Skip to main content

Advertisement

Log in

Neuroprotective Effects of Testosterone in Male Wobbler Mouse, a Model of Amyotrophic Lateral Sclerosis

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Patients suffering of amyotrophic lateral sclerosis (ALS) present motoneuron degeneration leading to muscle atrophy, dysphagia, and dysarthria. The Wobbler mouse, an animal model of ALS, shows a selective loss of motoneurons, astrocytosis, and microgliosis in the spinal cord. The incidence of ALS is greater in men; however, it increases in women after menopause, suggesting a role of sex steroids in ALS. Testosterone is a complex steroid that exerts its effects directly via androgen (AR) or Sigma-1 receptors and indirectly via estrogen receptors (ER) after aromatization into estradiol. Its reduced-metabolite 5α-dihydrotestosterone acts via AR. This study analyzed the effects of testosterone in male symptomatic Wobblers. Controls or Wobblers received empty or testosterone-filled silastic tubes for 2 months. The cervical spinal cord from testosterone-treated Wobblers showed (1) similar androgen levels to untreated control and (2) increased levels of testosterone, and its 5α-reduced metabolites, 5α- dihydrotestosterone, and 3β-androstanediol, but (3) undetectable levels of estradiol compared to untreated Wobblers. Testosterone-treated controls showed comparable steroid concentrations to its untreated counterpart. In testosterone- treated Wobblers a reduction of AR, ERα, and aromatase and high levels of Sigma-1 receptor mRNAs was demonstrated. Testosterone treatment increased ChAT immunoreactivity and the antiinflammatory mediator TGFβ, while it lessened vacuolated motoneurons, GFAP+ astrogliosis, the density of IBA1+ microgliosis, proinflammatory mediators, and oxidative/nitrosative stress. Clinically, testosterone treatment in Wobblers slowed the progression of paw atrophy and improved rotarod performance. Collectively, our findings indicate an antiinflammatory and protective effect of testosterone in the degenerating spinal cord. These results coincided with a high concentration of androgen-reduced derivatives after testosterone treatment suggesting that the steroid profile may have a beneficial role on disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data supporting the results of this investigation are available from the corresponding author upon request.

Abbreviations

ALS:

Amyotrophic lateral sclerosis

AR:

Androgen receptor

CAIS:

Complete androgen insensitivity syndrome

ChAT:

Choline acetyltransferase

ER:

Estrogen receptor

FSH:

Follicle stimulating hormone

GFAP:

Glial fibrillary acidic protein

GnRH:

Gonadotropin-releasing hormone

HPG:

Hypothalamic–pituitary–gonadal axis

IBA1:

Ionized calcium–binding adaptor molecule 1

LH:

Luteinizing hormone

MAM:

Mitochondrion-associated endoplasmic reticulum membrane

NADPH-d:

NADPH diaphorase

NOS:

Nitric oxide synthase

PAIS:

Partial androgen insensitivity syndrome

SBMA:

Spinal and bulbar muscular atrophy

TGF β1 :

Transforming growth factor-beta1

3-NT:

3-Nitrotyrosine

3βHSOR:

3β-Hydroxysteroid oxidoreductase

3α-HSD:

3α-Hydroxysteroid dehydrogenase

5α-DHT:

5α-Dihydrotestosterone

17β-HSD:

17β-Hydroxysteroid dehydrogenase

References

  1. Zufiria M, Gil-Bea FJ, Fernandez-Torron R, Poza JJ, Munoz-Blanco JL, Rojas-Garcia R, Riancho J, de Munain AL (2016) ALS: A bucket of genes, environment, metabolism and unknown ingredients. Prog Neurobiol 142:104–129. https://doi.org/10.1016/j.pneurobio.2016.05.004

    Article  CAS  PubMed  Google Scholar 

  2. Bigini P, Diana V, Barbera S, Fumagalli E, Micotti E, Sitia L, Paladini A, Bisighini C et al (2012) Longitudinal tracking of human fetal cells labeled with super paramagnetic iron oxide nanoparticles in the brain of mice with motor neuron disease. PLoS One 7(2):e32326. https://doi.org/10.1371/journal.pone.0032326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boillee S, Peschanski M, Junier MP (2003) The wobbler mouse: a neurodegeneration jigsaw puzzle. Mol Neurobiol 28(1):65–106. https://doi.org/10.1385/MN:28:1:65

