Skip to main content

Advertisement

Log in

Impact of Genetic Risk Factors for Alzheimer’s Disease on Brain Glucose Metabolism

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a devastating neurodegenerative disease that affects more than 30 million people worldwide. Despite growing knowledge of AD pathophysiology, a complete understanding of the pathogenic mechanisms underpinning AD is lacking, and there is currently no cure for AD. Extant literature suggests that AD is a polygenic and multifactorial disease underscored by complex and dynamic pathogenic mechanisms. Despite extensive research and clinical trials, there has been a dearth of novel drugs for AD treatment on the market since memantine in 2003. This lack of therapeutic success has directed the entire research community to approach the disease from a different angle. In this review, we discuss growing evidence for the close link between altered glucose metabolism and AD pathogenesis by exploring how genetic risk factors for AD are associated with dysfunctional glucose metabolism. We also discuss modification of genes responsible for metabolic pathways implicated in AD pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S et al (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537:50–56. https://doi.org/10.1038/nature19323

    Article  CAS  PubMed  Google Scholar 

  2. Sacks CA, Avorn J, Kesselheim AS (2017) The failure of solanezumab - how the FDA saved taxpayers billions. N Engl J Med 376:1706–1708. https://doi.org/10.1056/NEJMp1701047

    Article  PubMed  Google Scholar 

  3. Panza F, Lozupone M, Logroscino G, Imbimbo BP (2019) A critical appraisal of amyloid-β- targeting therapies for Alzheimer disease. Nat Rev Neurol 15:1–16. https://doi.org/10.1038/s41582-018-0116-6

    Article  Google Scholar 

  4. Mosconi L (2005) Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 32:486–510. https://doi.org/10.1007/s00259-005-1762-7

    Article  CAS  PubMed  Google Scholar 

  5. Weise CM, Chen K, Chen Y, Kuang X, Savage CR, Reiman EM (2018) Left lateralized cerebral glucose metabolism declines in amyloid-β positive persons with mild cognitive impairment. Neuroimage Clin 20:286–296. https://doi.org/10.1016/j.nicl.2018.07.016

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, Li Y, Pirraglia E, de Santi S et al (2009) FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging 36:811–822. https://doi.org/10.1007/s00259-008-1039-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gordon BA, Blazey TM, Su Y et al (2018) Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study. Lancet Neurol 17:241–250. https://doi.org/10.1016/S1474-4422(18)30028-0

    Article  PubMed  PubMed Central  Google Scholar 

  8. Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M, Thomas-Anterion C, Michon A et al (1999) Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet 65:664–670. https://doi.org/10.1086/302553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bellenguez C, Grenier-Boley B, Lambert J-C (2020) ScienceDirect genetics of Alzheimer’s disease: where we are, and where we are going. Curr Opin Neurobiol 61:40–48. https://doi.org/10.1016/j.conb.2019.11.024

    Article  CAS  PubMed  Google Scholar 

  10. Liang X, Slifer M, Martin ER, Schnetz-Boutaud N, Bartlett J, Anderson B, Züchner S, Gwirtsman H et al (2008) Genomic convergence to identify candidate genes for Alzheimer disease on chromosome 10. Hum Mutat 30:463–471. https://doi.org/10.1002/humu.20953

    Article  CAS  Google Scholar 

  11. Kunkle BW, Grenier-Boley B, Sims R et al (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet 51:414–430. https://doi.org/10.1038/s41588-019-0358-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gibbs EL, Lennox WG, Nims LF, Gibbs FA (1942) Arterial and cerebral venous blood arterial-venous differences in man. J Biol Chem 144:325–332

    Article  CAS  Google Scholar 

  13. Dienel GA (2019) Brain glucose metabolism: integration of energetics with function. Physiol Rev 99:949–1045. https://doi.org/10.1152/physrev.00062.2017

    Article  CAS  PubMed  Google Scholar 

  14. Schubert D (2005) Glucose metabolism and Alzheimer’s disease. Ageing Res Rev 4:240–257. https://doi.org/10.1016/j.arr.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  15. De Leon MJ, Convit A, Wolf OT et al (2001) Prediction of cognitive decline in normal elderly subjects with 2-[18F]fluoro-2-deoxy-d-glucose/positron-emission tomography (FDG/PET). Proc Natl Acad Sci U S A 98:10966–10971. https://doi.org/10.1073/pnas.191044198

