalho A, Amorim M, Soares-Cunha C, Oliveira P, Thirstrup K, Teixeira-Castro A et al (2014) Chronic treatment with 17-DMAG improves balance and coordination in a new mouse model of Machado-Joseph disease. Neurotherapeutics 11(2):433–449. https://doi.org/10.1007/s13311-013-0255-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Jia DD, Zhang L, Chen Z, Wang CR, Huang FZ, Duan RH, Xia K, Tang BS et al (2013) Lithium chloride alleviates neurodegeneration partly by inhibiting activity of GSK3beta in a SCA3 Drosophila model. Cerebellum 12(6):892–901. https://doi.org/10.1007/s12311-013-0498-3

    Article  CAS  PubMed  Google Scholar 

  199. Sacca F, Puorro G, Brunetti A, Capasso G, Cervo A, Cocozza S, de Leva M, Marsili A et al (2015) A randomized controlled pilot trial of lithium in spinocerebellar ataxia type 2. J Neurol 262(1):149–153. https://doi.org/10.1007/s00415-014-7551-0

    Article  CAS  PubMed  Google Scholar 

  200. Ntsapi C, Loos B (2016) Caloric restriction and the precision-control of autophagy: A strategy for delaying neurodegenerative disease progression. Exp Gerontol 83:97-111. doi:S0531-5565(16)30217-0 [pii]10.1016/j.exger.2016.07.014

  201. Cunha-Santos J, Duarte-Neves J, Carmona V, Guarente L, Pereira de Almeida L, Cavadas C (2016) Caloric restriction blocks neuropathology and motor deficits in Machado-Joseph disease mouse models through SIRT1 pathway. Nat Commun 7:11445. doi:ncomms11445 [pii]10.1038/ncomms11445

  202. Hertlein E, Wagner AJ, Jones J, Lin TS, Maddocks KJ, Towns WH 3rd, Goettl VM, Zhang X et al (2010) 17-DMAG targets the nuclear factor-kappaB family of proteins to induce apoptosis in chronic lymphocytic leukemia: clinical implications of HSP90 inhibition. Blood 116(1):45–53. https://doi.org/10.1182/blood-2010-01-263756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Mendonca LS, Nobrega C, Tavino S, Brinkhaus M, Matos C, Tome S, Moreira R, Henriques D, Kaspar BK, Pereira de Almeida L (2019) Ibuprofen enhances synaptic function and neural progenitors proliferation markers and improves neuropathology and motor coordination in Machado-Joseph disease models. Hum Mol Genet 28 (22):3691-3703. doi:5498698 [pii]10.1093/hmg/ddz097

  204. Goncalves N, Simoes AT, Prediger RD, Hirai H, Cunha RA, Pereira de Almeida L (2017) Caffeine alleviates progressive motor deficits in a transgenic mouse model of spinocerebellar ataxia. Ann Neurol 81(3):407–418. https://doi.org/10.1002/ana.24867

    Article  CAS  PubMed  Google Scholar 

  205. Back SA, Craig A, Luo NL, Ren J, Akundi RS, Ribeiro I, Rivkees SA (2006) Protective effects of caffeine on chronic hypoxia-induced perinatal white matter injury. Ann Neurol 60(6):696–705. https://doi.org/10.1002/ana.21008

    Article  CAS  PubMed  Google Scholar 

  206. Tsutsui S, Schnermann J, Noorbakhsh F, Henry S, Yong VW, Winston BW, Warren K, Power C (2004) A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neurosci 24(6):1521–1529. https://doi.org/10.1523/JNEUROSCI.4271-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Tabachnick-Cherny S, Pinto S, Berko D, Curato C, Wolf Y, Porat Z, Karmona R, Tirosh B et al (2020) Polyglutamine-Related Aggregates Can Serve as a Potent Antigen Source for Cross-Presentation by Dendritic Cells. J Immunol 205(10):2583–2594. https://doi.org/10.4049/jimmunol.1901535

    Article  CAS  PubMed  Google Scholar 

  208. Yewdell JW, Anton LC, Bennink JR (1996) Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J Immunol 157(5):1823–1826

    CAS  PubMed  Google Scholar 

  209. Srivastava P (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425. https://doi.org/10.1146/annurev.immunol.20.100301.064801

    Article  CAS  PubMed  Google Scholar 

  210. Joffre OP, Segura E, Savina A, Amigorena S (2012) Cross-presentation by dendritic cells. Nat Rev Immunol 12(8):557–569. https://doi.org/10.1038/nri3254

