Skip to main content

Advertisement

Log in

The Protective Effect of PK-11195 on Cognitive Impairment in Rats Survived of Polymicrobial Sepsis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Sepsis is an organ dysfunction caused by a host’s unregulated response to infection, causing long-term brain dysfunction with microglial activation, the release of inflammatory components, and mitochondrial changes. Neuroinflammation can increase the expression of the 18-kD translocator protein (TSPO) in the mitochondria, leading to the activation of the microglia and the release of inflammatory components. The antagonist PK-11195 can modulate TSPO and reduce microglial activation and cognitive damage presented in an animal model of sepsis. The aim of this was to evaluate the effects of PK-11195 on long-term brain inflammation and cognitive impairment in an animal model of sepsis. Wistar rats, 60 days old, were submitted to cecal ligation and puncture (CLP) surgery, divided into groups control/saline, control/PK-11195, sepsis/saline, and sepsis/PK-11195. Immediately after surgery, the antagonist PK-11195 was administered at a dose of 3 mg/kg. Ten days after CLP surgery, the animals were submitted to behavioral tests and determination of brain inflammatory parameters. The sepsis/saline group presented cognitive damage. However, there was damage prevention in animals that received PK-11195. Besides, the sepsis increased the levels of cytokines and M1 microglia markers and caused oxidative damage. However, PK-11195 had the potential to decrease inflammation. These events show that the modulation of neuroinflammation during sepsis by PK-11195, possibly related to changes in TSPO, improves mitochondrial function in the animals’ brains. In conclusion, the antagonist PK-11195 attenuated brain inflammation and prevented cognitive impairment in animals subjected to sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All the data generated and analyzed during this study are available from the corresponding author upon reasonable request.

References

  1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR et al (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Jama 315(8):801–810. https://doi.org/10.1001/jama.2016.0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yealy DM, Huang DT, Delaney A, Knight M, Randolph AG, Daniels R, Nutbeam T (2015) Recognizing and managing sepsis: what needs to be done? BMC Med 13:98. https://doi.org/10.1186/s12916-015-0335-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Annane D, Sharshar T (2015) Cognitive decline after sepsis. Lancet Respir Med 3(1):61–69

    Article  CAS  PubMed  Google Scholar 

  4. Barichello T, Sayana P, Giridharan VV, Arumanayagam AS, Narendran B, Della Giustina A, Petronilho F, Quevedo J et al (2019) Long-term cognitive outcomes after sepsis: a translational systematic review. Mol Neurobiol 56(1):186–251. https://doi.org/10.1007/s12035-018-1048-2

    Article  CAS  PubMed  Google Scholar 

  5. Andonegui G, Zelinski EL, Schubert CL, Knight D, Craig LA, Winston BW, Spanswick SC, Petri B et al (2018) Targeting inflammatory monocytes in sepsis-associated encephalopathy and long-term cognitive impairment. JCI Insight 3(9). https://doi.org/10.1172/jci.insight.99364

  6. Nwafor DC, Brichacek AL, Mohammad AS, Griffith J, Lucke-Wold BP, Benkovic SA, Geldenhuys WJ, Lockman PR et al (2019) Targeting the blood-brain barrier to prevent sepsis-associated cognitive impairment. J Central Nervous Syst Dis 11:1179573519840652. https://doi.org/10.1177/1179573519840652

    Article  Google Scholar 

  7. Gordon SM, Jackson JC, Ely EW, Burger C, Hopkins RO (2004) Clinical identification of cognitive impairment in ICU survivors: insights for intensivists. Intensive Care Med 30(11):1997–2008. https://doi.org/10.1007/s00134-004-2418-y

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bozza FA, D'Avila JC, Ritter C, Sonneville R, Sharshar T, Dal-Pizzol F (2013) Bioenergetics, mitochondrial dysfunction, and oxidative stress in the pathophysiology of septic encephalopathy. Shock 39(Suppl 1):10–16. https://doi.org/10.1097/SHK.0b013e31828fade1

    Article  CAS  PubMed  Google Scholar 

  9. Steckert AV, Comim CM, Igna DM, Dominguini D, Mendonca BP, Ornell F, Colpo GD, Gubert C et al (2015) Effects of sodium butyrate on aversive memory in rats submitted to sepsis. Neurosci Lett 595:134–138. https://doi.org/10.1016/j.neulet.2015.04.019