    Article  PubMed  PubMed Central  Google Scholar 

  16. Siebner H, Riemenschneider M, Willoch F, Minoshima S, Schwaiger M, Kurz A, Drzezga A, Lautenschlager N (2003) Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 30:1104–1113. https://doi.org/10.1007/s00259-003-1194-1

    Article  PubMed  Google Scholar 

  17. Mosconi L, Tsui WH, Rusinek H, de Santi S, Li Y, Wang GJ, Pupi A, Fowler J et al (2007) Quantitation, regional vulnerability, and kinetic modeling of brain glucose metabolism in mild Alzheimer’s disease. Eur J Nucl Med Mol Imaging 34:1467–1479. https://doi.org/10.1007/s00259-007-0406-5

    Article  CAS  PubMed  Google Scholar 

  18. Liu F, Shi J, Tanimukai H, Gu J, Gu J, Grundke-Iqbal I, Iqbal K, Gong CX (2009) Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer’s disease. Brain 132:1820–1832. https://doi.org/10.1093/brain/awp099

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang D, Pascual JM, Yang H, Engelstad K, Mao X, Cheng J, Yoo J, Noebels JL et al (2006) A mouse model for Glut-1 haploinsufficiency. Hum Mol Genet 15:1169–1179. https://doi.org/10.1093/hmg/ddl032

    Article  CAS  PubMed  Google Scholar 

  20. Ullner PM, Di Nardo A, Goldman JE et al (2009) Murine Glut-1 transporter haploinsufficiency: postnatal deceleration of brain weight and reactive astrocytosis. Neurobiol Dis 36:60–69. https://doi.org/10.1016/j.nbd.2009.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Simpson IA, Chundu KR, Davies-Hill T, Honer WG, Davies P (1994) Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer’s disease. Ann Neurol 35:546–551. https://doi.org/10.1002/ana.410350507

    Article  CAS  PubMed  Google Scholar 

  22. Mooradian AD, Chung HC, Shah GN (1997) GLUT-1 expression in the cerebra of patients with Alzheimer’s disease. NBA 18:469–474. https://doi.org/10.1016/s0197-4580(97)00111-5

    Article  CAS  Google Scholar 

  23. Winkler EA, Nishida Y, Sagare AP, Rege SV, Bell RD, Perlmutter D, Sengillo JD, Hillman S et al (2015) GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci 18:521–530. https://doi.org/10.1038/nn.3966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Niccoli T, Cabecinha M, Tillmann A, Kerr F, Wong CT, Cardenes D, Vincent AJ, Bettedi L et al (2016) Increased glucose transport into neurons rescues Aβ toxicity in Drosophila. Curr Biol 26:2291–2300. https://doi.org/10.1016/j.cub.2016.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin Y-T, Seo J, Gao F et al (2018) APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98:1141–1154.e7. https://doi.org/10.1016/j.neuron.2018.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jeong W, Lee H, Cho S, Seo J (2019) ApoE4-induced cholesterol dysregulation and its brain cell type-specific implications in the pathogenesis of Alzheimer’s disease. Mol Cell 42:739–746. https://doi.org/10.14348/molcells.2019.0200

    Article  CAS  Google Scholar 

  27. Jagust WJ, Landau SM, For the Alzheimer’s Disease Neuroimaging Initiative (2012) Apolipoprotein E, not fibrillar -amyloid, reduces cerebral glucose metabolism in normal aging. J Neurosci 32:18227–18233. https://doi.org/10.1523/JNEUROSCI.3266-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Keeney JT-R, Ibrahimi S, Zhao L (2015) Human ApoE isoforms differentially modulate glucose and amyloid metabolic pathways in female brain: evidence of the mechanism of neuroprotection by ApoE2 and implications for Alzheimer’s disease prevention and early intervention. J Alzheimers Dis 48:411–424. https://doi.org/10.3233/JAD-150348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alata W, Ye Y, St-Amour I et al (2014) Human apolipoprotein E ε4 expression impairs cerebral vascularization and blood–brain barrier function in mice. J Cereb Blood Flow Metab 35:86–94. https://doi.org/10.1038/jcbfm.2014.172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629. https://doi.org/10.1073/pnas.91.22.10625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pellerin L (2013) Unraveling the complex metabolic nature of astrocytes. Front Cell Neurosci 1–13. https://doi.org/10.3389/fncel.2013.00179/abstract