    Article  CAS  PubMed  Google Scholar 

  4. Dahlke C, Saberi D, Ott B, Brand-Saberi B, Schmitt-John T, Theiss C (2015) Inflammation and neuronal death in the motor cortex of the Wobbler mouse, an ALS animal model. J Neuroinflammation 12:215. https://doi.org/10.1186/s12974-015-0435-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gonzalez Deniselle MC, Carreras MC, Garay L, Gargiulo-Monachelli G, Meyer M, Poderoso JJ, De Nicola AF (2012) Progesterone prevents mitochondrial dysfunction in the spinal cord of wobbler mice. J Neurochem 122(1):185–195. https://doi.org/10.1111/j.1471-4159.2012.07753.x

    Article  CAS  PubMed  Google Scholar 

  6. Ikeda K, Iwasaki Y (2015) Edaravone, a free radical scavenger, delayed symptomatic and pathological progression of motor neuron disease in the Wobbler mouse. PLoS One 10(10):e0140316. https://doi.org/10.1371/journal.pone.0140316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee JY, Lee JD, Phipps S, Noakes PG, Woodruff TM (2015) Absence of toll-like receptor 4 (TLR4) extends survival in the hSOD1 G93A mouse model of amyotrophic lateral sclerosis. J Neuroinflammation 12:90. https://doi.org/10.1186/s12974-015-0310-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ratliff WA, Saykally JN, Kane MJ, Citron BA (2018) Neuromuscular junction morphology and gene dysregulation in the Wobbler model of spinal neurodegeneration. J Mol Neurosci 66(1):114–120. https://doi.org/10.1007/s12031-018-1153-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thielsen KD, Moser JM, Schmitt-John T, Jensen MS, Jensen K, Holm MM (2013) The Wobbler mouse model of amyotrophic lateral sclerosis (ALS) displays hippocampal hyperexcitability, and reduced number of interneurons, but no presynaptic vesicle release impairments. PLoS One 8(12):e82767. https://doi.org/10.1371/journal.pone.0082767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cozzolino M, Carri MT (2012) Mitochondrial dysfunction in ALS. Prog Neurobiol 97(2):54–66. https://doi.org/10.1016/j.pneurobio.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  11. Hattingen E, Magerkurth J, Pilatus U, Mozer A, Seifried C, Steinmetz H, Zanella F, Hilker R (2009) Phosphorus and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced Parkinson’s disease. Brain 132(Pt 12):3285–3297. https://doi.org/10.1093/brain/awp293

    Article  PubMed  Google Scholar 

  12. Johri A, Beal MF (2012) Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther 342(3):619–630. https://doi.org/10.1124/jpet.112.192138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Niedzielska E, Smaga I, Gawlik M, Moniczewski A, Stankowicz P, Pera J, Filip M (2016) Oxidative stress in neurodegenerative diseases. Mol Neurobiol 53(6):4094–4125. https://doi.org/10.1007/s12035-015-9337-5

    Article  CAS  PubMed  Google Scholar 

  14. Sheng B, Wang X, Su B, Lee HG, Casadesus G, Perry G, Zhu X (2012) Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem 120(3):419–429. https://doi.org/10.1111/j.1471-4159.2011.07581.x

    Article  CAS  PubMed  Google Scholar 

  15. Blasco H, Guennoc AM, Veyrat-Durebex C, Gordon PH, Andres CR, Camu W, Corcia P (2012) Amyotrophic lateral sclerosis: a hormonal condition? Amyotroph Lateral Scler 13(6):585–588. https://doi.org/10.3109/17482968.2012.706303

