Skip to main content

Advertisement

Log in

Mitochondria-Targeted Small Peptide, SS31 Ameliorates Diabetes Induced Mitochondrial Dynamics in Male TallyHO/JngJ Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The escalating burden of type 2 diabetes (T2D) and its related complications has become a major public health challenge worldwide. Substantial evidence indicates that T2D is one of the culprits for the high prevalence of Alzheimer’s disease (AD) in diabetic subjects. This study aimed to investigate the possible mitochondrial alterations in the pancreas induced by hyperglycemia in diabetes. We used a diabetic TallyHO/JngJ (TH) and non-diabetic, SWR/J mice strains. The diabetic and non-diabetic status in animals was assessed by performing intraperitoneal glucose tolerance test at four time points, i.e., 4, 8, 16, and 24 weeks of age. We divided 24-week-old TH and SWR/J mice into 3 groups: controls, diabetic TH mice, and diabetic TH mice treated with SS31 peptide. After the treatment of male TH mice with SS31, intraperitoneally, for 4 weeks, we studied mitochondrial dynamics, biogenesis, and function. The mRNA and protein expression levels of mitochondrial proteins were evaluated using qPCR and immunoblot analysis. The diabetic mice after 24 weeks of age showed overt pancreatic injury as demonstrated by disintegration and atrophy of β cells with vacuolization and reduced islet size. Mitochondrial dysfunction was observed in TH mice, as evidenced by significantly elevated H2O2 production, lipid peroxidation, and reduced ATP production. Furthermore, mRNA expression and immunoblot analysis of mitochondrial dynamics genes were significantly affected in diabetic mice, compared with controls. However, treatment of animals with SS31 reduced mitochondrial dysfunction and restored most of the mitochondrial functions and mitochondrial dynamics processes to near normal in TH mice. In conclusion, mitochondrial dysfunction is established as one of the molecular events that occur in the pathophysiology of T2D. Further, SS31 treatment may confer protection against the mitochondrial alterations induced by hyperglycemia in diabetic TallyHO/JngJ mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic medicine : a journal of the British Diabetic Association 15(7):539–553. https://doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S

    Article  CAS  Google Scholar 

  2. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract 157:107843. https://doi.org/10.1016/j.diabres.2019.107843

  3. Li X, Song D, Leng SX (2015) Link between type 2 diabetes and Alzheimer's disease: from epidemiology to mechanism and treatment. Clin Interv Aging 10:549–560. https://doi.org/10.2147/CIA.S74042

    Article  PubMed  PubMed Central  Google Scholar 

  4. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. The Lancet Neurology 5(1):64–74. https://doi.org/10.1016/S1474-4422(05)70284-2

    Article  PubMed  Google Scholar 

  5. Vieira MNN, Lima-Filho RAS, De Felice FG (2017) Connecting Alzheimer's disease to diabetes: Underlying mechanisms and potential therapeutic targets. Neuropharmacology. 136:160–171. https://doi.org/10.1016/j.neuropharm.2017.11.014

    Article  CAS  PubMed  Google Scholar 

  6. Davis WA, Zilkens RR, Starkstein SE, Davis TME, Bruce DG (2017) Dementia onset, incidence and risk in type 2 diabetes: a matched cohort study with the Fremantle diabetes study phase I. Diabetologia 60(1):89–97. https://doi.org/10.1007/s00125-016-4127-9

    Article  PubMed  Google Scholar 

  7. Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM (1999) Diabetes mellitus and the risk of dementia: the Rotterdam study. Neurology 53(9):1937–1942

    Article  CAS  Google Scholar 

  8. Chatterjee S, Peters SA, Woodward M, Mejia Arango S, Batty GD, Beckett N, Beiser A, Borenstein AR et al (2016) Type 2 diabetes as a risk factor for dementia in women compared with Men: a pooled analysis of 2.3 million people comprising more than 100,000 cases of dementia. Diabetes Care 39(2):300–307. https://doi.org/10.2337/dc15-1588

  9. Yoon S, Cho H, Kim J, Lee DW, Kim GH, Hong YS, Moon S, Park S et al (2017) Brain changes in overweight/obese and normal-weight adults with type 2 diabetes mellitus. Diabetologia 60(7):1207–1217. https://doi.org/10.1007/s00125-017-4266-7