  32. Magistretti PJ, Allaman I (2018) Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci 19:235–249. https://doi.org/10.1038/nrn.2018.19

    Article  CAS  PubMed  Google Scholar 

  33. Bero AW, Yan P, Roh JH, Cirrito JR, Stewart FR, Raichle ME, Lee JM, Holtzman DM (2011) Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nat Neurosci 14:750–756. https://doi.org/10.1038/nn.2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamada K, Holth JK, Liao F, Stewart FR, Mahan TE, Jiang H, Cirrito JR, Patel TK et al (2014) Neuronal activity regulates extracellular tau in vivo. J Exp Med 211:387–393. https://doi.org/10.1084/jem.20131685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Macauley SL, Stanley M, Caesar EE, Yamada SA, Raichle ME, Perez R, Mahan TE, Sutphen CL et al (2015) Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo. J Clin Invest 125:2463–2467. https://doi.org/10.1172/JCI79742

    Article  PubMed  PubMed Central  Google Scholar 

  36. Harris RA, Tindale L, Lone A, Singh O, Macauley SL, Stanley M, Holtzman DM, Bartha R et al (2016) Aerobic glycolysis in the frontal cortex correlates with memory performance in wild-type mice but not the APP/PS1 mouse model of cerebral amyloidosis. J Neurosci 36:1871–1878. https://doi.org/10.1523/JNEUROSCI.3131-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vlassenko AG, Vaishnavi SN, Couture L, Sacco D, Shannon BJ, Mach RH, Morris JC, Raichle ME et al (2010) Spatial correlation between brain aerobic glycolysis and amyloid-β (Aβ ) deposition. Proc Natl Acad Sci USA 107:17763–17767. https://doi.org/10.1073/pnas.1010461107

    Article  PubMed  Google Scholar 

  38. Mevel K, Chételat G, Eustache F, Desgranges B (2011) The default mode network in healthy aging and Alzheimer’s disease. Int J Alzheimers Dis 2011:1–9. https://doi.org/10.4061/2011/535816

    Article  Google Scholar 

  39. Bergau N, Maul S, Rujescu D, Simm A, Navarrete Santos A (2019) Reduction of glycolysis intermediate concentrations in the cerebrospinal fluid of Alzheimer’s disease patients. Front Neurosci 13:871. https://doi.org/10.3389/fnins.2019.00871

    Article  PubMed  PubMed Central  Google Scholar 

  40. Williams HC, Farmer BC, Piron MA, Walsh AE, Bruntz RC, Gentry MS, Sun RC, Johnson LA (2020) APOE alters glucose flux through central carbon pathways in astrocytes. Neurobiol Dis 136:104742. https://doi.org/10.1016/j.nbd.2020.104742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dennis NA, Browndyke JN, Stokes J, Need A, Burke JR, Welsh-Bohmer KA, Cabeza R (2009) Temporal lobe functional activity and connectivity in young adult APOEɛ4 carriers. Alzheimers Dement 6:303–311. https://doi.org/10.1016/j.jalz.2009.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  42. Filippini N, MacIntosh BJ, Hough MG et al (2009) Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci USA 106:7209–7214. https://doi.org/10.1073/pnas.0811879106

    Article  PubMed  Google Scholar 

  43. Evans S, Dowell NG, Tabet N, Tofts PS, King SL, Rusted JM (2014) Cognitive and neural signatures of the APOE E4 allele in mid-aged adults. NBA 35:1615–1623. https://doi.org/10.1016/j.neurobiolaging.2014.01.145