    Article  PubMed  Google Scholar 

  16. Martin S, Al Khleifat A, Al-Chalabi A (2017) What causes amyotrophic lateral sclerosis? F1000Research 6:371. https://doi.org/10.12688/f1000research.10476.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Petrov D, Mansfield C, Moussy A, Hermine O (2017) ALS clinical trials review: 20 years of failure. are we any closer to registering a new treatment? Front Aging Neurosci 9:68. https://doi.org/10.3389/fnagi.2017.00068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meyer M, Garay LI, Kruse MS, Lara A, Gargiulo-Monachelli G, Schumacher M, Guennoun R, Coirini H et al (2017) Protective effects of the neurosteroid allopregnanolone in a mouse model of spontaneous motoneuron degeneration. J Steroid Biochem Mol Biol 174:201–216. https://doi.org/10.1016/j.jsbmb.2017.09.015

    Article  CAS  PubMed  Google Scholar 

  19. Yoo YE, Ko CP (2012) Dihydrotestosterone ameliorates degeneration in muscle, axons and motoneurons and improves motor function in amyotrophic lateral sclerosis model mice. PLoS One 7(5):e37258. https://doi.org/10.1371/journal.pone.0037258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Giatti S, Boraso M, Melcangi RC, Viviani B (2012) Neuroactive steroids, their metabolites, and neuroinflammation. J Mol Endocrinol 49(3):R125–R134. https://doi.org/10.1530/JME-12-0127

    Article  CAS  PubMed  Google Scholar 

  21. Hussain R, Ghoumari AM, Bielecki B, Steibel J, Boehm N, Liere P, Macklin WB, Kumar N et al (2013) The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination. Brain 136(Pt 1):132–146. https://doi.org/10.1093/brain/aws284

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sengelaub DR, Xu XM (2018) Protective effects of gonadal hormones on spinal motoneurons following spinal cord injury. Neural Regen Res 13(6):971–976. https://doi.org/10.4103/1673-5374.233434

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yan XS, Yang ZJ, Jia JX, Song W, Fang X, Cai ZP, Huo DS, Wang H (2019) Protective mechanism of testosterone on cognitive impairment in a rat model of Alzheimer’s disease. Neural Regen Res 14(4):649–657. https://doi.org/10.4103/1673-5374.245477

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brocca ME, Garcia-Segura LM (2019) Non-reproductive functions of aromatase in the central nervous system under physiological and pathological conditions. Cell Mol Neurobiol 39(4):473–481. https://doi.org/10.1007/s10571-018-0607-4

    Article  PubMed  Google Scholar 

  25. Ghoumari AM, Abi Ghanem C, Asbelaoui N, Schumacher M, Hussain R (2020) Roles of progesterone, testosterone and their nuclear receptors in central nervous system myelination and remyelination. Int J Mol Sci 21(9). https://doi.org/10.3390/ijms21093163

  26. Jockusch H, Holland A, Staunton L, Schmitt-John T, Heimann P, Dowling P, Ohlendieck K (2014) Pathoproteomics of testicular tissue deficient in the GARP component VPS54: the wobbler mouse model of globozoospermia. Proteomics 14(7-8):839–852. https://doi.org/10.1002/pmic.201300189

    Article  CAS  PubMed  Google Scholar 

  27. Moser JM, Bigini P, Schmitt-John T (2013) The Wobbler mouse, an ALS animal model. Mol Gen Genomics 288(5-6):207–229. https://doi.org/10.1007/s00438-013-0741-0

    Article  CAS  Google Scholar 

  28. Schmitt-John T (2015) VPS54 and the wobbler mouse. Front Neurosci 9:381. https://doi.org/10.3389/fnins.2015.00381

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gonzalez Deniselle MC, Liere P, Pianos A, Meyer M, Aprahamian F, Cambourg A, Di Giorgio NP, Schumacher M et al (2016) Steroid profiling in male Wobbler mouse, a model of amyotrophic lateral sclerosis. Endocrinology 157(11):4446–4460. https://doi.org/10.1210/en.2016-1244

    Article  CAS  PubMed  Google Scholar 

  30. Gioria M, Pasini ME, Berruti G (2017) Dynamic of contribution of UBPy-sorted cargo to acrosome biogenesis: effects of its derailment in a mouse model of globozoospermia, the infertile Vps54 (L967Q) mutant. Cell Tissue Res 369(2):413–427. https://doi.org/10.1007/s00441-017-2592-1