    Article  CAS  PubMed  Google Scholar 

  211. Keiser MS, Kordasiewicz HB, McBride JL (2016) Gene suppression strategies for dominantly inherited neurodegenerative diseases: lessons from Huntington's disease and spinocerebellar ataxia. Hum Mol Genet 25 (R1):R53-64. doi:ddv442 [pii]10.1093/hmg/ddv442

  212. Moore LR, Keller L, Bushart DD, Delatorre RG, Li D, McLoughlin HS, do Carmo Costa M, Shakkottai VG, Smith GD, Paulson HL (2019) Antisense oligonucleotide therapy rescues aggresome formation in a novel spinocerebellar ataxia type 3 human embryonic stem cell line. Stem Cell Res 39:101504. doi:S1873-5061(19)30134-5 [pii]10.1016/j.scr.2019.101504

  213. Alves S, Nascimento-Ferreira I, Auregan G, Hassig R, Dufour N, Brouillet E, Pedroso de Lima MC, Hantraye P et al (2008) Allele-specific RNA silencing of mutant ataxin-3 mediates neuroprotection in a rat model of Machado-Joseph disease. PLoS One 3(10):e3341. https://doi.org/10.1371/journal.pone.0003341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Alves S, Nascimento-Ferreira I, Dufour N, Hassig R, Auregan G, Nobrega C, Brouillet E, Hantraye P, Pedroso de Lima MC, Deglon N, de Almeida LP (2010) Silencing ataxin-3 mitigates degeneration in a rat model of Machado-Joseph disease: no role for wild-type ataxin-3? Hum Mol Genet 19 (12):2380-2394. doi:ddq111 [pii]10.1093/hmg/ddq111

  215. Carmona V, Cunha-Santos J, Onofre I, Simoes AT, Vijayakumar U, Davidson BL, Pereira de Almeida L (2017) Unravelling Endogenous MicroRNA System Dysfunction as a New Pathophysiological Mechanism in Machado-Joseph Disease. Mol Ther 25 (4):1038-1055. doi:S1525-0016(17)30055-2 [pii]10.1016/j.ymthe.2017.01.021

  216. Costa Mdo C, Luna-Cancalon K, Fischer S, Ashraf NS, Ouyang M, Dharia RM, Martin-Fishman L, Yang Y, Shakkottai VG, Davidson BL, Rodriguez-Lebron E, Paulson HL (2013) Toward RNAi therapy for the polyglutamine disease Machado-Joseph disease. Mol Ther 21 (10):1898-1908. doi:S1525-0016(16)32256-0 [pii]10.1038/mt.2013.144

  217. Rodriguez-Lebron E, Costa Mdo C, Luna-Cancalon K, Peron TM, Fischer S, Boudreau RL, Davidson BL, Paulson HL (2013) Silencing mutant ATXN3 expression resolves molecular phenotypes in SCA3 transgenic mice. Mol Ther 21 (10):1909-1918. doi:S1525-0016(16)32257-2 [pii]10.1038/mt.2013.152

  218. Hu J, Matsui M, Gagnon KT, Schwartz JC, Gabillet S, Arar K, Wu J, Bezprozvanny I, Corey DR (2009) Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs. Nat Biotechnol 27 (5):478-484. doi:nbt.1539 [pii]10.1038/nbt.1539

  219. Toonen LJA, Rigo F, van Attikum H, van Roon-Mom WMC (2017) Antisense Oligonucleotide-Mediated Removal of the Polyglutamine Repeat in Spinocerebellar Ataxia Type 3 Mice. Mol Ther Nucleic Acids 8:232-242. doi:S2162-2531(17)30205-6 [pii]10.1016/j.omtn.2017.06.019

  220. Cornu TI, Mussolino C, Cathomen T (2017) Refining strategies to translate genome editing to the clinic. Nat Med 23 (4):415-423. doi:nm.4313 [pii]10.1038/nm.4313

  221. Monteys AM, Ebanks SA, Keiser MS, Davidson BL (2017) CRISPR/Cas9 Editing of the Mutant Huntingtin Allele In Vitro and In Vivo. Mol Ther 25 (1):12-23. doi:S1525-0016(16)45393-1 [pii]10.1016/j.ymthe.2016.11.010

  222. Murugan K, Babu K, Sundaresan R, Rajan R, Sashital DG (2017) The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit. Mol Cell 68 (1):15-25. doi:S1097-2765(17)30655-X [pii]10.1016/j.molcel.2017.09.007

  223. Stella S, Alcon P, Montoya G (2017) Class 2 CRISPR-Cas RNA-guided endonucleases: Swiss Army knives of genome editing. Nat Struct Mol Biol 24 (11):882-892. doi:nsmb.3486 [pii]10.1038/nsmb.3486