    Article  CAS  PubMed  Google Scholar 

  10. Steckert AV, Comim CM, Mina F, Mendonca BP, Dominguini D, Ferreira GK, Carvalho-Silva M, Vieira JS et al (2013) Late brain alterations in sepsis-survivor rats. Synapse 67(11):786–793. https://doi.org/10.1002/syn.21686

    Article  CAS  PubMed  Google Scholar 

  11. Michelon C, Michels M, Abatti M, Vieira A, Borges H, Dominguini D, Barichello T, Dal-Pizzol F (2020) The role of secretase pathway in long-term brain inflammation and cognitive impairment in an animal model of severe sepsis. Mol Neurobiol 57(2):1159–1169. https://doi.org/10.1007/s12035-019-01808-1

    Article  CAS  PubMed  Google Scholar 

  12. Manfredini A, Constantino L, Pinto MC, Michels M, Burger H, Kist LW, Silva MC, Gomes LM et al (2019) Mitochondrial dysfunction is associated with long-term cognitive impairment in an animal sepsis model. Clin Sci 133(18):1993–2004. https://doi.org/10.1042/CS20190351

    Article  CAS  Google Scholar 

  13. Biff D, Petronilho F, Constantino L, Vuolo F, Zamora-Berridi GJ, Dall'Igna DM, Comim CM, Quevedo J et al (2013) Correlation of acute phase inflammatory and oxidative markers with long-term cognitive impairment in sepsis survivors rats. Shock 40(1):45–48. https://doi.org/10.1097/SHK.0b013e3182959cfa

    Article  CAS  PubMed  Google Scholar 

  14. Comim CM, Cassol OJ Jr, Constantino LS, Felisberto F, Petronilho F, Rezin GT, Scaini G, Daufenbach JF et al (2011) Alterations in inflammatory mediators, oxidative stress parameters and energetic metabolism in the brain of sepsis survivor rats. Neurochem Res 36(2):304–311. https://doi.org/10.1007/s11064-010-0320-2

    Article  CAS  PubMed  Google Scholar 

  15. Tomasi CD, Vuolo F, Generoso J, Soares M, Barichello T, Quevedo J, Ritter C, Dal-Pizzol F (2017) Biomarkers of delirium in a low-risk community-acquired pneumonia-induced sepsis. Mol Neurobiol 54(1):722–726. https://doi.org/10.1007/s12035-016-9708-6

    Article  CAS  PubMed  Google Scholar 

  16. Michels M, Michelon C, Damasio D, Vitali AM, Ritter C, Dal-Pizzol F (2019) Biomarker predictors of delirium in acutely ill patients: a systematic review. J Geriatr Psychiatry Neurol 32(3):119–136. https://doi.org/10.1177/0891988719834346

    Article  PubMed  Google Scholar 

  17. Gasparotto J, Girardi CS, Somensi N, Ribeiro CT, Moreira JCF, Michels M, Sonai B, Rocha M et al (2018) Receptor for advanced glycation end products mediates sepsis-triggered amyloid-beta accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem 293(1):226–244. https://doi.org/10.1074/jbc.M117.786756

    Article  CAS  PubMed  Google Scholar 

  18. Dal-Pizzol F, Pasquali M, Quevedo J, Gelain DP, Moreira JC (2012) Is there a role for high mobility group box 1 and the receptor for advanced glycation end products in the genesis of long-term cognitive impairment in sepsis survivors? Mol Med 18:1357–1358; author reply 1359. https://doi.org/10.2119/molmed.2012.00317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Giridharan VV, Generoso JS, Collodel A, Dominguini D, Faller CJ, Tardin F, Bhatti GS, Petronilho F et al (2020) Receptor for advanced glycation end products (RAGE) mediates cognitive impairment triggered by pneumococcal meningitis. Neurotherapeutics 4(10):020–00917

    Google Scholar 

  20. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, Norenberg MD, Nutt D et al (2006) Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27(8):402–409. https://doi.org/10.1016/j.tips.2006.06.005

    Article  CAS  PubMed  Google Scholar 

  21. Gut P (2015) Targeting mitochondrial energy metabolism with TSPO ligands. Biochem Soc Trans 43(4):537–542

    Article  CAS  PubMed  Google Scholar 

  22. Zhou T, Dang Y, Zheng YH (2014) The mitochondrial translocator protein, TSPO, inhibits HIV-1 envelope glycoprotein biosynthesis via the endoplasmic reticulum-associated protein degradation pathway. J Virol 88(6):3474–3484

