Skip to main content

Advertisement

Log in

Pharmacogenetic and Association Studies on the Influence of HLA Alleles and Rivastigmine on the Iranian Patients with Late-Onset Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder affecting cognitive function. A number of allelic genes from HLA complex have shown variable associations with AD in different populations. In this study, we investigated the association of DQB1*06:00/x, DRB1*04:00/x, DRB1*15:00/x, and B*07:00/x genotypes with AD and their relevance to the efficacy of rivastigmine treatment in the Iranian population. Our findings suggest that DQB1*06:00/x genotype offers strong protection against AD (P = 0.0074), while B*07:00/x genotype imposes a significant susceptibility for sporadic Alzheimer’s disease (SAD) (P = 0.009). Interestingly, B*07:00/x genotype does not show any apparent associations with familial Alzheimer’s disease (FAD). Our studies also suggest a pharmacogenetic relationship between drug treatment and presence of a particular genotype in the Iranian LOAD patient population. The Clinical Dementia Rating analysis showed that LOAD patients carrying DRB1*04:00/x genotype tend to display a downward trend in the disease severity and symptoms after 2-year follow-up with rivastigmine treatment. Moreover, in our total patient population, the carriers of DQB1*06:00/x and B*07:00/x alleles have better and worse responses to rivastigmine respectively. We also measured the clinical relevance of the testing for these genotypes employing prevalence-corrected positive predictive value (PcPPV) formula. The PcPPV of testing for DQB1*06:00/x in the Iranian LOAD patients was 1.17% which means that people carrying this genotype have half of the probability of the absolute risk for developing LOAD, whereas the PcPPV of testing for B*07:00/x was 4.45% for SAD, which can be interpreted as a doubling chance for developing LOAD among the Iranian population carrying this genotype. These results also suggest that DQβ1 peptide containing positively charged AAs histidine30 and arginine55 and HLA class I β chain containing negatively charges aspartic acid114 and glutamic acid45,152 in their binding groove plays important roles in protection against and susceptibility for LOAD respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable

References

  1. Wimo A, Guerchet M, Ali GC, Wu YT, Prina AM, Winblad B et al (2017) The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement 13(1):1–7

    PubMed  PubMed Central  Google Scholar 

  2. Steele NZR, Carr JS, Bonham LW, Geier EG, Damotte V, Miller ZA, Desikan RS, Boehme KL, Mukherjee S, Crane PK, Kauwe JSK, Kramer JH, Miller BL, Coppola G, Hollenbach JA, Huang Y, Yokoyama JS (2017) Fine-mapping of the human leukocyte antigen locus as a risk factor for Alzheimer disease: a case– control study. PLoS Med 14(3):e1002272. https://doi.org/10.1371/journal.pmed.1002272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Candore G, Balistreri CR, Colonna-Romano G, Lio D, Caruso C (2004) Major histocompatibility complex and sporadic Alzheimer’s disease: a critical reappraisal. Exp Gerontol 39(4):645–652

    CAS  PubMed  Google Scholar 

  4. Rocca WA, Hofman A, Brayne C, Breteler MM, Clarke M, Copeland JR et al (1991) Frequency and distribution of Alzheimer’s disease in Europe: a collaborative study of 1980–1990 prevalence findings. Ann Neurol 30(3):381–390

    CAS  PubMed  Google Scholar 

  5. Zhang YW, Thompson R, Zhang H, Xu H (2011) APP processing in Alzheimer’s disease. Mol Brain 4(1):3

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bertram L, Tanzi RE (2008) Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9(10):768–778

    CAS  PubMed  Google Scholar 

  7. Zamani M, Mehri M, Kollaee A, Yenki P, Ghaffarpor M, Harirchian MH, Shahbazi M (2011) Pharmacogenetic study on the effect of Rivastigmine on PS2 and APOE genes in Iranian Alzheimer patients. Dement Geriatr Cogn Dis Extra 1(1):180–189