  224. Zu T, Gibbens B, Doty NS, Gomes-Pereira M, Huguet A, Stone MD, Margolis J, Peterson M et al (2011) Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci U S A 108(1):260–265. https://doi.org/10.1073/pnas.1013343108

    Article  PubMed  Google Scholar 

  225. Green KM, Linsalata AE, Todd PK (2016) RAN translation-What makes it run? Brain Res 1647:30–42. https://doi.org/10.1016/j.brainres.2016.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Stochmanski SJ, Therrien M, Laganiere J, Rochefort D, Laurent S, Karemera L, Gaudet R, Vyboh K et al (2012) Expanded ATXN3 frameshifting events are toxic in Drosophila and mammalian neuron models. Hum Mol Genet 21(10):2211–2218. https://doi.org/10.1093/hmg/dds036

    Article  CAS  PubMed  Google Scholar 

  227. Li LB, Yu Z, Teng X, Bonini NM (2008) RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature 453(7198):1107–1111. https://doi.org/10.1038/nature06909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Evers MM, Toonen LJ, van Roon-Mom WM (2014) Ataxin-3 protein and RNA toxicity in spinocerebellar ataxia type 3: current insights and emerging therapeutic strategies. Mol Neurobiol 49(3):1513–1531. https://doi.org/10.1007/s12035-013-8596-2

    Article  CAS  PubMed  Google Scholar 

  229. Wang Z (2018) Experimental and Clinical Strategies for Treating Spinocerebellar Ataxia Type 3. Neuroscience 371:138-154. doi:S0306-4522(17)30868-0 [pii]10.1016/j.neuroscience.2017.11.051

  230. Buijsen RAM, Toonen LJA, Gardiner SL, van Roon-Mom WMC (2019) Genetics, Mechanisms, and Therapeutic Progress in Polyglutamine Spinocerebellar Ataxias. Neurotherapeutics 16(2):263–286. https://doi.org/10.1007/s13311-018-00696-y10.1007/s13311-018-00696-y [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Tan S, Wang RH, Niu HX, Shi CH, Mao CY, Zhang R, Song B, Sun SL, Liu XJ, Hou HM, Liu YT, Gao Y, Fang H, Kong XD, Xu YM (2015) Nerve growth factor for the treatment of spinocerebellar ataxia type 3: an open-label study. Chin Med J (Engl) 128 (3):291-294. doi:ChinMedJ_2015_128_3_291_150087 [pii]10.4103/0366-6999.150087

  232. Arpa J, Sanz-Gallego I, Medina-Baez J, Portela LV, Jardim LB, Torres-Aleman I, Saute JA (2011) Subcutaneous insulin-like growth factor-1 treatment in spinocerebellar ataxias: an open label clinical trial. Mov Disord 26(2):358–359. https://doi.org/10.1002/mds.23423

    Article  PubMed  Google Scholar 

  233. Saute JA, da Silva AC, Muller AP, Hansel G, de Mello AS, Maeda F, Vedolin L, Saraiva-Pereira ML et al (2010) Serum insulin-like system alterations in patients with spinocerebellar ataxia type 3. Mov Disord 26(4):731–735. https://doi.org/10.1002/mds.23428

    Article  PubMed  Google Scholar 

  234. Iranon NN, Jochim BE, Miller DL (2019) Fasting prevents hypoxia-induced defects of proteostasis in C. elegans. PLoS Genet 15 (6):e1008242. https://doi.org/10.1371/journal.pgen.1008242PGENETICS-D-19-00622 [pii]

  235. Moll L, Ben-Gedalya T, Reuveni H, Cohen E (2016) The inhibition of IGF-1 signaling promotes proteostasis by enhancing protein aggregation and deposition. FASEB J 30 (4):1656-1669. doi:fj.15-281675 [pii]10.1096/fj.15-281675

  236. Sanz-Gallego I, Rodriguez-de-Rivera FJ, Pulido I, Torres-Aleman I, Arpa J (2014) IGF-1 in autosomal dominant cerebellar ataxia - open-label trial. Cerebellum Ataxias 1:13. https://doi.org/10.1186/s40673-014-0013-8

