Vigo D, Thornicroft G, Atun R (2016) Estimating the true global burden of mental illness. Lancet Psychiatry 3(2):171–178. https://doi.org/10.1016/S2215-0366(15)00505-2
Article
PubMed
Google Scholar
Pittenger C, Duman RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33(1):88–109. https://doi.org/10.1038/sj.npp.1301574
CAS
Article
PubMed
Google Scholar
American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, Fifth Edn. Arlington, VA
Shadrina M, Bondarenko EA, Slominsky PA (2018) Genetics factors in major depression disease. Front Psychiatry 9:334. https://doi.org/10.3389/fpsyt.2018.00334
Article
PubMed
PubMed Central
Google Scholar
Yang T, Nie Z, Shu H, Kuang Y, Chen X, Cheng J, Yu S, Liu H (2020) The role of BDNF on neural plasticity in depression. Front Cell Neurosci 14:82. https://doi.org/10.3389/fncel.2020.00082
CAS
Article
PubMed
PubMed Central
Google Scholar
Dunham JS, Deakin JF, Miyajima F, Payton A, Toro CT (2009) Expression of hippocampal brain-derived neurotrophic factor and its receptors in Stanley consortium brains. J Psychiatr Res 43(14):1175–1184. https://doi.org/10.1016/j.jpsychires.2009.03.008
CAS
Article
PubMed
Google Scholar
Emon MPZ, Das R, Nishuty NL, Shalahuddin Qusar MMA, Bhuiyan MA, Islam MR (2020) Reduced serum BDNF levels are associated with the increased risk for developing MDD: a case-control study with or without antidepressant therapy. BMC Res Notes 13(1):83. https://doi.org/10.1186/s13104-020-04952-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Guilloux JP, Douillard-Guilloux G, Kota R, Wang X, Gardier AM, Martinowich K, Tseng GC, Lewis DA et al (2012) Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with major depression. Mol Psychiatry 17(11):1130–1142. https://doi.org/10.1038/mp.2011.113
CAS
Article
PubMed
Google Scholar
Thompson Ray M, Weickert CS, Wyatt E, Webster MJ (2011) Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. J Psychiatry Neurosci 36(3):195–203. https://doi.org/10.1503/jpn.100048
Article
PubMed
Google Scholar
Tripp A, Oh H, Guilloux JP, Martinowich K, Lewis DA, Sibille E (2012) Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder. Am J Psychiatry 169(11):1194–1202. https://doi.org/10.1176/appi.ajp.2012.12020248
Article
PubMed
PubMed Central
Google Scholar
Duman RS (2002) Pathophysiology of depression: the concept of synaptic plasticity. Eur Psychiatry 17(Suppl 3):306–310. https://doi.org/10.1016/s0924-9338(02)00654-5
Article
PubMed
Google Scholar
Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59(12):1116–1127. https://doi.org/10.1016/j.biopsych.2006.02.013
CAS
Article
PubMed
Google Scholar
Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15(3 Pt 1):1768–1777
CAS
Article
Google Scholar
Taliaz D, Stall N, Dar DE, Zangen A (2010) Knockdown of brain-derived neurotrophic factor in specific brain sites precipitates behaviors associated with depression and reduces neurogenesis. Mol Psychiatry 15(1):80–92. https://doi.org/10.1038/mp.2009.67
CAS
Article
PubMed
Google Scholar
Koshimizu H, Kiyosue K, Hara T, Hazama S, Suzuki S, Uegaki K, Nagappan G, Zaitsev E et al (2009) Multiple functions of precursor BDNF to CNS neurons: negative regulation of neurite growth, spine formation and cell survival. Mol Brain 2:27. https://doi.org/10.1186/1756-6606-2-27
CAS
Article
PubMed
PubMed Central
Google Scholar
Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, Hempstead BL, Lu B (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8(8):1069–1077. https://doi.org/10.1038/nn1510
CAS
Article
PubMed
Google Scholar
Sen S, Duman R, Sanacora G (2008) Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 64(6):527–532. https://doi.org/10.1016/j.biopsych.2008.05.005
CAS
Article
PubMed
PubMed Central
Google Scholar
Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, Nakazato M, Watanabe H et al (2003) Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 54(1):70–75. https://doi.org/10.1016/s0006-3223(03)00181-1
CAS
Article
PubMed
Google Scholar
Koponen E, Lakso M, Castren E (2004) Overexpression of the full-length neurotrophin receptor trkB regulates the expression of plasticity-related genes in mouse brain. Brain Res Mol Brain Res 130(1–2):81–94. https://doi.org/10.1016/j.molbrainres.2004.07.010
CAS
Article
PubMed
Google Scholar
Rantamaki T, Hendolin P, Kankaanpaa A, Mijatovic J, Piepponen P, Domenici E, Chao MV, Mannisto PT et al (2007) Pharmacologically diverse antidepressants rapidly activate brain-derived neurotrophic factor receptor TrkB and induce phospholipase-Cgamma signaling pathways in mouse brain. Neuropsychopharmacology 32(10):2152–2162. https://doi.org/10.1038/sj.npp.1301345
CAS
Article
PubMed
Google Scholar
Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E, Agerman K, Haapasalo A et al (2003) Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 23(1):349–357
CAS
Article
Google Scholar
Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22(8):3251–3261 20026292
CAS
Article
Google Scholar
Ye Y, Wang G, Wang H, Wang X (2011) Brain-derived neurotrophic factor (BDNF) infusion restored astrocytic plasticity in the hippocampus of a rat model of depression. Neurosci Lett 503(1):15–19. https://doi.org/10.1016/j.neulet.2011.07.055
CAS
Article