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang ZX, Wang HF, Tan L, Liu J, Wan Y, Sun FR et al (2017) Effects of HLADRB1/DQB1 genetic variants on neuroimaging in healthy, mild cognitive impairment, and Alzheimer’s disease cohorts. Mol Neurobiol 54(5):3181–3188

    CAS  PubMed  Google Scholar 

  9. Edwards TL, Pericak-Vance M, Gilbert JR, Haines JL, Martin ER, Ritchie MD (2009) An association analysis of Alzheimer disease candidate genes detects an ancestral risk haplotype clade in ACE and putative multilocus association between ACE, A2M, and LRRTM3. Am J Med Genet B Neuropsychiatr Genet 150(5):721–735

    Google Scholar 

  10. Allen M, Kachadoorian M, Carrasquillo MM, Karhade A, Manly L, Burgess JD et al (2015) Late-onset Alzheimer disease risk variants mark brain regulatory loci. Neurol Genet 1(2):e15

    PubMed  PubMed Central  Google Scholar 

  11. Chapman J, Wang N, Treves TA, Korczyn AD, Bornstein NM (1998) ACE, MTHFR, factor V Leiden, and APOE polymorphisms in patients with vascular and Alzheimer’s dementia. Stroke 29(7):1401–1404

    CAS  PubMed  Google Scholar 

  12. Chen SY, Chen TF, Lai LC, Chen JH, Sun Y, Wen LL et al (2012) Sequence variants of interleukin 6 (IL-6) are significantly associated with a decreased risk of late-onset Alzheimer’s disease. J Neuroinflammation 9(1):21

    PubMed  PubMed Central  Google Scholar 

  13. Flex A, Giovannini S, Biscetti F, Liperoti R, Spalletta G, Straface G et al (2014) Effect of proinflammatory gene polymorphisms on the risk of Alzheimer’s disease. Neurodegener Dis 13(4):230–236

    CAS  PubMed  Google Scholar 

  14. The MHC (1999) Complete sequence and gene map of a human major histocompatibility complex. Nature 401(6756):921

    Google Scholar 

  15. Lehmann DJ, Barnardo MC, Fuggle S, Quiroga I, Sutherland A, Warden DR et al (2006) Replication of the association of HLA-B7 with Alzheimer’s disease: a role for homozygosity? J Neuroinflammation 3(1):33

    PubMed  PubMed Central  Google Scholar 

  16. Wick G, Berger P, Jansen-Dürr P, Grubeck-Loebenstein B (2003) A Darwinian-evolutionary concept of age-related diseases. Exp Gerontol 38(1-2):13–25

    PubMed  Google Scholar 

  17. Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16(6):358–372

    CAS  PubMed  Google Scholar 

  18. Burkhardt H, Sehnert B, Bockermann R, Engström Å, Kalden JR, Holmdahl R (2005) Humoral immune response to citrullinated collagen type II determinants in early rheumatoid arthritis. Eur J Immunol 35(5):1643–1652

    CAS  PubMed  Google Scholar 

  19. Fischer B, Schmoll H, Platt D, Popa-Wagner A, Riederer P, Bauer J (1995) Complement C1q and C3 mRNA expression in the frontal cortex of Alzheimer’s patients. J Mol Med 73(9):465–471

    CAS  PubMed  Google Scholar 

  20. Listì F, Candore G, Balistreri CR, Grimaldi MP, Orlando V, Vasto S et al (2006) Association between the HLA-A2 allele and Alzheimer disease. Rejuvenation Res 9(1):99–101

    PubMed  Google Scholar 

  21. Aisen PS, Luddy A, Durner M, Reinhard JF Jr, Pasinetti GM (1998) HLA-DR4 influences glial activity in Alzheimer’s disease hippocampus. J Neurol Sci 161(1):66–69

    CAS  PubMed  Google Scholar 

  22. Frecker MF, Pryse-Philli WEM, Strong HR (1994) Immunological associations in familial and non-familial Alzheimer patients and their families. Can J Neurol Sci 21(2):112119