    Article  PubMed  PubMed Central  Google Scholar 

  23. Edison P, Archer HA, Gerhard A, Hinz R, Pavese N, Turkheimer FE, Hammers A, Tai YF et al (2008) Microglia, amyloid, and cognition in Alzheimer’s disease: An [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis 32(3):412–419. https://doi.org/10.1016/j.nbd.2008.08.001

    Article  CAS  PubMed  Google Scholar 

  24. Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, Eggert K, Oertel W et al (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21(2):404–412. https://doi.org/10.1016/j.nbd.2005.08.002

    Article  CAS  PubMed  Google Scholar 

  25. Giridharan VV, Collodel A, Generoso JS, Scaini G, Wassather R, Selvaraj S, Hasbun R, Dal-Pizzol F et al (2020) Neuroinflammation trajectories precede cognitive impairment after experimental meningitis-evidence from an in vivo PET study. J Neuroinflammation 17(1):019–1692

    Article  Google Scholar 

  26. Wala EP, Sloan JW, Jing X (2000) Pharmacokinetics of the peripheral benzodiazepine receptor antagonist, PK 11195, in rats. The effect of dose and gender. Pharmacol Res 41(4):461–468. https://doi.org/10.1006/phrs.1999.0617

    Article  CAS  PubMed  Google Scholar 

  27. Veiga S, Carrero P, Pernia O, Azcoitia I, Garcia-Segura LM (2007) Translocator protein 18 kDa is involved in the regulation of reactive gliosis. Glia 55(14):1426–1436. https://doi.org/10.1002/glia.20558

    Article  PubMed  Google Scholar 

  28. Monga S, Weizman A, Gavish M (2020) The efficacy of the novel TSPO ligands 2-Cl-MGV-1 and 2,4-Di-Cl-MGV-1 compared to the classical TSPO ligand PK 11195 to counteract the release of chemokines from LPS-stimulated BV-2 microglial cells. Biology 9(9):291. https://doi.org/10.3390/biology9090291

    Article  CAS  PubMed Central  Google Scholar 

  29. Zhou D, Ji L, Chen Y (2020) Correction to: TSPO modulates IL-4-induced microglia/macrophage M2 polarization Via PPAR-gamma pathway. J Mol Neurosci 70(7):1164. https://doi.org/10.1007/s12031-020-01571-2

    Article  CAS  PubMed  Google Scholar 

  30. Le Fur G, Vaucher N, Perrier ML, Flamier A, Benavides J, Renault C, Dubroeucq MC, Gueremy C et al (1983) Differentiation between two ligands for peripheral benzodiazepine binding sites, [3H]RO5-4864 and [3H]PK 11195, by thermodynamic studies. Life Sci 33(5):449–457. https://doi.org/10.1016/0024-3205(83)90794-4

    Article  PubMed  Google Scholar 

  31. Klegeris A, McGeer EG, McGeer PL (2000) Inhibitory action of 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxam ide (PK 11195) on some mononuclear phagocyte functions. Biochem Pharmacol 59(10):1305–1314. https://doi.org/10.1016/s0006-2952(00)00252-5

    Article  CAS  PubMed  Google Scholar 

  32. Ma L, Zhang H, Liu N, Wang PQ, Guo WZ, Fu Q, Jiao LB, Ma YQ et al (2016) TSPO ligand PK11195 alleviates neuroinflammation and beta-amyloid generation induced by systemic LPS administration. Brain Res Bull 121:192–200. https://doi.org/10.1016/j.brainresbull.2016.02.001

    Article  CAS  PubMed  Google Scholar 

  33. Kreisl WC, Fujita M, Fujimura Y, Kimura N, Jenko KJ, Kannan P, Hong J, Morse CL et al (2010) Comparison of [(11)C]-(R)-PK 11195 and [(11)C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: Implications for positron emission tomographic imaging of this inflammation biomarker. NeuroImage 49(4):2924–2932. https://doi.org/10.1016/j.neuroimage.2009.11.056

    Article  CAS  PubMed  Google Scholar 

  34. Shi K, Tian DC, Li ZG, Ducruet AF, Lawton MT, Shi FD (2019) Global brain inflammation in stroke. Lancet Neurol 18(11):1058–1066. https://doi.org/10.1016/S1474-4422(19)30078-X

    Article  PubMed  Google Scholar 

  35. Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, Groyer G, Adams D et al (2010) Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 9(12):971–988. https://doi.org/10.1038/nrd3295