  10. Pal K, Mukadam N, Petersen I, Cooper C (2018) Mild cognitive impairment and progression to dementia in people with diabetes, prediabetes and metabolic syndrome: a systematic review and meta-analysis. Soc Psychiatry Psychiatr Epidemiol 53(11):1149–1160. https://doi.org/10.1007/s00127-018-1581-3

    Article  PubMed  PubMed Central  Google Scholar 

  11. Triggle CR (2006) Phenotypic characterization of polygenic type 2 diabetes in TALLYHO/JngJ mice. Can J Physiol Pharmacol 191(2):437–446. https://doi.org/10.1139/y07-010

    Article  Google Scholar 

  12. Leiter EH, Strobel M, O'Neill A, Schultz D, Schile A, Reifsnyder PC (2013) Comparison of two new mouse models of polygenic type 2 diabetes at the Jackson Laboratory, NONcNZO10Lt/J and TALLYHO/JngJ. Journal of diabetes research 2013:165327–165327. https://doi.org/10.1155/2013/165327

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tamarai K, Bhatti JS, Reddy PH (2019) Molecular and cellular bases of diabetes: Focus on type 2 diabetes mouse model-TallyHo. Biochim Biophys Acta Mol basis Dis 1865:2276–2284. https://doi.org/10.1016/j.bbadis.2019.05.004

    Article  CAS  PubMed  Google Scholar 

  14. Kim JH, Saxton AM (2012) The TALLYHO mouse as a model of human type 2 diabetes. Methods Mol Biol 933:75–87. https://doi.org/10.1007/978-1-62703-068-7_6

    Article  CAS  PubMed  Google Scholar 

  15. Chen Z, Guo L, Zhang Y, Walzem RL, Pendergast JS, Printz RL, Morris LC, Matafonova E et al (2014) Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest 124(8):3391–3406. https://doi.org/10.1172/JCI72517

  16. Neschen S, Scheerer M, Seelig A, Huypens P, Schultheiss J, Wu M, Wurst W, Rathkolb B et al (2015) Metformin supports the antidiabetic effect of a sodium glucose cotransporter 2 inhibitor by suppressing endogenous glucose production in diabetic mice. Diabetes 64(1):284–290. https://doi.org/10.2337/db14-0393

  17. Thrailkill KM, Bunn RC, Uppuganti S, Ray P, Popescu I, Kalaitzoglou E, Fowlkes JL, Nyman JS (2020) Canagliflozin, an SGLT2 inhibitor, corrects glycemic dysregulation in TallyHO model of T2D but only partially prevents bone deficits. Bone:115625. https://doi.org/10.1016/j.bone.2020.115625

  18. Fluitt MB, Shivapurkar N, Kumari M, Singh S, Li L, Tiwari S, Ecelbarger CM (2020) Systemic inhibition of miR-451 increases fibrotic signaling and diminishes autophagic response to exacerbate renal damage in Tallyho/Jng mice. Am J Physiol Renal Physiol 319(3):F476–F486. https://doi.org/10.1152/ajprenal.00594.2019

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Q, Tsuji-Hosokawa A, Willson C, Watanabe M, Si R, Lai N, Wang Z, Yuan JX et al (2020) Chloroquine differentially modulates coronary vasodilation in control and diabetic mice. Br J Pharmacol 177(2):314–327. https://doi.org/10.1111/bph.14864

  20. Franko A, Neschen S, Rozman J, Rathkolb B, Aichler M, Feuchtinger A, Brachthauser L, Neff F et al (2017) Bezafibrate ameliorates diabetes via reduced steatosis and improved hepatic insulin sensitivity in diabetic TallyHo mice. Mol Metab 6(3):256–266. https://doi.org/10.1016/j.molmet.2016.12.007

  21. Murphy MP, Smith RA (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 47:629–656. https://doi.org/10.1146/annurev.pharmtox.47.120505.105110

    Article  CAS  PubMed  Google Scholar 

  22. Reddy PH (2006) Mitochondrial oxidative damage in aging and Alzheimer's disease: Implications for mitochondrially targeted antioxidant therapeutics. J Biomed Biotechnol 2006(3):31372–31313. https://doi.org/10.1155/JBB/2006/31372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Szeto HH (2006) Mitochondria-targeted peptide antioxidants: novel neuroprotective agents. AAPS J 8(3):E521–E531. https://doi.org/10.1208/aapsj080362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279(33):34682–34690. https://doi.org/10.1074/jbc.M402999200