    Article  PubMed  PubMed Central  Google Scholar 

  237. Palazzolo I, Stack C, Kong L, Musaro A, Adachi H, Katsuno M, Sobue G, Taylor JP et al (2009) Overexpression of IGF-1 in muscle attenuates disease in a mouse model of spinal and bulbar muscular atrophy. Neuron 63(3):316–328. https://doi.org/10.1016/j.neuron.2009.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Rinaldi C, Bott LC, Chen KL, Harmison GG, Katsuno M, Sobue G, Pennuto M, Fischbeck KH (2012) Insulinlike growth factor (IGF)-1 administration ameliorates disease manifestations in a mouse model of spinal and bulbar muscular atrophy. Mol Med 18:1261–1268. https://doi.org/10.2119/molmed.2012.00271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Humbert S, Bryson EA, Cordelieres FP, Connors NC, Datta SR, Finkbeiner S, Greenberg ME, Saudou F (2002) The IGF-1/Akt pathway is neuroprotective in Huntington's disease and involves Huntingtin phosphorylation by Akt. Dev Cell 2(6):831–837. https://doi.org/10.1016/s1534-5807(02)00188-0

    Article  CAS  PubMed  Google Scholar 

  240. Garcia-Huerta P, Troncoso-Escudero P, Wu D, Thiruvalluvan A, Cisternas-Olmedo M, Henriquez DR, Plate L, Chana-Cuevas P et al (2020) Insulin-like growth factor 2 (IGF2) protects against Huntington's disease through the extracellular disposal of protein aggregates. Acta Neuropathol. https://doi.org/10.1007/s00401-020-02183-1

  241. Yamamoto A, Cremona ML, Rothman JE (2006) Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway. J Cell Biol 172(5):719–731. https://doi.org/10.1083/jcb.200510065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. de Mello NP, Orellana AM, Mazucanti CH, de Morais LG, Scavone C, Kawamoto EM (2019) Insulin and Autophagy in Neurodegeneration. Front Neurosci 13:491. https://doi.org/10.3389/fnins.2019.00491

    Article  PubMed  PubMed Central  Google Scholar 

  243. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6):585–595. https://doi.org/10.1038/ng1362

    Article  CAS  PubMed  Google Scholar 

  244. Akundi RS, Zhi L, Bueler H (2012) PINK1 enhances insulin-like growth factor-1-dependent Akt signaling and protection against apoptosis. Neurobiol Dis 45(1):469–478. https://doi.org/10.1016/j.nbd.2011.08.034

    Article  CAS  PubMed  Google Scholar 

  245. Singh MD, Raj K, Sarkar S (2014) Drosophila Myc, a novel modifier suppresses the poly(Q) toxicity by modulating the level of CREB binding protein and histone acetylation. Neurobiol Dis 63:48-61. doi:S0969-9961(13)00328-8 [pii]10.1016/j.nbd.2013.11.015

  246. Taylor JP, Taye AA, Campbell C, Kazemi-Esfarjani P, Fischbeck KH, Min KT (2003) Aberrant histone acetylation, altered transcription, and retinal degeneration in a Drosophila model of polyglutamine disease are rescued by CREB-binding protein. Genes Dev 17(12):1463–1468. https://doi.org/10.1101/gad.108750317/12/1463 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Chou AH, Chen SY, Yeh TH, Weng YH, Wang HL (2011) HDAC inhibitor sodium butyrate reverses transcriptional downregulation and ameliorates ataxic symptoms in a transgenic mouse model of SCA3. Neurobiol Dis 41(2):481–488. https://doi.org/10.1016/j.nbd.2010.10.019

    Article  CAS  PubMed  Google Scholar 

  248. Esteves S, Duarte-Silva S, Naia L, Neves-Carvalho A, Teixeira-Castro A, Rego AC, Silva-Fernandes A, Maciel P (2015) Limited Effect of Chronic Valproic Acid Treatment in a Mouse Model of Machado-Joseph Disease. PLoS One 10(10):e0141610. https://doi.org/10.1371/journal.pone.0141610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Jung J, Bonini N (2007) CREB-binding protein modulates repeat instability in a Drosophila model for polyQ disease. Science 315(5820):1857–1859. https://doi.org/10.1126/science.1139517

    Article  CAS  PubMed  Google Scholar 

  250. Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, Kazantsev A, Schmidt E et al (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413(6857):739–743. https://doi.org/10.1038/3509956835099568 [pii]

    Article  CAS  PubMed  Google Scholar 

  251. Xiang C, Zhang S, Dong X, Ma S, Cong S (2018) Transcriptional Dysregulation and Post-translational Modifications in Polyglutamine Diseases: From Pathogenesis to Potential Therapeutic Strategies. Front Mol Neurosci 11:153. https://doi.org/10.3389/fnmol.2018.00153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Chou AH, Lin AC, Hong KY, Hu SH, Chen YL, Chen JY, Wang HL (2011) p53 activation mediates polyglutamine-expanded ataxin-3 upregulation of Bax expression in cerebellar and pontine nuclei neurons. Neurochem Int 58 (2):145-152. doi:S0197-0186(10)00337-2 [pii]10.1016/j.neuint.2010.11.005