PubMed
Google Scholar
Altar CA, Whitehead RE, Chen R, Wortwein G, Madsen TM (2003) Effects of electroconvulsive seizures and antidepressant drugs on brain-derived neurotrophic factor protein in rat brain. Biol Psychiatry 54(7):703–709. https://doi.org/10.1016/s0006-3223(03)00073-8
CAS
Article
PubMed
Google Scholar
Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64(2):238–258. https://doi.org/10.1124/pr.111.005108
CAS
Article
PubMed
PubMed Central
Google Scholar
Molteni R, Calabrese F, Cattaneo A, Mancini M, Gennarelli M, Racagni G, Riva MA (2009) Acute stress responsiveness of the neurotrophin BDNF in the rat hippocampus is modulated by chronic treatment with the antidepressant duloxetine. Neuropsychopharmacology 34(6):1523–1532. https://doi.org/10.1038/npp.2008.208
CAS
Article
PubMed
Google Scholar
Nibuya M, Nestler EJ, Duman RS (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 16(7):2365–2372
CAS
Article
Google Scholar
Russo-Neustadt A, Beard RC, Cotman CW (1999) Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 21(5):679–682. https://doi.org/10.1016/S0893-133X(99)00059-7
CAS
Article
PubMed
Google Scholar
Russo-Neustadt AA, Alejandre H, Garcia C, Ivy AS, Chen MJ (2004) Hippocampal brain-derived neurotrophic factor expression following treatment with reboxetine, citalopram, and physical exercise. Neuropsychopharmacology 29(12):2189–2199. https://doi.org/10.1038/sj.npp.1300514
CAS
Article
PubMed
Google Scholar
Castren E, Rantamaki T (2010) The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol 70(5):289–297. https://doi.org/10.1002/dneu.20758
CAS
Article
PubMed
Google Scholar
Castren E, Rantamaki T (2010) Role of brain-derived neurotrophic factor in the aetiology of depression: implications for pharmacological treatment. CNS Drugs 24(1):1–7. https://doi.org/10.2165/11530010-000000000-00000
CAS
Article
PubMed
Google Scholar
Siuciak JA, Boylan C, Fritsche M, Altar CA, Lindsay RM (1996) BDNF increases monoaminergic activity in rat brain following intracerebroventricular or intraparenchymal administration. Brain Res 710(1–2):11–20. https://doi.org/10.1016/0006-8993(95)01289-3
CAS
Article
PubMed
Google Scholar
Wong YH, Lee CM, Xie W, Cui B, Poo MM (2015) Activity-dependent BDNF release via endocytic pathways is regulated by synaptotagmin-6 and complexin. Proc Natl Acad Sci U S A 112(32):E4475–E4484. https://doi.org/10.1073/pnas.1511830112
CAS
Article
PubMed
PubMed Central
Google Scholar
Sakata K, Martinowich K, Woo NH, Schloesser RJ, Jimenez DV, Ji Y, Shen L, Lu B (2013) Role of activity-dependent BDNF expression in hippocampal-prefrontal cortical regulation of behavioral perseverance. Proc Natl Acad Sci U S A 110(37):15103–15108. https://doi.org/10.1073/pnas.1222872110
Article
PubMed
PubMed Central
Google Scholar
Altamura CA, Mauri MC, Ferrara A, Moro AR, D’Andrea G, Zamberlan F (1993) Plasma and platelet excitatory amino acids in psychiatric disorders. Am J Psychiatry 150(11):1731–1733. https://doi.org/10.1176/ajp.150.11.1731
CAS
Article
PubMed
Google Scholar
Deutschenbaur L, Beck J, Kiyhankhadiv A, Muhlhauser M, Borgwardt S, Walter M, Hasler G, Sollberger D et al (2016) Role of calcium, glutamate and NMDA in major depression and therapeutic application. Prog Neuro-Psychopharmacol Biol Psychiatry 64:325–333. https://doi.org/10.1016/j.pnpbp.2015.02.015
CAS
Article
Google Scholar
Frye MA, Tsai GE, Huggins T, Coyle JT, Post RM (2007) Low cerebrospinal fluid glutamate and glycine in refractory affective disorder. Biol Psychiatry 61(2):162–166. https://doi.org/10.1016/j.biopsych.2006.01.024
CAS
Article
PubMed
Google Scholar
Ghasemi M, Phillips C, Trillo L, De Miguel Z, Das D, Salehi A (2014) The role of NMDA receptors in the pathophysiology and treatment of mood disorders. Neurosci Biobehav Rev 47:336–358. https://doi.org/10.1016/j.neubiorev.2014.08.017
CAS
Article
PubMed
Google Scholar
Hashimoto K, Sawa A, Iyo M (2007) Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry 62(11):1310–1316. https://doi.org/10.1016/j.biopsych.2007.03.017
CAS
Article
PubMed
Google Scholar
Kim JS, Schmid-Burgk W, Claus D, Kornhuber HH (1982) Increased serum glutamate in depressed patients. Archiv Psychiat Nervenkrankheiten 232(4):299–304. https://doi.org/10.1007/BF00345492
CAS
Article
Google Scholar
Levine J, Panchalingam K, Rapoport A, Gershon S, McClure RJ, Pettegrew JW (2000) Increased cerebrospinal fluid glutamine levels in depressed patients. Biol Psychiatry 47(7):586–593. https://doi.org/10.1016/s0006-3223(99)00284-x
CAS
Article
PubMed
Google Scholar
Mathews DC, Henter ID, Zarate CA (2012) Targeting the glutamatergic system to treat major depressive disorder: rationale and progress to date. Drugs 72(10):1313–1333. https://doi.org/10.2165/11633130-000000000-00000
CAS
Article
PubMed
PubMed Central
Google Scholar
Mauri MC, Ferrara A, Boscati L, Bravin S, Zamberlan F, Alecci M, Invernizzi G (1998) Plasma and platelet amino acid concentrations in patients affected by major depression and under fluvoxamine treatment. Neuropsychobiology 37(3):124–129. https://doi.org/10.1159/000026491
CAS
Article
PubMed
Google Scholar