    Google Scholar 

  23. Lehmann DJ, Wiebusch H, Marshall SE, Johnston C, Warden DR, Morgan K et al (2001) HLA class I, II & III genes in confirmed late-onset Alzheimer’s disease. Neurobiol Aging 22(1):71–77

    CAS  PubMed  Google Scholar 

  24. Spencer CM, Noble S (1998) Rivastigmine. Drugs Aging 13(5):391–411

    CAS  PubMed  Google Scholar 

  25. Cacabelos R (2009) Pharmacogenomic biomarkers in neuropsychiatry: The path to personalized medicine in mental disorders. EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, Coruña; EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, Madrid, Spain. The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes, 3 © Springer Science + Business Media B.V 

  26. Cacabelos R, Cacabelos P, Torrellas C, Tellado I, Carril JC (2014) Pharmacogenomics of Alzheimer’s disease: Novel therapeutic strategies for drug development. In: Pharmacogenomics in Drug Discovery and Development. Humana Press, New York, pp. 323–556

    Google Scholar 

  27. Braun CM, Daigneault R, Gaudelet S, Guimond A (2008) Diagnostic and Statistical Manual of Mental Disorders, symptoms of mania: which one (s) result (s) more often from right than left hemisphere lesions? Compr Psychiatry 49(5):441–459

    PubMed  Google Scholar 

  28. Folstein MF, Folstein SE, McHugh PR (1975) "Mini-mental state": a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    CAS  PubMed  Google Scholar 

  29. Zamani M, Cassiman JJ (1998) Reevaluation of the importance of polymorphic HLA class II alleles and amino acids in the susceptibility of individuals of different populations to type I diabetes. Am J Med Genet 76(2):183–194

    CAS  PubMed  Google Scholar 

  30. Bunce M, O’neill CM, Barnardo MCNM, Krausa P, Browning MJ, Morris PJ, Welsh KI (1995) Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP). Tissue Antigens 46(5):355–367

    CAS  PubMed  Google Scholar 

  31. Gholamzadeh S, Heshmati B, Mani A, Petramfar P, Baghery Z (2017) The prevalence of alzheimer’s disease; its risk and protective factors among the elderly population in Iran. SEMJ 18(9)

  32. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S et al (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63(2):168–174

    PubMed  Google Scholar 

  33. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small G et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923

    CAS  PubMed  Google Scholar 

  34. Rasmussen L, Delabio R, Horiguchi L, Mizumoto I, Terazaki CR, Mazzotti D et al (2013) Association between interleukin 6 gene haplotype and Alzheimer’s disease: a Brazilian case-control study. J Alzheimers Dis 36(4):733–738

    CAS  PubMed  Google Scholar 

  35. Zamani M, Mohammadi M, Zamani H, Tavasoli A (2016) Pharmacogenetic Study on the Impact of Rivastigmine Concerning Genetic Variants of A2M and IL-6 Genes on Iranian Alzheimer’s Patients. Mol Neurobiol 53(7):4521–4528

    CAS  PubMed  Google Scholar 

  36. Sayad A, Noruzinia M, Zamani M, Harirchian MH, Kazemnejad A (2014) Association study of cathepsin D gene polymorphism in Iranian patients with sporadic late-onset Alzheimer’s disease. Dement Geriatr Cogn Disord 37(5-6):257–264

    CAS  PubMed  Google Scholar 

  37. Mansouri L, Klai S, Gritli N, Fekih-Mrissa N, Messalmani M, Bedoui I et al (2015) Association of HLA-DR/DQ polymorphism with Alzheimer’s disease. Am J Med Sci 349(4):334–337

    PubMed  Google Scholar 

  38. Cohen D, Zeller E, Eisdorfer C, Walford R (1979) Alzheimer’s disease and the main histocompatibility complex (HLA system). Gerontologist 19(5 part 2):57