    Article  CAS  PubMed  Google Scholar 

  36. Ye C, Lin L, Zhang P, Chen Y, Huang J, Lin X (2020) The protective effect of PK11195 on D-galactose-induced amnestic mild cognitive impairment in rats. Ann Transl Med 8(18):1190. https://doi.org/10.21037/atm-20-6157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fink MP, Heard SO (1990) Laboratory models of sepsis and septic shock. J Surg Res 49(2):186–196. https://doi.org/10.1016/0022-4804(90)90260-9

    Article  CAS  PubMed  Google Scholar 

  38. Vianna MR, Alonso M, Viola H, Quevedo J, de Paris F, Furman M, de Stein ML, Medina JH et al (2000) Role of hippocampal signaling pathways in long-term memory formation of a nonassociative learning task in the rat. Learn Mem 7(5):333–340. https://doi.org/10.1101/lm.34600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. de Lima MN, Laranja DC, Bromberg E, Roesler R, Schroder N (2005) Pre- or post-training administration of the NMDA receptor blocker MK-801 impairs object recognition memory in rats. Behav Brain Res 156(1):139–143. https://doi.org/10.1016/j.bbr.2004.05.016

    Article  CAS  PubMed  Google Scholar 

  40. Roesler R, Vianna MR, de-Paris F, Quevedo J (1999) Memory-enhancing treatments do not reverse the impairment of inhibitory avoidance retention induced by NMDA receptor blockade. Neurobiol Learn Mem 72(3):252–258. https://doi.org/10.1006/nlme.1999.3910

    Article  CAS  PubMed  Google Scholar 

  41. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431. https://doi.org/10.1016/0076-6879(90)86135-i

    Article  CAS  PubMed  Google Scholar 

  42. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  PubMed  Google Scholar 

  43. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    Article  CAS  PubMed  Google Scholar 

  44. Pannell M, Economopoulos V, Wilson TC, Kersemans V, Isenegger PG, Larkin JR, Smart S, Gilchrist S et al (2020) Imaging of translocator protein upregulation is selective for pro-inflammatory polarized astrocytes and microglia. Glia 68(2):280–297. https://doi.org/10.1002/glia.23716

    Article  PubMed  Google Scholar 

  45. Vignal N, Boulay AC, San C, Cohen-Salmon M, Rizzo-Padoin N, Sarda-Mantel L, Decleves X, Cisternino S et al (2020) Astroglial Connexin 43 deficiency protects against LPS-induced neuroinflammation: a TSPO brain microPET Study with [(18)F]FEPPA. Cells 9(2):389. https://doi.org/10.3390/cells9020389

    Article  CAS  PubMed Central  Google Scholar 

  46. Barichello T, Simoes LR, Collodel A, Giridharan VV, Dal-Pizzol F, Macedo D, Quevedo J (2017) The translocator protein (18kDa) and its role in neuropsychiatric disorders. Neurosci Biobehav Rev 83:183–199. https://doi.org/10.1016/j.neubiorev.2017.10.010

    Article  CAS  PubMed  Google Scholar 

  47. Santoro A, Mattace Raso G, Taliani S, Da Pozzo E, Simorini F, Costa B, Martini C, Laneri S et al (2016) TSPO-ligands prevent oxidative damage and inflammatory response in C6 glioma cells by neurosteroid synthesis. Eur J Pharm Sci 88:124–131. https://doi.org/10.1016/j.ejps.2016.04.006

    Article  CAS  PubMed  Google Scholar 

  48. Bae KR, Shim HJ, Balu D, Kim SR, Yu SW (2014) Translocator protein 18 kDa negatively regulates inflammation in microglia. J NeuroImmune Pharmacol 9(3):424–437. https://doi.org/10.1007/s11481-014-9540-6

    Article  PubMed  Google Scholar 

  49. Goldim MP, Danielski LG, Rodrigues JF, Joaquim L, Garbossa L, de Oliveira Junior AN, Metzker KLL, Giustina AD et al (2019) Oxidative stress in the choroid plexus contributes to blood-cerebrospinal fluid barrier disruption during sepsis development. Microvasc Res 123:19–24. https://doi.org/10.1016/j.mvr.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  50. Zhou D, Ji L, Chen Y (2019) TSPO modulates IL-4-Induced microglia/macrophage M2 polarization via PPAR-gamma pathway. J Mol Neurosci 70:542–549. https://doi.org/10.1007/s12031-019-01454-1

    Article  CAS  PubMed  Google Scholar 

  51. Azrad M, Zeineh N, Weizman A, Veenman L, Gavish M (2019) The TSPO ligands 2-Cl-MGV-1, MGV-1, and PK11195 differentially suppress the inflammatory response of BV-2 microglial cell to LPS. Int J Mol Sci 20 (3). doi:https://doi.org/10.3390/ijms20030594