Mitani H, Shirayama Y, Yamada T, Maeda K, Ashby CR Jr, Kawahara R (2006) Correlation between plasma levels of glutamate, alanine and serine with severity of depression. Prog Neuro-Psychopharmacol Biol Psychiatry 30(6):1155–1158. https://doi.org/10.1016/j.pnpbp.2006.03.036
CAS
Article
Google Scholar
Naughton M, Clarke G, O’Leary OF, Cryan JF, Dinan TG (2014) A review of ketamine in affective disorders: current evidence of clinical efficacy, limitations of use and pre-clinical evidence on proposed mechanisms of action. J Affect Disord 156:24–35. https://doi.org/10.1016/j.jad.2013.11.014
CAS
Article
PubMed
Google Scholar
Bartanusz V, Aubry JM, Pagliusi S, Jezova D, Baffi J, Kiss JZ (1995) Stress-induced changes in messenger RNA levels of N-methyl-D-aspartate and AMPA receptor subunits in selected regions of the rat hippocampus and hypothalamus. Neuroscience 66(2):247–252. https://doi.org/10.1016/0306-4522(95)00084-v
CAS
Article
PubMed
Google Scholar
Fitzgerald LW, Ortiz J, Hamedani AG, Nestler EJ (1996) Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. J Neurosci 16(1):274–282
CAS
Article
Google Scholar
Marsden WN (2011) Stressor-induced NMDAR dysfunction as a unifying hypothesis for the aetiology, pathogenesis and comorbidity of clinical depression. Med Hypotheses 77(4):508–528. https://doi.org/10.1016/j.mehy.2011.06.021
CAS
Article
PubMed
Google Scholar
Masrour FF, Peeri M, Azarbayjani MA, Hosseini MJ (2018) Voluntary exercise during adolescence mitigated negative the effects of maternal separation stress on the depressive-like behaviors of adult male rats: role of NMDA receptors. Neurochem Res 43(5):1067–1074. https://doi.org/10.1007/s11064-018-2519-6
CAS
Article
PubMed
Google Scholar
McCarthy DJ, Alexander R, Smith MA, Pathak S, Kanes S, Lee CM, Sanacora G (2012) Glutamate-based depression GBD. Med Hypotheses 78(5):675–681. https://doi.org/10.1016/j.mehy.2012.02.009
CAS
Article
PubMed
Google Scholar
Moghaddam B (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 60(5):1650–1657. https://doi.org/10.1111/j.1471-4159.1993.tb13387.x
CAS
Article
PubMed
Google Scholar
Sathyanesan M, Haiar JM, Watt MJ, Newton SS (2017) Restraint stress differentially regulates inflammation and glutamate receptor gene expression in the hippocampus of C57BL/6 and BALB/c mice. Stress 20(2):197–204. https://doi.org/10.1080/10253890.2017.1298587
CAS
Article
PubMed
PubMed Central
Google Scholar
Weiland NG, Orchinik M, Tanapat P (1997) Chronic corticosterone treatment induces parallel changes in N-methyl-D-aspartate receptor subunit messenger RNA levels and antagonist binding sites in the hippocampus. Neuroscience 78(3):653–662. https://doi.org/10.1016/s0306-4522(96)00619-7
CAS
Article
PubMed
Google Scholar
Jaso BA, Niciu MJ, Iadarola ND, Lally N, Richards EM, Park M, Ballard ED, Nugent AC et al (2017) Therapeutic modulation of glutamate receptors in major depressive disorder. Curr Neuropharmacol 15(1):57–70. https://doi.org/10.2174/1570159x14666160321123221
CAS
Article
PubMed
PubMed Central
Google Scholar
Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47(4):351–354. https://doi.org/10.1016/s0006-3223(99)00230-9
CAS
Article
PubMed
Google Scholar
Trullas R, Skolnick P (1990) Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 185(1):1–10. https://doi.org/10.1016/0014-2999(90)90204-j
CAS
Article
PubMed
Google Scholar
Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63(8):856–864. https://doi.org/10.1001/archpsyc.63.8.856
CAS
Article
PubMed
Google Scholar
Krystal JH, Sanacora G, Duman RS (2013) Rapid-acting glutamatergic antidepressants: the path to ketamine and beyond. Biol Psychiatry 73(12):1133–1141. https://doi.org/10.1016/j.biopsych.2013.03.026
CAS
Article
PubMed
PubMed Central
Google Scholar
Du J, Suzuki K, Wei Y, Wang Y, Blumenthal R, Chen Z, Falke C, Zarate CA Jr et al (2007) The anticonvulsants lamotrigine, riluzole, and valproate differentially regulate AMPA receptor membrane localization: relationship to clinical effects in mood disorders. Neuropsychopharmacology 32(4):793–802. https://doi.org/10.1038/sj.npp.1301178
CAS
Article
PubMed
Google Scholar
Freudenberg F, Celikel T, Reif A (2015) The role of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in depression: central mediators of pathophysiology and antidepressant activity? Neurosci Biobehav Rev 52:193–206. https://doi.org/10.1016/j.neubiorev.2015.03.005
CAS
Article
PubMed
Google Scholar
Aan Het Rot M, Zarate CA Jr, Charney DS, Mathew SJ (2012) Ketamine for depression: where do we go from here? Biol Psychiatry 72(7):537–547. https://doi.org/10.1016/j.biopsych.2012.05.003
CAS
Article
Google Scholar
Ionescu DF, Swee MB, Pavone KJ, Taylor N, Akeju O, Baer L, Nyer M, Cassano P et al (2016) Rapid and sustained reductions in current suicidal ideation following repeated doses of intravenous ketamine: secondary analysis of an open-label study. J Clin Psychiatry 77(6):e719–e725. https://doi.org/10.4088/JCP.15m10056
Article
PubMed
Google Scholar
Price RB, Mathew SJ (2015) Does ketamine have anti-suicidal properties? Current status and future directions. CNS Drugs 29(3):181–188. https://doi.org/10.1007/s40263-015-0232-4
CAS
Article
PubMed
PubMed Central
Google Scholar