    Article  CAS  Google Scholar 

  44. Goyal MS, Vlassenko AG, Blazey TM et al (2017) Loss of brain aerobic glycolysis in normal human aging. Cell Metab 26:353–360.e3. https://doi.org/10.1016/j.cmet.2017.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vlassenko AG, Gordon BA, Goyal MS, Su Y, Blazey TM, Durbin TJ, Couture LE, Christensen JJ et al (2018) Aerobic glycolysis and tau deposition in preclinical Alzheimer’s disease. Neurobiol Aging 67:95–98. https://doi.org/10.1016/j.neurobiolaging.2018.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van der Kant R, Goldstein LSB, Ossenkoppele R (2019) Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nat Rev Neurosci 21:1–15. https://doi.org/10.1038/s41583-019-0240-3

    Article  CAS  Google Scholar 

  47. Le Douce J, Maugard M, Veran J et al (2020) Impairment of glycolysis-derived l-serine production in astrocytes contributes to cognitive deficits in Alzheimer’s disease. Cell Metab 31:503–516.e9. https://doi.org/10.1016/j.cmet.2020.02.004

    Article  CAS  PubMed  Google Scholar 

  48. Baik SH, Kang S, Lee W et al (2019) A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metab 30:493–507.e6. https://doi.org/10.1016/j.cmet.2019.06.005

    Article  CAS  PubMed  Google Scholar 

  49. Ulland TK, Song WM, Huang SC-C et al (2017) TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell 170:649–656.e13. https://doi.org/10.1016/j.cell.2017.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Piers TM, Cosker K, Mallach A, Johnson GT, Guerreiro R, Hardy J, Pocock JM (2019) A locked immunometabolic switch underlies TREM2 R47H loss of function in human iPSC-derived microglia. FASEB J 34:2436–2450. https://doi.org/10.1096/fj.201902447R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y, Casadesus G, Zhu X (2008) Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci USA 105:19318–19323. https://doi.org/10.1073/pnas.0804871105

    Article  PubMed  Google Scholar 

  52. Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29:9090–9103. https://doi.org/10.1523/JNEUROSCI.1357-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Manczak M, Calkins MJ, Reddy PH (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum Mol Genet 20:2495–2509. https://doi.org/10.1093/hmg/ddr139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 26:9057–9068. https://doi.org/10.1523/JNEUROSCI.1469-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Area-Gomez E, de Groof AJC, Boldogh I, Bird TD, Gibson GE, Koehler CM, Yu WH, Duff KE et al (2009) Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am J Pathol 175:1810–1816. https://doi.org/10.2353/ajpath.2009.090219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zampese E, Fasolato C, Kipanyula MJ, Bortolozzi M, Pozzan T, Pizzo P (2011) Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and Ca2+ cross-talk. Proc Natl Acad Sci U S A 108:2777–2782. https://doi.org/10.1073/pnas.1100735108

  57. Behbahani H, Shabalina IG, Wiehager B, Concha H, Hultenby K, Petrovic N, Nedergaard J, Winblad B et al (2006) Differential role of presenilin-1 and -2 on mitochondrial membrane potential and oxygen consumption in mouse embryonic fibroblasts. J Neurosci Res 84:891–902. https://doi.org/10.1002/jnr.20990

    Article  CAS  PubMed  Google Scholar 

  58. Cárdenas C, Miller RA, Smith I, Bui T, Molgó J, Müller M, Vais H, Cheung KH et al (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142:270–283. https://doi.org/10.1016/j.cell.2010.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sarasija S, Laboy JT, Ashkavand Z, Bonner J, Tang Y, Norman KR (2018) Presenilin mutations deregulate mitochondrial Ca2+ homeostasis and metabolic activity causing neurodegeneration in Caenorhabditis elegans. Elife 7:5427. https://doi.org/10.7554/eLife.33052

    Article  Google Scholar 

  60. Orr AL, Kim C, Jimenez-Morales D, Newton BW, Johnson JR, Krogan NJ, Swaney DL, Mahley RW (2019) Neuronal apolipoprotein E4 expression results in proteome-wide alterations and compromises bioenergetic capacity by disrupting mitochondrial function. J Alzheimers Dis 68:991–1011. https://doi.org/10.3233/JAD-181184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cummins N, Tweedie A, Zuryn S et al (2018) Disease-associated tau impairs mitophagy by inhibiting Parkin translocation to mitochondria. EMBO J 38:71–15. https://doi.org/10.15252/embj.201899360