  253. Olson SD, Pollock K, Kambal A, Cary W, Mitchell GM, Tempkin J, Stewart H, McGee J et al (2012) Genetically engineered mesenchymal stem cells as a proposed therapeutic for Huntington's disease. Mol Neurobiol 45(1):87–98. https://doi.org/10.1007/s12035-011-8219-8

    Article  CAS  PubMed  Google Scholar 

  254. Kan I, Melamed E, Offen D (2007) Autotransplantation of bone marrow-derived stem cells as a therapy for neurodegenerative diseases. Handb Exp Pharmacol 180:219–242. https://doi.org/10.1007/978-3-540-68976-8_10

    Article  CAS  Google Scholar 

  255. Sadan O, Shemesh N, Barzilay R, Bahat-Stromza M, Melamed E, Cohen Y, Offen D (2008) Migration of neurotrophic factors-secreting mesenchymal stem cells toward a quinolinic acid lesion as viewed by magnetic resonance imaging. Stem Cells 26 (10):2542-2551. doi:2008-0240 [pii]10.1634/stemcells.2008-0240

  256. Oliveira Miranda C, Marcelo A, Silva TP, Barata J, Vasconcelos-Ferreira A, Pereira D, Nobrega C, Duarte S, Barros I, Alves J, Sereno J, Petrella LI, Castelhano J, Paiva VH, Rodrigues-Santos P, Alves V, Nunes-Correia I, Nobre RJ, Gomes C, Castelo-Branco M, Pereira de Almeida L (2018) Repeated Mesenchymal Stromal Cell Treatment Sustainably Alleviates Machado-Joseph Disease. Mol Ther 26 (9):2131-2151. doi:S1525-0016(18)30314-9 [pii]10.1016/j.ymthe.2018.07.007

  257. Tsai YA, Liu RS, Lirng JF, Yang BH, Chang CH, Wang YC, Wu YS, Ho JH et al (2017) Treatment of Spinocerebellar Ataxia With Mesenchymal Stem Cells: A Phase I/IIa Clinical Study. Cell Transplant 26(3):503–512. https://doi.org/10.3727/096368916X694373

    Article  PubMed  PubMed Central  Google Scholar 

  258. Teixeira-Castro A, Jalles A, Esteves S, Kang S, da Silva Santos L, Silva-Fernandes A, Neto MF, Brielmann RM, Bessa C, Duarte-Silva S, Miranda A, Oliveira S, Neves-Carvalho A, Bessa J, Summavielle T, Silverman RB, Oliveira P, Morimoto RI, Maciel P (2015) Serotonergic signalling suppresses ataxin 3 aggregation and neurotoxicity in animal models of Machado-Joseph disease. Brain 138 (Pt 11):3221-3237. doi:awv262 [pii]10.1093/brain/awv262

  259. Costa MDC, Ashraf NS, Fischer S, Yang Y, Schapka E, Joshi G, McQuade TJ, Dharia RM, Dulchavsky M, Ouyang M, Cook D, Sun D, Larsen MJ, Gestwicki JE, Todi SV, Ivanova MI, Paulson HL (2016) Unbiased screen identifies aripiprazole as a modulator of abundance of the polyglutamine disease protein, ataxin-3. Brain 139 (11):2891-2908. doi:aww228 [pii]10.1093/brain/aww228

  260. Ching TT, Chiang WC, Chen CS, Hsu AL (2011) Celecoxib extends C. elegans lifespan via inhibition of insulin-like signaling but not cyclooxygenase-2 activity. Aging Cell 10(3):506–519. https://doi.org/10.1111/j.1474-9726.2011.00688.x

    Article  CAS  PubMed  Google Scholar 

Download references

Consent for Publication

Not applicable.

Funding

This work was supported through the National Postdoctoral Fellowship award from the Science and Engineering Research Board (SERB; PDF/2019/001005) to KR and extramural research grant of SERB (EMR/2016/001442) to RSA.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed towards the conceptualisation and writing of this manuscript.

Corresponding author

Correspondence to Ravi Shankar Akundi.

Ethics declarations

All ethical practices were followed in the preparation of this review article.

Consent to Participate

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, K., Akundi, R.S. Mutant Ataxin-3–Containing Aggregates (MATAGGs) in Spinocerebellar Ataxia Type 3: Dynamics of the Disorder. Mol Neurobiol 58, 3095–3118 (2021). https://doi.org/10.1007/s12035-021-02314-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02314-z

Keywords

Navigation