Koike H, Fukumoto K, Iijima M, Chaki S (2013) Role of BDNF/TrkB signaling in antidepressant-like effects of a group II metabotropic glutamate receptor antagonist in animal models of depression. Behav Brain Res 238:48–52. https://doi.org/10.1016/j.bbr.2012.10.023
CAS
Article
PubMed
Google Scholar
Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G et al (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329(5994):959–964. https://doi.org/10.1126/science.1190287
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu RJ, Lee FS, Li XY, Bambico F, Duman RS, Aghajanian GK (2012) Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol Psychiatry 71(11):996–1005. https://doi.org/10.1016/j.biopsych.2011.09.030
CAS
Article
PubMed
Google Scholar
Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475(7354):91–95. https://doi.org/10.1038/nature10130
CAS
Article
PubMed
PubMed Central
Google Scholar
Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63(4):349–352. https://doi.org/10.1016/j.biopsych.2007.05.028
CAS
Article
PubMed
Google Scholar
Hashimoto K (2011) Role of the mTOR signaling pathway in the rapid antidepressant action of ketamine. Expert Rev Neurother 11(1):33–36. https://doi.org/10.1586/ern.10.176
CAS
Article
PubMed
Google Scholar
Koike H, Iijima M, Chaki S (2011) Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Behav Brain Res 224(1):107–111. https://doi.org/10.1016/j.bbr.2011.05.035
CAS
Article
PubMed
Google Scholar
Luscher B, Feng M, Jefferson SJ (2020) Antidepressant mechanisms of ketamine: focus on GABAergic inhibition. Adv Pharmacol 89:43–78. https://doi.org/10.1016/bs.apha.2020.03.002
Article
PubMed
Google Scholar
Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH (2007) Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology 32(9):1888–1902. https://doi.org/10.1038/sj.npp.1301312
CAS
Article
PubMed
Google Scholar
Duric V, Banasr M, Stockmeier CA, Simen AA, Newton SS, Overholser JC, Jurjus GJ, Dieter L et al (2013) Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int J Neuropsychopharmacol 16(1):69–82. https://doi.org/10.1017/S1461145712000016
CAS
Article
PubMed
Google Scholar
Toth E, Gersner R, Wilf-Yarkoni A, Raizel H, Dar DE, Richter-Levin G, Levit O, Zangen A (2008) Age-dependent effects of chronic stress on brain plasticity and depressive behavior. J Neurochem 107(2):522–532. https://doi.org/10.1111/j.1471-4159.2008.05642.x
CAS
Article
PubMed
Google Scholar
Ferrari F, Villa RF (2017) The neurobiology of depression: an integrated overview from biological theories to clinical evidence. Mol Neurobiol 54(7):4847–4865. https://doi.org/10.1007/s12035-016-0032-y
CAS
Article
PubMed
Google Scholar
Kaufman J, DeLorenzo C, Choudhury S, Parsey RV (2016) The 5-HT1A receptor in major depressive disorder. Eur Neuropsychopharmacol 26(3):397–410. https://doi.org/10.1016/j.euroneuro.2015.12.039
CAS
Article
PubMed
PubMed Central
Google Scholar
Yohn CN, Gergues MM, Samuels BA (2017) The role of 5-HT receptors in depression. Mol Brain 10(1):28. https://doi.org/10.1186/s13041-017-0306-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Cheetham SC, Crompton MR, Katona CL, Horton RW (1990) Brain 5-HT1 binding sites in depressed suicides. Psychopharmacology 102(4):544–548. https://doi.org/10.1007/bf02247138
CAS
Article
PubMed
Google Scholar
Stockmeier CA, Shapiro LA, Dilley GE, Kolli TN, Friedman L, Rajkowska G (1998) Increase in serotonin-1A autoreceptors in the midbrain of suicide victims with major depression-postmortem evidence for decreased serotonin activity. J Neurosci 18(18):7394–7401
CAS
Article
Google Scholar
Carr GV, Lucki I (2011) The role of serotonin receptor subtypes in treating depression: a review of animal studies. Psychopharmacology 213(2–3):265–287. https://doi.org/10.1007/s00213-010-2097-z
CAS
Article
PubMed
Google Scholar
Joca SR, Padovan CM, Guimaraes FS (2003) Activation of post-synaptic 5-HT(1A) receptors in the dorsal hippocampus prevents learned helplessness development. Brain Res 978(1–2):177–184. https://doi.org/10.1016/s0006-8993(03)02943-3
CAS
Article
PubMed
Google Scholar
Pitchot W, Hansenne M, Pinto E, Reggers J, Fuchs S, Ansseau M (2005) 5-Hydroxytryptamine 1A receptors, major depression, and suicidal behavior. Biol Psychiatry 58(11):854–858. https://doi.org/10.1016/j.biopsych.2005.05.042
CAS
Article
PubMed
Google Scholar
Savitz JB, Drevets WC (2013) Neuroreceptor imaging in depression. Neurobiol Dis 52:49–65. https://doi.org/10.1016/j.nbd.2012.06.001
CAS
Article
PubMed
Google Scholar
Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54(7):597–606
CAS
Article
Google Scholar
Depoortere R, Papp M, Gruca P, Lason-Tyburkiewicz M, Niemczyk M, Varney MA, Newman-Tancredi A (2019) Cortical 5-hydroxytryptamine 1A receptor biased agonist, NLX-101, displays rapid-acting antidepressant-like properties in the rat chronic mild stress model. J Psychopharmacol 33(11):1456–1466. https://doi.org/10.1177/0269881119860666
CAS
Article
PubMed
Google Scholar
Newman-Tancredi A, Bardin L, Auclair A, Colpaert F, Depoortere R, Varney MA (2018) NLX-112, a highly selective 5-HT1A receptor agonist, mediates analgesia and antidepressant-like activity in rats via spinal cord and prefrontal cortex 5-HT1A receptors, respectively. Brain Res 1688:1–7. https://doi.org/10.1016/j.brainres.2018.03.016
CAS
Article