    Google Scholar 

  39. Walford RL, Hodge SE (1980) HLA distribution in Alzheimer’s disease. Histocompatibility Test 1:727–729

    Google Scholar 

  40. Cohen D, Eisdorfer C, Walford RL (1981) Histocompatibility antigens (HLA) and patterns of cognitive loss in dementia of the Alzheimer type. Neurobiol Aging 2(4):277–280

    CAS  PubMed  Google Scholar 

  41. Shadfar S, Hwang CJ, Lim MS, Choi DY, Hong JT (2015) Involvement of inflammation in Alzheimer’s disease pathogenesis and therapeutic potential of anti-inflammatory agents. Arch Pharm Res 38(12):2106–2119

    CAS  PubMed  Google Scholar 

  42. Serpente M, Bonsi R, Scarpini E, Galimberti D (2014) Innate immune system and inflammation in Alzheimer’s disease: from pathogenesis to treatment. Neuroimmunomodulation 21(2-3):79–87

    CAS  PubMed  Google Scholar 

  43. Lampe JB, Gossrau G, Herting B, Kempe A, Sommer U, Füssel M et al (2003) HLA typing and Parkinson’s disease. Eur Neurol 50(2):64–68

    CAS  PubMed  Google Scholar 

  44. Ahmed I, Tamouza R, Delord M, Krishnamoorthy R, Tzourio C, Mulot C et al (2012) Association between Parkinson’s disease and the HLA-DRB1 locus. Mov Disord 27(9):11041110

    Google Scholar 

  45. Tsigelny IF, Crews L, Desplats P, Shaked GM, Sharikov Y, Mizuno H et al (2008) Mechanisms of hybrid oligomer formation in the pathogenesis of combined Alzheimer’s and Parkinson’s diseases. PLoS One 3(9):e3135. https://doi.org/10.1371/journal.pone.0003135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harjanto S, Ng LF, Tong JC (2014) Clustering HLA class I superfamilies using structural interaction patterns. PLoS One 9(1):e86655. https://doi.org/10.1371/journal.pone.0086655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nizri E, Irony-Tur-Sinai M, Faranesh N, Lavon I, Lavi E, Weinstock M, Brenner T (2008) Suppression of neuroinflammation and immunomodulation by the acetylcholinesterase inhibitor rivastigmine. J Neuroimmunol 203(1):12–22

    CAS  PubMed  Google Scholar 

  48. McGeer PL, Itagaki S, Tago H, McGeer EG (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79(1-2):195–200

    CAS  PubMed  Google Scholar 

  49. Walker DG, Lue LF (2015) Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res Ther 7(1):1–9

    Google Scholar 

Download references

Acknowledgments

We are extremely grateful to the participation of the patients with AD and healthy volunteers in this study.

Funding

This study was supported by a research grant from Tehran University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Fatemeh Rezaei Rad: conceptualization, methodology, formal analysis, writing—original draft, visualization. Masood Ghahvechi Akbari: writing—review and editing. Majid Zamani: methodology, software, form analysis, resources, writing. Mahdi Zamani: conceptualization, methodology, resources, investigation, writing—review and editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Mahdi Zamani.

Ethics declarations

This study was certified by the ethics committee and review board of the Tehran University of Medical Sciences.

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and Informed Consent

Questionnaire forms were prepared for each patient and control individuals. Before being included in the study, informed consent was taken from all the patients, or their legal guardians and control subjects.

Consent for Publication

All study participants, or their legal guardian, provided informed written consent for publication.

Code Availability

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei Rad, F., Ghahvechi Akbari, M., Zamani, M. et al. Pharmacogenetic and Association Studies on the Influence of HLA Alleles and Rivastigmine on the Iranian Patients with Late-Onset Alzheimer’s Disease. Mol Neurobiol 58, 2792–2802 (2021). https://doi.org/10.1007/s12035-021-02295-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02295-z

Keywords

Navigation