    Article  CAS  PubMed  Google Scholar 

  31. Rathke-Hartlieb S, Schmidt VC, Jockusch H, Schmitt-John T, Bartsch JW (1999) Spatiotemporal progression of neurodegeneration and glia activation in the wobbler neuropathy of the mouse. Neuroreport 10(16):3411–3416

    Article  CAS  PubMed  Google Scholar 

  32. Meyer M, Gonzalez Deniselle MC, Garay LI, Monachelli GG, Lima A, Roig P, Guennoun R, Schumacher M et al (2010) Stage dependent effects of progesterone on motoneurons and glial cells of wobbler mouse spinal cord degeneration. Cell Mol Neurobiol 30(1):123–135. https://doi.org/10.1007/s10571-009-9437-8

    Article  CAS  PubMed  Google Scholar 

  33. Bielecki B, Mattern C, Ghoumari AM, Javaid S, Smietanka K, Abi Ghanem C, Mhaouty-Kodja S, Ghandour MS et al (2016) Unexpected central role of the androgen receptor in the spontaneous regeneration of myelin. Proc Natl Acad Sci U S A 113(51):14829–14834. https://doi.org/10.1073/pnas.1614826113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mitsumoto H, Ikeda K, Holmlund T, Greene T, Cedarbaum JM, Wong V, Lindsay RM (1994) The effects of ciliary neurotrophic factor on motor dysfunction in wobbler mouse motor neuron disease. Ann Neurol 36(2):142–148. https://doi.org/10.1002/ana.410360205

    Article  CAS  PubMed  Google Scholar 

  35. Zhu Y, Tan YQ, Leung LK (2017) Exposure to 2,2',4,4'-tetrabromodiphenyl ether at late gestation modulates placental signaling molecules in the mouse model. Chemosphere 181:289–295. https://doi.org/10.1016/j.chemosphere.2017.04.089

    Article  CAS  PubMed  Google Scholar 

  36. Di Giorgio NP, Bizzozzero Hiriart M, Surkin PN, Lopez PV, Bourguignon NS, Dorfman VB, Bettler B, Libertun C et al (2019) Multiple failures in the lutenising hormone surge generating system in GABAB1KO female mice. J Neuroendocrinol 31(8):e12765. https://doi.org/10.1111/jne.12765

    Article  CAS  PubMed  Google Scholar 

  37. Gonzalez Deniselle MC, Garay L, Gonzalez S, Saravia F, Labombarda F, Guennoun R, Schumacher M, De Nicola AF (2007) Progesterone modulates brain-derived neurotrophic factor and choline acetyltransferase in degenerating Wobbler motoneurons. Exp Neurol 203(2):406–414. https://doi.org/10.1016/j.expneurol.2006.08.019

    Article  CAS  PubMed  Google Scholar 

  38. Meyer M, Gonzalez Deniselle MC, Gargiulo-Monachelli G, Garay LI, Schumacher M, Guennoun R, De Nicola AF (2012) Progesterone effects on neuronal brain-derived neurotrophic factor and glial cells during progression of Wobbler mouse neurodegeneration. Neuroscience 201:267–279. https://doi.org/10.1016/j.neuroscience.2011.11.034

    Article  CAS  PubMed  Google Scholar 

  39. Tury A, Tolentino K, Zou Y (2014) Altered expression of atypical PKC and Ryk in the spinal cord of a mouse model of amyotrophic lateral sclerosis. Dev Neurobiol 74(8):839–850. https://doi.org/10.1002/dneu.22137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Torres-Platas SG, Comeau S, Rachalski A, Bo GD, Cruceanu C, Turecki G, Giros B, Mechawar N (2014) Morphometric characterization of microglial phenotypes in human cerebral cortex. J Neuroinflammation 11:12. https://doi.org/10.1186/1742-2094-11-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vincent SR, Kimura H (1992) Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46(4):755–784