PubMed
Google Scholar
Ago Y, Tanabe W, Higuchi M, Tsukada S, Tanaka T, Yamaguchi T, Igarashi H, Yokoyama R et al (2019) (R)-ketamine induces a greater increase in prefrontal 5-HT release than (S)-ketamine and ketamine metabolites via an AMPA receptor-independent mechanism. Int J Neuropsychopharmacol 22(10):665–674. https://doi.org/10.1093/ijnp/pyz041
CAS
Article
PubMed
PubMed Central
Google Scholar
Pham TH, Mendez-David I, Defaix C, Guiard BP, Tritschler L, David DJ, Gardier AM (2017) Ketamine treatment involves medial prefrontal cortex serotonin to induce a rapid antidepressant-like activity in BALB/cJ mice. Neuropharmacology 112(Pt A):198–209. https://doi.org/10.1016/j.neuropharm.2016.05.010
CAS
Article
PubMed
Google Scholar
Jin HJ, Pei L, Li YN, Zheng H, Yang S, Wan Y, Mao L, Xia YP et al (2017) Alleviative effects of fluoxetine on depressive-like behaviors by epigenetic regulation of BDNF gene transcription in mouse model of post-stroke depression. Sci Rep 7(1):14926. https://doi.org/10.1038/s41598-017-13929-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Takeuchi N, Nonen S, Kato M, Wakeno M, Takekita Y, Kinoshita T, Kugawa F (2017) Therapeutic response to paroxetine in major depressive disorder predicted by DNA methylation. Neuropsychobiology 75(2):81–88. https://doi.org/10.1159/000480512
CAS
Article
PubMed
Google Scholar
Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN (2003) Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 60(8):804–815. https://doi.org/10.1001/archpsyc.60.8.804
CAS
Article
PubMed
Google Scholar
Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8(5):355–367. https://doi.org/10.1038/nrn2132
CAS
Article
PubMed
Google Scholar
Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455(7215):894–902. https://doi.org/10.1038/nature07455
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhu K, Ou Yang TH, Dorie V, Zheng T, Anastassiou D (2019) Meta-analysis of expression and methylation signatures indicates a stress-related epigenetic mechanism in multiple neuropsychiatric disorders. Transl Psychiatry 9(1):32. https://doi.org/10.1038/s41398-018-0358-5
Article
PubMed
PubMed Central
Google Scholar
Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293(5532):1068–1070. https://doi.org/10.1126/science.1063852
CAS
Article
PubMed
Google Scholar
Tognini P, Napoli D, Pizzorusso T (2015) Dynamic DNA methylation in the brain: a new epigenetic mark for experience-dependent plasticity. Front Cell Neurosci 9:331. https://doi.org/10.3389/fncel.2015.00331
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang P, Lv Q, Mao Y, Zhang C, Bao C, Sun H, Chen H, Yi Z et al (2018) HTR1A/1B DNA methylation may predict escitalopram treatment response in depressed Chinese Han patients. J Affect Disord 228:222–228. https://doi.org/10.1016/j.jad.2017.12.010
CAS
Article
PubMed
Google Scholar
Le Francois B, Soo J, Millar AM, Daigle M, Le Guisquet AM, Leman S, Minier F, Belzung C et al (2015) Chronic mild stress and antidepressant treatment alter 5-HT1A receptor expression by modifying DNA methylation of a conserved Sp4 site. Neurobiol Dis 82:332–341. https://doi.org/10.1016/j.nbd.2015.07.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Gassen NC, Fries GR, Zannas AS, Hartmann J, Zschocke J, Hafner K, Carrillo-Roa T, Steinbacher J et al (2015) Chaperoning epigenetics: FKBP51 decreases the activity of DNMT1 and mediates epigenetic effects of the antidepressant paroxetine. Sci Signal 8(404):ra119. https://doi.org/10.1126/scisignal.aac7695
CAS
Article
PubMed
Google Scholar
Higuchi F, Uchida S, Yamagata H, Otsuki K, Hobara T, Abe N, Shibata T, Watanabe Y (2011) State-dependent changes in the expression of DNA methyltransferases in mood disorder patients. J Psychiatr Res 45(10):1295–1300. https://doi.org/10.1016/j.jpsychires.2011.04.008
Article
PubMed
Google Scholar
Sales AJ, Biojone C, Terceti MS, Guimaraes FS, Gomes MV, Joca SR (2011) Antidepressant-like effect induced by systemic and intra-hippocampal administration of DNA methylation inhibitors. Br J Pharmacol 164(6):1711–1721. https://doi.org/10.1111/j.1476-5381.2011.01489.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Sales AJ, Joca SR (2016) Effects of DNA methylation inhibitors and conventional antidepressants on mice behaviour and brain DNA methylation levels. Acta Neuropsychiatrica 28(1):11–22. https://doi.org/10.1017/neu.2015.40
Article
PubMed
Google Scholar
Sales AJ, Joca SRL (2018) Antidepressant administration modulates stress-induced DNA methylation and DNA methyltransferase expression in rat prefrontal cortex and hippocampus. Behav Brain Res 343:8–15. https://doi.org/10.1016/j.bbr.2018.01.022
CAS
Article
PubMed
Google Scholar
LaPlant Q, Vialou V, Covington HE 3rd, Dumitriu D, Feng J, Warren BL, Maze I, Dietz DM et al (2010) Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci 13(9):1137–1143. https://doi.org/10.1038/nn.2619
CAS
Article
PubMed
PubMed Central
Google Scholar
Xing B, Liu P, Xu WJ, Xu FY, Dang YH (2014) Effect of microinjecting of 5-aza-2-deoxycytidine into ventrolateral orbital cortex on depressive-like behavior in rats. Neurosci Lett 574:11–14. https://doi.org/10.1016/j.neulet.2014.04.050
CAS
Article
PubMed
Google Scholar
Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun YE (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302(5646):890–893. https://doi.org/10.1126/science.1090842
CAS
Article
PubMed
Google Scholar
Fuchikami M, Morinobu S, Segawa M, Okamoto Y, Yamawaki S, Ozaki N, Inoue T, Kusumi I et al (2011) DNA methylation profiles of the brain-derived neurotrophic factor (BDNF) gene as a potent diagnostic biomarker in major depression. PLoS One 6(8):e23881. https://doi.org/10.1371/journal.pone.0023881
CAS
Article
PubMed
PubMed Central
Google Scholar
Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9(4):519–525. https://doi.org/10.1038/nn1659
CAS
Article
PubMed
Google Scholar
Kang HJ, Kim JM, Lee JY, Kim SY, Bae KY, Kim SW, Shin IS, Kim HR et al (2013) BDNF promoter methylation and suicidal behavior in depressive patients. J Affect Disord 151(2):679–685. https://doi.org/10.1016/j.jad.2013.08.001
CAS
Article
PubMed
Google Scholar
Chan RF, Turecki G, Shabalin AA, Guintivano J, Zhao M, Xie LY, van Grootheest G, Kaminsky ZA et al (2020) Cell type-specific methylome-wide association studies implicate neurotrophin and innate immune signaling in major depressive disorder. Biol Psychiatry 87(5):431–442. https://doi.org/10.1016/j.biopsych.2019.10.014
CAS
Article
PubMed
Google Scholar
Chang LC, Jamain S, Lin CW, Rujescu D, Tseng GC, Sibille E (2014) A conserved BDNF, glutamate- and GABA-enriched gene module related to human depression identified by coexpression meta-analysis and DNA variant genome-wide association studies. PLoS One 9(3):e90980. https://doi.org/10.1371/journal.pone.0090980
CAS
Article
PubMed
PubMed Central
Google Scholar
Keller S, Sarchiapone M, Zarrilli F, Tomaiuolo R, Carli V, Angrisano T, Videtic A, Amato F et al (2011) TrkB gene expression and DNA methylation state in Wernicke area does not associate with suicidal behavior. J Affect Disord 135(1–3):400–404. https://doi.org/10.1016/j.jad.2011.07.003
CAS
Article
PubMed
Google Scholar
Wang P, Zhang C, Lv Q, Bao C, Sun H, Ma G, Fang Y, Yi Z et al (2018) Association of DNA methylation in BDNF with escitalopram treatment response in depressed Chinese Han patients. Eur J Clin Pharmacol 74(8):1011–1020. https://doi.org/10.1007/s00228-018-2463-z
CAS
Article
PubMed
Google Scholar
Aberg KA, Dean B, Shabalin AA, Chan RF, Han LKM, Zhao M, van Grootheest G, Xie LY et al (2018) Methylome-wide association findings for major depressive disorder overlap in blood and brain and replicate in independent brain samples. Mol Psychiatry. https://doi.org/10.1038/s41380-018-0247-6
Boersma GJ, Lee RS, Cordner ZA, Ewald ER, Purcell RH, Moghadam AA, Tamashiro KL (2014) Prenatal stress decreases Bdnf expression and increases methylation of Bdnf exon IV in rats. Epigenetics 9(3):437–447. https://doi.org/10.4161/epi.27558
Article
PubMed
Google Scholar
Chandrasekar R (2013) Alcohol and NMDA receptor: current research and future direction. Front Mol Neurosci 6:14. https://doi.org/10.3389/fnmol.2013.00014
CAS
Article
PubMed
PubMed Central
Google Scholar
Kaut O, Schmitt I, Hofmann A, Hoffmann P, Schlaepfer TE, Wullner U, Hurlemann R (2015) Aberrant NMDA receptor DNA methylation detected by epigenome-wide analysis of hippocampus and prefrontal cortex in major depression. Eur Arch Psychiatry Clin Neurosci 265(4):331–341. https://doi.org/10.1007/s00406-014-0572-y
Article
PubMed
Google Scholar
Jobe EM, Zhao X (2017) DNA methylation and adult neurogenesis. Brain Plast 3(1):5–26. https://doi.org/10.3233/BPL-160034
Article
PubMed
PubMed Central
Google Scholar
Sweatt JD (2016) Dynamic DNA methylation controls glutamate receptor trafficking and synaptic scaling. J Neurochem 137(3):312–330. https://doi.org/10.1111/jnc.13564
CAS
Article
PubMed
PubMed Central
Google Scholar
Mahar I, Bambico FR, Mechawar N, Nobrega JN (2014) Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev 38:173–192. https://doi.org/10.1016/j.neubiorev.2013.11.009
CAS
Article
PubMed
Google Scholar
Fukumoto K, Iijima M, Funakoshi T, Chaki S (2018) Role of 5-HT1A receptor stimulation in the medial prefrontal cortex in the sustained antidepressant effects of ketamine. Int J Neuropsychopharmacol 21(4):371–381. https://doi.org/10.1093/ijnp/pyx116
CAS
Article
PubMed
Google Scholar
Zhou W, Wang N, Yang C, Li XM, Zhou ZQ, Yang JJ (2014) Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur Psychiatry 29(7):419–423. https://doi.org/10.1016/j.eurpsy.2013.10.005
CAS
Article
PubMed
Google Scholar
Sales A, Biojone C, Joca S (2016) Site-specific delivery of epigenetic modulating drugs into the rat brain. In: Karpova N (ed) Epigenetic methods in neuroscience research, Neuromethods, vol 105. Humana press, New York
Chapter
Google Scholar
Paxinos G, Watson C (2013) The rat brain in stereotaxic coordinates, 7th edn. Academic Press, Cambridge
Abel EL, Bilitzke PJ (1990) A possible alarm substance in the forced swimming test. Physiol Behav 48(2):233–239
CAS
Article
Google Scholar
Bonefeld BE, Elfving B, Wegener G (2008) Reference genes for normalization: a study of rat brain tissue. Synapse 62(4):302–309. https://doi.org/10.1002/syn.20496
CAS
Article
PubMed
Google Scholar