  52. Zhou D, Ji L, Chen Y (2020) TSPO modulates IL-4-induced microglia/macrophage M2 polarization via PPAR-gamma pathway. J Mol Neurosci 70(4):542–549. https://doi.org/10.1007/s12031-019-01454-1

    Article  CAS  PubMed  Google Scholar 

  53. Choi HB, Khoo C, Ryu JK, van Breemen E, Kim SU, McLarnon JG (2002) Inhibition of lipopolysaccharide-induced cyclooxygenase-2, tumor necrosis factor-alpha and [Ca2+]i responses in human microglia by the peripheral benzodiazepine receptor ligand PK11195. J Neurochem 83(3):546–555. https://doi.org/10.1046/j.1471-4159.2002.01122.x

    Article  CAS  PubMed  Google Scholar 

  54. Christensen A, Pike CJ (2018) TSPO ligand PK11195 improves Alzheimer-related outcomes in aged female 3xTg-AD mice. Neurosci Lett 683:7–12. https://doi.org/10.1016/j.neulet.2018.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Leaver KR, Reynolds A, Bodard S, Guilloteau D, Chalon S, Kassiou M (2012) Effects of translocator protein (18 kDa) ligands on microglial activation and neuronal death in the quinolinic-acid-injected rat striatum. ACS Chem Neurosci 3(2):114–119. https://doi.org/10.1021/cn200099e

    Article  CAS  PubMed  Google Scholar 

  56. Michels M, Abatti M, Vieira A, Avila P, Goulart AI, Borges H, Corneo E, Dominguini D et al (2020) Modulation of microglial phenotypes improves sepsis-induced hippocampus-dependent cognitive impairments and decreases brain inflammation in an animal model of sepsis. Clin Sci 134(7):765–776. https://doi.org/10.1042/CS20191322

    Article  CAS  Google Scholar 

  57. Giridharan VV, Collodel A, Generoso JS, Scaini G, Wassather R, Selvaraj S, Hasbun R, Dal-Pizzol F et al (2020) Neuroinflammation trajectories precede cognitive impairment after experimental meningitis-evidence from an in vivo PET study. J Neuroinflammation 17(1):5. https://doi.org/10.1186/s12974-019-1692-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Michels M, Abatti MR, Avila P, Vieira A, Borges H, Carvalho Junior C, Wendhausen D, Gasparotto J et al (2020) Characterization and modulation of microglial phenotypes in an animal model of severe sepsis. J Cell Mol Med 24(1):88–97. https://doi.org/10.1111/jcmm.14606

    Article  CAS  PubMed  Google Scholar 

  59. Michels M, Avila P, Pescador B, Vieira A, Abatti M, Cucker L, Borges H, Goulart AI et al (2019) Microglial cells depletion increases inflammation and modifies microglial phenotypes in an animal model of severe sepsis. Mol Neurobiol 56(11):7296–7304. https://doi.org/10.1007/s12035-019-1606-2

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by Universidade do Extremo Sul Catarinense (UNESC) and National Institute of Science and Technology—Translational Medicine (INCT).

Author information

Authors and Affiliations

Authors

Contributions

DD, FDF, and TB designed the study. DD and JSG prepared the manuscript. FDF and TB edited the manuscript and supervised the study. DD, AVS, MRA, and JSG were responsible behavioral tests and biochemical analysis. All the authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Diogo Dominguini.

Ethics declarations

Statement of Ethics

All the experimental procedures were performed with the approval of the Ethics Committee from Universidade do Extremo Sul Catarinense (protocol number: 001/2015-1) and conformed to international regulations.

Conflict of Interest

The authors declare that there is no conflict of interest.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplemental Fig 1

- Experimental design. 60 days after birth, the rats were subjected to sepsis and treated with PK 11195. After 10 days, open field behavioral tests, recognition of novel objects, and inhibitory avoidance were performed. Soon after, the prefrontal cortex and hippocampus brain tissues were extracted for the analysis of cytokines, oxidative damage, and markers of microglial activity. (PNG 4948 kb)

High Resolution (TIF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dominguini, D., Steckert, A.V., Abatti, M.R. et al. The Protective Effect of PK-11195 on Cognitive Impairment in Rats Survived of Polymicrobial Sepsis. Mol Neurobiol 58, 2724–2733 (2021). https://doi.org/10.1007/s12035-021-02294-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02294-0

Keywords

Navigation