    Article  CAS  Google Scholar 

  62. Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, Lautrup S, Hasan-Olive MM et al (2019) Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 22:1–18. https://doi.org/10.1038/s41593-018-0332-9

    Article  CAS  Google Scholar 

  63. Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Publ Group 13:1–8. https://doi.org/10.1038/ncb2329

    Article  CAS  Google Scholar 

  64. Vingtdeux V, Davies P, Dickson DW, Marambaud P (2010) AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies. Acta Neuropathol 121:337–349. https://doi.org/10.1007/s00401-010-0759-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen Y, Zhou K, Wang R, Liu Y, Kwak YD, Ma T, Thompson RC, Zhao Y et al (2009) Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer’s amyloid peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci USA 106:3907–3912. https://doi.org/10.1073/pnas.0807991106

    Article  PubMed  Google Scholar 

  66. Mairet-Coello G, Courchet J, Pieraut S, Courchet V, Maximov A, Polleux F (2013) The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through tau phosphorylation. Neuron 78:94–108. https://doi.org/10.1016/j.neuron.2013.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Onyango P, Celic I, McCaffery JM et al (2002) SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci U S A 99:13653–13658. https://doi.org/10.1073/pnas.222538099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee J, Kim Y, Liu T, Hwang YJ, Hyeon SJ, Im H, Lee K, Alvarez VE et al (2017) SIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer’s disease. Aging Cell 17:e12679–e12612. https://doi.org/10.1111/acel.12679

    Article  CAS  PubMed Central  Google Scholar 

  69. Titchenell PM, Lazar MA, Birnbaum MJ (2017) Unraveling the regulation of hepatic metabolism by insulin. Trends Endocrinol Metab 28:497–505. https://doi.org/10.1016/j.tem.2017.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fernandez AM, Torres-Alemán I (2012) The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci 13:1–15. https://doi.org/10.1038/nrn3209

    Article  CAS  Google Scholar 

  71. Werner H, LeRoith D (2014) Insulin and insulin-like growth factor receptors in the brain_ physiological and pathological aspects. Eur Neuropsychopharmacol 24:1947–1953. https://doi.org/10.1016/j.euroneuro.2014.01.020

    Article  CAS  PubMed  Google Scholar 

  72. La Monte de SM, Wands JR (2005) Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 7:45–61. https://doi.org/10.3233/jad-2005-7106

    Article  Google Scholar 

  73. Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang HY, Ahima RS, Craft S, Gandy S et al (2018) Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 14:168–181. https://doi.org/10.1038/nrneurol.2017.185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kuwabara T, Kagalwala MN, Onuma Y, Ito Y, Warashina M, Terashima K, Sanosaka T, Nakashima K et al (2011) Insulin biosynthesis in neuronal progenitors derived from adult hippocampus and the olfactory bulb. EMBO Mol Med 3:742–754. https://doi.org/10.1002/emmm.201100177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schechter R, Abboud M (2001) Neuronal synthesized insulin roles on neural differentiation within fetal rat neuron cell cultures. Brain Res Dev Brain Res 127:41–49. https://doi.org/10.1016/s0165-3806(01)00110-9

    Article  CAS  PubMed  Google Scholar 

  76. Messari El S, Leloup C, Quignon M et al (1998) Immunocytochemical localization of the insulin-responsive glucose transporter 4 (Glut4) in the rat central nervous system. J Comp Neurol 399:492–512.

  77. Vannucci SJ, Koehler-Stec EM, Li K, Reynolds TH, Clark R, Simpson IA (1998) GLUT4 glucose transporter expression in rodent brain: effect of diabetes. Brain Res 797:1–11. https://doi.org/10.1016/s0006-8993(98)00103-6

    Article  CAS  PubMed  Google Scholar 

  78. Pearson-Leary J, McNay EC (2016) Novel roles for the insulin-regulated glucose transporter-4 in hippocampally dependent memory. J Neurosci 36:11851–11864. https://doi.org/10.1523/JNEUROSCI.1700-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ashrafi G, Wu Z, Farrell RJ, Ryan TA (2017) GLUT4 mobilization supports energetic demands of active synapses. Neuron 93:606–614.e4. https://doi.org/10.1016/j.neuron.2016.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. McNay EC, Pearson-Leary J (2020) GluT4_ a central player in hippocampal memory and brain insulin resistance. Exp Neurol 323:113076. https://doi.org/10.1016/j.expneurol.2019.113076