Karpova NN, Umemori J (2016) Protocol for methylated DNA immunoprecipitation (meDIP) analysis. In: Epigenetic methods in neuroscience research, vol 105. Humana Press, New York, pp. 97–114
Chapter
Google Scholar
Roy B, Shelton RC, Dwivedi Y (2017) DNA methylation and expression of stress related genes in PBMC of MDD patients with and without serious suicidal ideation. J Psychiatr Res 89:115–124. https://doi.org/10.1016/j.jpsychires.2017.02.005
Article
PubMed
PubMed Central
Google Scholar
Casarotto PC, de Bortoli VC, Correa FM, Resstel LB, Zangrossi H Jr (2010) Panicolytic-like effect of BDNF in the rat dorsal periaqueductal grey matter: the role of 5-HT and GABA. Int J Neuropsychopharmacol 13(5):573–582. https://doi.org/10.1017/S146114570999112X
CAS
Article
PubMed
Google Scholar
Fernandez Macedo GV, Cladouchos ML, Sifonios L, Cassanelli PM, Wikinski S (2013) Effects of fluoxetine on CRF and CRF1 expression in rats exposed to the learned helplessness paradigm. Psychopharmacology 225(3):647–659. https://doi.org/10.1007/s00213-012-2859-x
CAS
Article
PubMed
Google Scholar
Yan HC, Cao X, Das M, Zhu XH, Gao TM (2010) Behavioral animal models of depression. Neurosci Bull 26(4):327–337. https://doi.org/10.1007/s12264-010-0323-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Urb M, Anier K, Matsalu T, Aonurm-Helm A, Tasa G, Koppel I, Zharkovsky A, Timmusk T et al (2019) Glucocorticoid receptor stimulation resulting from early life stress affects expression of DNA methyltransferases in rat prefrontal cortex. J Mol Neurosci 68(1):99–110. https://doi.org/10.1007/s12031-019-01286-z
CAS
Article
PubMed
Google Scholar
Morris MJ, Adachi M, Na ES, Monteggia LM (2014) Selective role for DNMT3a in learning and memory. Neurobiol Learn Mem 115:30–37. https://doi.org/10.1016/j.nlm.2014.06.005
CAS
Article
PubMed
Google Scholar
Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD, Silva AJ, Fan G (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13(4):423–430. https://doi.org/10.1038/nn.2514
CAS
Article
PubMed
PubMed Central
Google Scholar
Levenson JM, Roth TL, Lubin FD, Miller CA, Huang IC, Desai P, Malone LM, Sweatt JD (2006) Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem 281(23):15763–15773. https://doi.org/10.1074/jbc.M511767200
CAS
Article
PubMed
Google Scholar
Poulter MO, Du L, Weaver IC, Palkovits M, Faludi G, Merali Z, Szyf M, Anisman H (2008) GABAA receptor promoter hypermethylation in suicide brain: Implications for the involvement of epigenetic processes. Biol Psychiatry 64(8):645–652. https://doi.org/10.1016/j.biopsych.2008.05.028
CAS
Article
PubMed
Google Scholar
Hsieh MT, Lin CC, Lee CT, Huang TL (2019) Abnormal brain-derived neurotrophic factor exon IX promoter methylation, protein, and mRNA levels in patients with major depressive disorder. J Clin Med 8(5). https://doi.org/10.3390/jcm8050568
Efstathopoulos P, Andersson F, Melas PA, Yang LL, Villaescusa JC, Ruegg J, Ekstrom TJ, Forsell Y et al (2018) NR3C1 hypermethylation in depressed and bullied adolescents. Transl Psychiatry 8(1):121. https://doi.org/10.1038/s41398-018-0169-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Haghighi F, Xin Y, Chanrion B, O’Donnell AH, Ge Y, Dwork AJ, Arango V, Mann JJ (2014) Increased DNA methylation in the suicide brain. Dialogues Clin Neurosci 16(3):430–438
Article
Google Scholar
Morris MJ, Na ES, Autry AE, Monteggia LM (2016) Impact of DNMT1 and DNMT3a forebrain knockout on depressive- and anxiety like behavior in mice. Neurobiol Learn Mem 135:139–145. https://doi.org/10.1016/j.nlm.2016.08.012
CAS
Article
PubMed
PubMed Central
Google Scholar
Elliott E, Manashirov S, Zwang R, Gil S, Tsoory M, Shemesh Y, Chen A (2016) Dnmt3a in the medial prefrontal cortex regulates anxiety-like behavior in adult mice. J Neurosci 36(3):730–740. https://doi.org/10.1523/JNEUROSCI.0971-15.2016
CAS
Article
PubMed
PubMed Central
Google Scholar
Momparler RL (2005) Pharmacology of 5-Aza-2′-deoxycytidine (decitabine). Semin Hematol 42(3 Suppl 2):S9–S16
CAS
Article
Google Scholar
Fandy TE (2009) Development of DNA methyltransferase inhibitors for the treatment of neoplastic diseases. Curr Med Chem 16(17):2075–2085. https://doi.org/10.2174/092986709788612738
CAS
Article
PubMed
Google Scholar
Brueckner B, Garcia Boy R, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz P, Suhai S, Wiessler M et al (2005) Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 65(14):6305–6311. https://doi.org/10.1158/0008-5472.CAN-04-2957
CAS
Article
PubMed
Google Scholar
Schirrmacher E, Beck C, Brueckner B, Schmitges F, Siedlecki P, Bartenstein P, Lyko F, Schirrmacher R (2006) Synthesis and in vitro evaluation of biotinylated RG108: a high affinity compound for studying binding interactions with human DNA methyltransferases. Bioconjug Chem 17(2):261–266. https://doi.org/10.1021/bc050300b
CAS
Article
PubMed
Google Scholar
Yang C, Shirayama Y, Zhang JC, Ren Q, Yao W, Ma M, Dong C, Hashimoto K (2015) R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry 5:e632. https://doi.org/10.1038/tp.2015.136
CAS
Article
PubMed
PubMed Central
Google Scholar
Schneeberger Y, Stenzig J, Hubner F, Schaefer A, Reichenspurner H, Eschenhagen T (2016) Pharmacokinetics of the experimental non-nucleosidic DNA methyl transferase inhibitor N-phthalyl-L-tryptophan (RG 108) in rats. Basic Clin Pharmacol Toxicol 118(5):327–332. https://doi.org/10.1111/bcpt.12514