    Article  CAS  PubMed  Google Scholar 

  42. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  43. Palmisano R, Golfi P, Heimann P, Shaw C, Troakes C, Schmitt-John T, Bartsch JW (2011) Endosomal accumulation of APP in wobbler motor neurons reflects impaired vesicle trafficking: implications for human motor neuron disease. BMC Neurosci 12:24. https://doi.org/10.1186/1471-2202-12-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peviani M, Salvaneschi E, Bontempi L, Petese A, Manzo A, Rossi D, Salmona M, Collina S et al (2014) Neuroprotective effects of the Sigma-1 receptor (S1R) agonist PRE-084, in a mouse model of motor neuron disease not linked to SOD1 mutation. Neurobiol Dis 62:218–232. https://doi.org/10.1016/j.nbd.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  45. Piroli GG, Pietranera L, Grillo CA, De Nicola AF (2002) Dehydroepiandrosterone regulation of prolactin gene expression in the anterior pituitary does not depend on galanin induction. Neuro Endocrinol Lett 23(4):321–324

    CAS  PubMed  Google Scholar 

  46. Ragagnin AMG, Shadfar S, Vidal M, Jamali MS, Atkin JD (2019) Motor neuron susceptibility in ALS/FTD. Front Neurosci 13:532. https://doi.org/10.3389/fnins.2019.00532

    Article  PubMed  PubMed Central  Google Scholar 

  47. Brooks BP, Merry DE, Paulson HL, Lieberman AP, Kolson DL, Fischbeck KH (1998) A cell culture model for androgen effects in motor neurons. J Neurochem 70(3):1054–1060. https://doi.org/10.1046/j.1471-4159.1998.70031054.x

    Article  CAS  PubMed  Google Scholar 

  48. Oki K, Law TD, Loucks AB, Clark BC (2015) The effects of testosterone and insulin-like growth factor 1 on motor system form and function. Exp Gerontol 64:81–86. https://doi.org/10.1016/j.exger.2015.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gonzalez Deniselle MC, Gonzalez S, Piroli G, Ferrini M, Lima AE, De Nicola AF (1997) Glucocorticoid receptors and actions in the spinal cord of the Wobbler mouse, a model for neurodegenerative diseases. J Steroid Biochem Mol Biol 60(3-4):205–213. https://doi.org/10.1016/s0960-0760(96)00193-8

    Article  CAS  PubMed  Google Scholar 

  50. Gonzalez Deniselle MC, Garay L, Lopez-Costa JJ, Gonzalez S, Mougel A, Guennoun R, Schumacher M, De Nicola AF (2004) Progesterone treatment reduces NADPH-diaphorase/nitric oxide synthase in Wobbler mouse motoneuron disease. Brain Res 1014(1-2):71–79. https://doi.org/10.1016/j.brainres.2004.04.004

    Article  CAS  PubMed  Google Scholar 

  51. Meyer M, Gonzalez Deniselle MC, Garay L, Sitruk-Ware R, Guennoun R, Schumacher M, De Nicola AF (2015) The progesterone receptor agonist Nestorone holds back proinflammatory mediators and neuropathology in the wobbler mouse model of motoneuron degeneration. Neuroscience 308:51–63. https://doi.org/10.1016/j.neuroscience.2015.09.007

    Article  CAS  PubMed  Google Scholar 

  52. Caruso G, Fresta CG, Musso N, Giambirtone M, Grasso M, Spampinato SF, Merlo S, Drago F et al (2019) Carnosine prevents abeta-induced oxidative stress and inflammation in microglial cells: a key role of TGF-beta1. Cells 8(1). https://doi.org/10.3390/cells8010064

  53. Atallah A, Mhaouty-Kodja S, Grange-Messent V (2017) Chronic depletion of gonadal testosterone leads to blood-brain barrier dysfunction and inflammation in male mice. J Cereb Blood Flow Metab 37(9):3161–3175. https://doi.org/10.1177/0271678X16683961

    Article  CAS  PubMed  Google Scholar 

  54. Rettew JA, Huet-Hudson YM, Marriott I (2008) Testosterone reduces macrophage expression in the mouse of toll-like receptor 4, a trigger for inflammation and innate immunity. Biol Reprod 78(3):432–437. https://doi.org/10.1095/biolreprod.107.063545