    Article  CAS  PubMed  Google Scholar 

  81. Janson J, Laedtke T, Parisi JE, O'Brien P, Petersen RC, Butler PC (2004) Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53:474–481. https://doi.org/10.2337/diabetes.53.2.474

    Article  CAS  PubMed  Google Scholar 

  82. Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM (2005) Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis 8:247–268. https://doi.org/10.3233/jad-2005-8304

    Article  CAS  PubMed  Google Scholar 

  83. Clarke JR, Ribeiro FC, Frozza RL, de Felice FG, Lourenco MV (2018) Metabolic dysfunction in Alzheimer’s disease: from basic neurobiology to clinical approaches. J Alzheimers Dis 64:S405–S426. https://doi.org/10.3233/JAD-179911

    Article  PubMed  Google Scholar 

  84. Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C (2010) Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 31:224–243. https://doi.org/10.1016/j.neurobiolaging.2008.04.002

    Article  CAS  PubMed  Google Scholar 

  85. Logan S, Pharaoh GA, Marlin MC, Masser DR, Matsuzaki S, Wronowski B, Yeganeh A, Parks EE et al (2018) Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-β uptake in astrocytes. Mol Metabol 9:141–155. https://doi.org/10.1016/j.molmet.2018.01.013

    Article  CAS  Google Scholar 

  86. Sankar SB, Infante-Garcia C, Weinstock LD, et al (2020) Amyloid beta and diabetic pathology cooperatively stimulate cytokine expression in an Alzheimer’s mouse model. 1–15. J Neuroinflammation https://doi.org/10.1186/s12974-020-1707-x

  87. Chan ES (2015) Differential interaction of apolipoprotein-E isoforms with insulin receptors modulates brain insulin signaling in mutant human amyloid precursor protein transgenic mice. Sci Rep 5:1–10. https://doi.org/10.1038/srep13842

  88. Chan ES (2016) ApoE4 expression accelerates hippocampus-dependent cognitive deficits by enhancing Aβ impairment of insulin signaling in an Alzheimer’s disease mouse model. Sci Rep 6:1–13. https://doi.org/10.1038/srep26119

  89. Galle SA, van der Spek A, Drent ML, Brugts MP, Scherder EJA, Janssen JAMJL, Ikram MA, van Duijn CM (2019) Revisiting the role of insulin-like growth factor-I receptor stimulating activity and the apolipoprotein E in Alzheimer’s disease. Front Aging Neurosci 11:607–609. https://doi.org/10.3389/fnagi.2019.00020

    Article  CAS  Google Scholar 

  90. Zhao N, Liu C-C, Van Ingelgom AJ et al (2017) Apolipoprotein E4 impairs neuronal insulin signaling by trapping insulin receptor in the endosomes. Neuron 96:115–129.e5. https://doi.org/10.1016/j.neuron.2017.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Reger MA, Watson GS, Frey WH II, Baker LD, Cholerton B, Keeling ML, Belongia DA, Fishel MA et al (2006) Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging 27:451–458. https://doi.org/10.1016/j.neurobiolaging.2005.03.016

    Article  CAS  PubMed  Google Scholar 

  92. Koren-Iton A, Salomon-Zimri S, Smolar A, Shavit-Stein E, Dori A, Chapman J, Michaelson DM (2020) Central and peripheral mechanisms in ApoE4-driven diabetic pathology. Int J Mol Sci 21:1289–1223. https://doi.org/10.3390/ijms21041289

    Article  CAS  PubMed Central  Google Scholar 

  93. Pérez A, Morelli L, Cresto JC, Castaño EM (2000) Degradation of soluble amyloid beta-peptides 1-40, 1-42, and the Dutch variant 1-40Q by insulin degrading enzyme from Alzheimer disease and control brains. Neurochem Res 25:247–255. https://doi.org/10.1023/a:1007527721160