CAS
Article
PubMed
Google Scholar
Marcucci G, Silverman L, Eller M, Lintz L, Beach CL (2005) Bioavailability of azacitidine subcutaneous versus intravenous in patients with the myelodysplastic syndromes. J Clin Pharmacol 45(5):597–602. https://doi.org/10.1177/0091270004271947
CAS
Article
PubMed
Google Scholar
Champagne FA, Francis DD, Mar A, Meaney MJ (2003) Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiol Behav 79(3):359–371
CAS
Article
Google Scholar
Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, Li XY, Aghajanian G et al (2011) Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69(8):754–761. https://doi.org/10.1016/j.biopsych.2010.12.015
CAS
Article
PubMed
PubMed Central
Google Scholar
Ardalan M, Rafati AH, Nyengaard JR, Wegener G (2017) Rapid antidepressant effect of ketamine correlates with astroglial plasticity in the hippocampus. Br J Pharmacol 174(6):483–492. https://doi.org/10.1111/bph.13714
CAS
Article
PubMed
PubMed Central
Google Scholar
Ardalan M, Wegener G, Rafati AH, Nyengaard JR (2017) S-ketamine rapidly reverses synaptic and vascular deficits of hippocampus in genetic animal model of depression. Int J Neuropsychopharmacol 20(3):247–256. https://doi.org/10.1093/ijnp/pyw098
CAS
Article
PubMed
Google Scholar
Ardalan M, Elfving B, Rafati AH, Mansouri M, Zarate CA Jr, Mathe AA, Wegener G (2020) Rapid effects of S-ketamine on the morphology of hippocampal astrocytes and BDNF serum levels in a sex-dependent manner. Eur Neuropsychopharmacol 32:94–103. https://doi.org/10.1016/j.euroneuro.2020.01.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Lepack AE, Fuchikami M, Dwyer JM, Banasr M, Duman RS (2014) BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychopharmacol 18(1). https://doi.org/10.1093/ijnp/pyu033
Lener MS, Kadriu B, Zarate CA Jr (2017) Ketamine and beyond: investigations into the potential of glutamatergic agents to treat depression. Drugs 77(4):381–401. https://doi.org/10.1007/s40265-017-0702-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Hashimoto K (2011) The role of glutamate on the action of antidepressants. Prog Neuro-Psychopharmacol Biol Psychiatry 35(7):1558–1568. https://doi.org/10.1016/j.pnpbp.2010.06.013
CAS
Article
Google Scholar
Castren E (2005) Is mood chemistry? Nat Rev Neurosci 6(3):241–246. https://doi.org/10.1038/nrn1629
CAS
Article
PubMed
Google Scholar
Courtney MJ, Akerman KE, Coffey ET (1997) Neurotrophins protect cultured cerebellar granule neurons against the early phase of cell death by a two-component mechanism. J Neurosci 17(11):4201–4211
CAS
Article
Google Scholar
Karege F, Vaudan G, Schwald M, Perroud N, La Harpe R (2005) Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res 136(1–2):29–37. https://doi.org/10.1016/j.molbrainres.2004.12.020
CAS
Article
PubMed
Google Scholar
Roth TL, Lubin FD, Funk AJ, Sweatt JD (2009) Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol Psychiatry 65(9):760–769. https://doi.org/10.1016/j.biopsych.2008.11.028
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang JC, Yao W, Dong C, Yang C, Ren Q, Ma M, Han M, Hashimoto K (2015) Comparison of ketamine, 7,8-dihydroxyflavone, and ANA-12 antidepressant effects in the social defeat stress model of depression. Psychopharmacology 232(23):4325–4335. https://doi.org/10.1007/s00213-015-4062-3
CAS
Article
PubMed
Google Scholar
Shirayama Y, Hashimoto K (2018) Lack of antidepressant effects of (2R,6R)-hydroxynorketamine in a rat learned helplessness model: comparison with (R)-ketamine. Int J Neuropsychopharmacol 21(1):84–88. https://doi.org/10.1093/ijnp/pyx108
CAS
Article
PubMed
Google Scholar
Maussion G, Yang J, Suderman M, Diallo A, Nagy C, Arnovitz M, Mechawar N, Turecki G (2014) Functional DNA methylation in a transcript specific 3′UTR region of TrkB associates with suicide. Epigenetics 9(8):1061–1070. https://doi.org/10.4161/epi.29068
Article
PubMed
PubMed Central
Google Scholar
Mifsud KR, Saunderson EA, Spiers H, Carter SD, Trollope AF, Mill J, Reul JM (2017) Rapid down-regulation of glucocorticoid receptor gene expression in the dentate gyrus after acute stress in vivo: role of DNA methylation and microRNA activity. Neuroendocrinology 104(2):157–169. https://doi.org/10.1159/000445875
CAS
Article
PubMed
Google Scholar
Martin-Hernandez D, Tendilla-Beltran H, Madrigal JLM, Garcia-Bueno B, Leza JC, Caso JR (2019) Chronic mild stress alters kynurenine pathways changing the glutamate neurotransmission in frontal cortex of rats. Mol Neurobiol 56(1):490–501. https://doi.org/10.1007/s12035-018-1096-7
CAS
Article
PubMed
Google Scholar
van Eijk KR, de Jong S, Boks MP, Langeveld T, Colas F, Veldink JH, de Kovel CG, Janson E et al (2012) Genetic analysis of DNA methylation and gene expression levels in whole blood of healthy human subjects. BMC Genomics 13:636. https://doi.org/10.1186/1471-2164-13-636
CAS
Article
PubMed
PubMed Central
Google Scholar
Lea AJ, Vockley CM, Johnston RA, Del Carpio CA, Barreiro LB, Reddy TE, Tung J (2018) Genome-wide quantification of the effects of DNA methylation on human gene regulation. eLife 7. https://doi.org/10.7554/eLife.37513