    Article  CAS  PubMed  Google Scholar 

  55. Trigunaite A, Dimo J, Jorgensen TN (2015) Suppressive effects of androgens on the immune system. Cell Immunol 294(2):87–94. https://doi.org/10.1016/j.cellimm.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  56. Spence RD, Voskuhl RR (2012) Neuroprotective effects of estrogens and androgens in CNS inflammation and neurodegeneration. Front Neuroendocrinol 33(1):105–115. https://doi.org/10.1016/j.yfrne.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  57. Yang L, Zhou R, Tong Y, Chen P, Shen Y, Miao S, Liu X (2020) Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol Dis 140:104814. https://doi.org/10.1016/j.nbd.2020.104814

    Article  CAS  PubMed  Google Scholar 

  58. Palaszynski KM, Loo KK, Ashouri JF, Liu HB, Voskuhl RR (2004) Androgens are protective in experimental autoimmune encephalomyelitis: implications for multiple sclerosis. J Neuroimmunol 146(1-2):144–152. https://doi.org/10.1016/j.jneuroim.2003.11.004

    Article  CAS  PubMed  Google Scholar 

  59. Chu UB, Ruoho AE (2016) Biochemical pharmacology of the Sigma-1 receptor. Mol Pharmacol 89(1):142–153. https://doi.org/10.1124/mol.115.101170

    Article  CAS  PubMed  Google Scholar 

  60. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131(3):596–610. https://doi.org/10.1016/j.cell.2007.08.036

    Article  CAS  PubMed  Google Scholar 

  61. Collier TL, Waterhouse RN, Kassiou M (2007) Imaging sigma receptors: applications in drug development. Curr Pharm Des 13(1):51–72. https://doi.org/10.2174/138161207779313740

    Article  CAS  PubMed  Google Scholar 

  62. Thomas JD, Longen CG, Oyer HM, Chen N, Maher CM, Salvino JM, Kania B, Anderson KN et al (2017) Sigma1 targeting to suppress aberrant androgen receptor signaling in prostate cancer. Cancer Res 77(9):2439–2452. https://doi.org/10.1158/0008-5472.CAN-16-1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Al-Saif A, Al-Mohanna F, Bohlega S (2011) A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol 70(6):913–919. https://doi.org/10.1002/ana.22534

    Article  CAS  PubMed  Google Scholar 

  64. Gregianin E, Pallafacchina G, Zanin S, Crippa V, Rusmini P, Poletti A, Fang M, Li Z et al (2016) Loss-of-function mutations in the SIGMAR1 gene cause distal hereditary motor neuropathy by impairing ER-mitochondria tethering and Ca2+ signalling. Hum Mol Genet 25(17):3741–3753. https://doi.org/10.1093/hmg/ddw220

    Article  CAS  PubMed  Google Scholar 

  65. Gundlach AL, Largent BL, Snyder SH (1986) Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+)3H-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine. J Neurosci 6(6):1757–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Horga A, Tomaselli PJ, Gonzalez MA, Laura M, Muntoni F, Manzur AY, Hanna MG, Blake JC et al (2016) SIGMAR1 mutation associated with autosomal recessive Silver-like syndrome. Neurology 87(15):1607–1612. https://doi.org/10.1212/WNL.0000000000003212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim HJ, Kwon MJ, Choi WJ, Oh KW, Oh SI, Ki CS (1957) Kim SH (2014) Mutations in UBQLN2 and SIGMAR1 genes are rare in Korean patients with amyotrophic lateral sclerosis. Neurobiol Aging 35(8):e1957–e1958. https://doi.org/10.1016/j.neurobiolaging.2014.03.001

    Article  CAS  Google Scholar 

  68. Li X, Hu Z, Liu L, Xie Y, Zhan Y, Zi X, Wang J, Wu L et al (2015) A SIGMAR1 splice-site mutation causes distal hereditary motor neuropathy. Neurology 84(24):2430–2437. https://doi.org/10.1212/WNL.0000000000001680