    Article  PubMed  Google Scholar 

  94. Vekrellis K, Ye Z, Qiu WQ, Walsh D, Hartley D, Chesneau V, Rosner MR, Selkoe DJ (2000) Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J Neurosci 20:1657–1665. https://doi.org/10.1523/JNEUROSCI.20-05-01657.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE et al (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A 100:4162–4167. https://doi.org/10.1073/pnas.0230450100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bertram L (2000) Evidence for genetic linkage of Alzheimer’s disease to chromosome 10q. Science 290:2302–2303. https://doi.org/10.1126/science.290.5500.2302

    Article  CAS  PubMed  Google Scholar 

  97. Myers A, Holmans P, Marshall H, Kwon J, Meyer D, Ramic D, Shears S, Booth J et al (2000) Susceptibility locus for Alzheimer’s disease on chromosome 10. Science 290:2304–2305. https://doi.org/10.1126/science.290.5500.2304

    Article  CAS  PubMed  Google Scholar 

  98. Ertekin-Taner N (2000) Linkage of plasma Abeta42 to a quantitative locus on chromosome 10 in late-onset Alzheimer’s disease pedigrees. Science 290:2303–2304. https://doi.org/10.1126/science.290.5500.2303

    Article  CAS  PubMed  Google Scholar 

  99. Fakhrai-Rad H, Nikoshkov A, Kamel A, Fernström M, Zierath JR, Norgren S, Luthman H, Galli J (2000) Insulin-degrading enzyme identified as a candidate diabetes susceptibility gene in GK rats. Hum Mol Genet 9:2149–2158. https://doi.org/10.1093/hmg/9.14.2149

    Article  CAS  PubMed  Google Scholar 

  100. Cook DG, Leverenz JB, McMillan PJ et al (2003) Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer’s disease is associated with the apolipoprotein E-epsilon4 allele. Am J Pathol 162:313–319. https://doi.org/10.1016/s0002-9440(10)63822-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Goodarzi MO, Lehman DM, Taylor KD, Guo X, Cui J, Quinones MJ, Clee SM, Yandell BS et al (2007) SORCS1: a novel human type 2 diabetes susceptibility gene suggested by the mouse. Diabetes 56:1922–1929. https://doi.org/10.2337/db06-1677

    Article  CAS  PubMed  Google Scholar 

  102. Paterson AD, Waggott D, Boright AP, Hosseini SM, Shen E, Sylvestre MP, Wong I, Bharaj B et al (2010) A genome-wide association study identifies a novel major locus for glycemic control in type 1 diabetes, as measured by both A1C and glucose. Diabetes 59:539–549. https://doi.org/10.2337/db09-0653

    Article  CAS  PubMed  Google Scholar 

  103. Nicolas G, Charbonnier C, Wallon D, Quenez O, Bellenguez C, Grenier-Boley B, Rousseau S, Richard A-C et al (2016) SORL1 rare variants: a major risk factor for familial early-onset Alzheimer's disease. Mol Psychiatry 6:831-836. https://doi.org/10.1038/mp.2015.121

  104. Lane RF, Raines SM, Steele JW, Ehrlich ME, Lah JA, Small SA, Tanzi RE, Attie AD et al (2010) Diabetes-associated SorCS1 regulates Alzheimer’s amyloid- metabolism: evidence for involvement of SorL1 and the retromer complex. J Neurosci 30:13110–13115. https://doi.org/10.1523/JNEUROSCI.3872-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lane RF, Steele JW, Cai D, Ehrlich ME, Attie AD, Gandy S (2013) Protein sorting motifs in the cytoplasmic tail of SorCS1 control generation of Alzheimer’s amyloid- peptide. J Neurosci 33:7099–7107. https://doi.org/10.1523/JNEUROSCI.5270-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Knight EM, Ruiz HH, Kim SH, et al (2016) Unexpected partial correction of metabolic and behavioral phenotypes of Alzheimer’s APP/PSEN1 mice by gene targeting of diabetes/Alzheimer’s-related Sorcs1. Acta Neuropathologica Communications 1–15. https://doi.org/10.1186/s40478-016-0282-y

  107. Reitz C, Tosto G, Vardarajan B, et al (2013) Independent and epistatic effects of variants in VPS10-d receptors on Alzheimer disease risk and processing of the amyloid precursor protein (APP). Transl Psychiatry 3:e256–12. https://doi.org/10.1038/tp.2013.13

  108. Johnson ECB, Dammer EB, Duong DM, et al (2020) Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med 1–31. https://doi.org/10.1038/s41591-020-0815-6

  109. Adav SS, Park JE, Sze SK (2019) Quantitative profiling brain proteomes revealed mitochondrial dysfunction in Alzheimer’s disease. Mol Brain 1–12. https://doi.org/10.1186/s13041-019-0430-y

  110. Julien C, Tremblay C, Phivilay A, Berthiaume L, Émond V, Julien P, Calon F (2010) High-fat diet aggravates amyloid-beta and tau pathologies in the 3xTg-AD mouse model. NBA 31:1516–1531. https://doi.org/10.1016/j.neurobiolaging.2008.08.022

    Article  CAS  Google Scholar 

  111. Moser VA, Pike CJ (2017) Obesity accelerates Alzheimer-related pathology in APOE4but not APOE3Mice. eNeuro 4:ENEURO.0077–17.2017–18. https://doi.org/10.1523/ENEURO.0077-17.2017

  112. Bracko O, Vinarcsik LK, Cruz Hernández JC, Ruiz-Uribe NE, Haft-Javaherian M, Falkenhain K, Ramanauskaite EM, Ali M et al (2020) High fat diet worsens Alzheimer’s disease-related behavioral abnormalities and neuropathology in APP/PS1 mice, but not by synergistically decreasing cerebral blood flow. Sci Rep 10:9884–9816. https://doi.org/10.1038/s41598-020-65908-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Besser LM, Gill DP, Monsell SE, Brenowitz W, Meranus DH, Kukull W, Gustafson DR (2014) Body mass index, weight change, and clinical progression in mild cognitive impairment and Alzheimer disease. Alzheimer Dis Assoc Disord 28:36–43. https://doi.org/10.1097/WAD.0000000000000005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA et al (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468. https://doi.org/10.1038/nature10777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jedrychowski MP, Wrann CD, Paulo JA, Gerber KK, Szpyt J, Robinson MM, Nair KS, Gygi SP et al (2015) Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab 22:734–740. https://doi.org/10.1016/j.cmet.2015.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kim OY, Song J (2018) The role of irisin in Alzheimer’s disease. J Clin Med 7:407. https://doi.org/10.3390/jcm7110407

    Article  CAS  PubMed Central  Google Scholar 

  117. Jin Y, Sumsuzzman DM, Choi J, Kang H, Lee SR, Hong Y (2018) Molecular and functional interaction of the Myokine Irisin with physical exercise and Alzheimer's disease. Molecules 23:3229. https://doi.org/10.3390/molecules23123229

    Article  CAS  PubMed Central  Google Scholar 

  118. Lourenco MV, Frozza RL, de Freitas GB, Zhang H, Kincheski GC, Ribeiro FC, Gonçalves RA, Clarke JR et al (2019) Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat Med 25:165–175. https://doi.org/10.1038/s41591-018-0275-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tsai C-L, Pai M-C (2020) Circulating levels of irisin in obese individuals at genetic risk for Alzheimer’s disease: correlations with amyloid-β, metabolic, and neurocognitive indices. Behav Brain Res 113013:113013. https://doi.org/10.1016/j.bbr.2020.113013

    Article  CAS  Google Scholar 

  120. Vaishnavi SN, Vlassenko AG, Rundle MM, Snyder AZ, Mintun MA, Raichle ME (2010) Regional aerobic glycolysis in the human brain. Proc Natl Acad Sci U S A 107:17757–17762. https://doi.org/10.1073/pnas.1010459107

Download references

Code Availability

Not applicable.

Funding

This work was supported by the National Research Foundation of Korea (NRF) grants (2018M3C7A1056275, 2019R1C1C1008591) funded by the Ministry of Science, ICT and Future Planning to J.S.

Author information

Authors and Affiliations

Authors

Contributions

S.C. designed the review, and S.C., H.L., and J.S. wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jinsoo Seo.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S., Lee, H. & Seo, J. Impact of Genetic Risk Factors for Alzheimer’s Disease on Brain Glucose Metabolism. Mol Neurobiol 58, 2608–2619 (2021). https://doi.org/10.1007/s12035-021-02297-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02297-x

Keywords

Navigation