    Article  CAS  PubMed  Google Scholar 

  69. Luty AA, Kwok JB, Dobson-Stone C, Loy CT, Coupland KG, Karlstrom H, Sobow T, Tchorzewska J et al (2010) Sigma nonopioid intracellular receptor 1 mutations cause frontotemporal lobar degeneration-motor neuron disease. Ann Neurol 68(5):639–649. https://doi.org/10.1002/ana.22274

    Article  CAS  PubMed  Google Scholar 

  70. Mavlyutov TA, Epstein ML, Andersen KA, Ziskind-Conhaim L, Ruoho AE (2010) The sigma-1 receptor is enriched in postsynaptic sites of C-terminals in mouse motoneurons. An anatomical and behavioral study. Neuroscience 167(2):247–255. https://doi.org/10.1016/j.neuroscience.2010.02.022

    Article  CAS  PubMed  Google Scholar 

  71. Ullah MI, Ahmad A, Raza SI, Amar A, Ali A, Bhatti A, John P, Mohyuddin A et al (2015) In silico analysis of SIGMAR1 variant (rs4879809) segregating in a consanguineous Pakistani family showing amyotrophic lateral sclerosis without frontotemporal lobar dementia. Neurogenetics 16(4):299–306. https://doi.org/10.1007/s10048-015-0453-1

    Article  CAS  PubMed  Google Scholar 

  72. Watanabe S, Ilieva H, Tamada H, Nomura H, Komine O, Endo F, Jin S, Mancias P et al (2016) Mitochondria-associated membrane collapse is a common pathomechanism in SIGMAR1- and SOD1-linked ALS. EMBO Molec Med 8(12):1421–1437. https://doi.org/10.15252/emmm.201606403

    Article  CAS  Google Scholar 

  73. Ryskamp DA, Korban S, Zhemkov V, Kraskovskaya N, Bezprozvanny I (2019) Neuronal Sigma-1 receptors: signaling functions and protective roles in neurodegenerative diseases. Front Neurosci 13:862. https://doi.org/10.3389/fnins.2019.00862

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors kindly acknowledge the laboratory assistance of Mrs. Analia Lima and Paulina Roig.

Funding

We thank the financial support of the National Research Council of Argentina [CONICET, PIP 2017-2019 #11220170100002CO and PIP 2017-2019 #11220170100301CO], the Ministry of Health and Technology of Argentina (PICT 2017 No. 1150), Roemmers, René Barón and Williams Foundations, and the University of Buenos Aires [Ubacyt # 20020170100224BA]. Agustina Lara was the recipient of a Salvador Mazza Fellowship from the Faculty of Medicine, UBA (2015-2018).

Author information

Authors and Affiliations

Authors

Contributions

Lara A., Esperante I and Meyer M carried out the experiments. Philippe L. performed steroid determination by gas chromatography and mass spectrometry (GC/MS). Di Giorgio N carried out FSH and LH determination. Gonzalez Deniselle MC planned and supervised the experiments. Guennoun R. supervised GC/MS experiments. Gargiulo-Monachelli G helped in the supervision of experiments. Schumacher M. contributed with the testosterone silastic preparation. Gonzalez Deniselle MC, Gargiulo-Monachelli G, De Nicola AF, Schumacher M and Guennoun R. contributed to discuss the project and interpretation of results. Gonzalez Deniselle MC wrote the manuscript with the support from De Nicola AF and Guennoun R. All authors discussed the results.

Corresponding author

Correspondence to Maria Claudia Gonzalez Deniselle.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The experiments were approved by the local IACUC, following the Guide for the Care and Use of Laboratory Animals (Animal Welfare Assurance, NIH certificate # F16-00065 A5072-01). The experiments are reported in accordance with the ARRIVE guidelines (www.nc3rs.org.uk).

Consent to Participate

Not applicable.

Consent for Publication

All authors were informed of the changes introduced to the manuscript and agreed with submission of the revised version.

Disclaimer

These funding sources did not have a role in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara, A., Esperante, I., Meyer, M. et al. Neuroprotective Effects of Testosterone in Male Wobbler Mouse, a Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 58, 2088–2106 (2021). https://doi.org/10.1007/s12035-020-02209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02209-5

Keywords

Navigation