    Article  CAS  PubMed  Google Scholar 

  25. Thomas DA, Stauffer C, Zhao K, Yang H, Sharma VK, Szeto HH, Suthanthiran M (2007) Mitochondrial targeting with antioxidant peptide SS-31 prevents mitochondrial depolarization, reduces islet cell apoptosis, increases islet cell yield, and improves posttransplantation function. J Am Soc Nephrol 18(1):213–222. https://doi.org/10.1681/ASN.2006080825

    Article  CAS  PubMed  Google Scholar 

  26. Cho J, Won K, Wu D, Soong Y, Liu S, Szeto HH, Hong MK (2007) Potent mitochondria-targeted peptides reduce myocardial infarction in rats. Coron Artery Dis 18(3):215–220. https://doi.org/10.1097/01.mca.0000236285.71683.b6

    Article  PubMed  Google Scholar 

  27. Petri S, Kiaei M, Damiano M, Hiller A, Wille E, Manfredi G, Calingasan NY, Szeto HH et al (2006) Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis. J Neurochem 98(4):1141–1148. https://doi.org/10.1111/j.1471-4159.2006.04018.x

  28. Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH (2011) Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer's disease. Hum Mol Genet 20(23):4515–4529. https://doi.org/10.1093/hmg/ddr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manczak M, Mao P, Calkins MJ, Cornea A, Reddy AP, Murphy MP, Szeto HH, Park B et al (2010) Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer's disease neurons. J Alzheimers Dis 20(Suppl 2):S609–S631. https://doi.org/10.3233/JAD-2010-100564

  30. Reddy PH, Manczak M, Kandimalla R (2017) Mitochondria-targeted small molecule SS31: a potential candidate for the treatment of Alzheimer's disease. Hum Mol Genet 26(8):1597. https://doi.org/10.1093/hmg/ddx129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reddy PH, Manczak M, Yin X, Reddy AP (2018) Synergistic protective effects of mitochondrial division inhibitor 1 and mitochondria-targeted small peptide SS31 in Alzheimer's disease. J Alzheimers Dis 62(4):1549–1565. https://doi.org/10.3233/JAD-170988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yin X, Manczak M, Reddy PH (2016) Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington's disease. Hum Mol Genet 25(9):1739–1753. https://doi.org/10.1093/hmg/ddw045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hunter CA, Kartal F, Koc ZC, Murphy T, Kim JH, Denvir J, Koc EC (2019) Mitochondrial oxidative phosphorylation is impaired in TALLYHO mice, a new obesity and type 2 diabetes animal model. Int J Biochem Cell Biol 116:105616. https://doi.org/10.1016/j.biocel.2019.105616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mathews CE, Leiter EH (2005) Rodent models for the study of diabetes. In: Kahn CR, Weir GC, King GL, Jacobson AM, Moses AC, Smith RJ (eds) Joslin's diabetes mellitus, 14th edn. Lippincott Williams, Willkins, Philadelphia, pp. 292–328

  35. Manczak M, Reddy PH (2015) Mitochondrial division inhibitor 1 protects against mutant huntingtin-induced abnormal mitochondrial dynamics and neuronal damage in Huntington's disease. Hum Mol Genet 24(25):7308–7325. https://doi.org/10.1093/hmg/ddv429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sun Y, Ma C, Sun H, Wang H, Peng W, Zhou Z, Wang H, Pi C et al (2020) Metabolism: A novel shared link between diabetes mellitus and Alzheimer's disease. Journal of diabetes research 2020:4981814–4981812. https://doi.org/10.1155/2020/4981814

  37. DeFronzo RA (2004) Pathogenesis of type 2 diabetes mellitus. Med Clin N Am 88(4):787–835. https://doi.org/10.1016/j.mcna.2004.04.013

    Article  CAS  PubMed  Google Scholar 

  38. Kahn SE, Prigeon RL, McCulloch DK, Boyko EJ, Bergman RN, Schwartz MW, Neifing JL, Ward WK et al (1993) Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes 42(11):1663–1672

  39. Ramasubramanian B, Reddy PH (2019) Are TallyHo mice a true mouse model for type 2 diabetes and Alzheimer's disease? Journal of Alzheimer's disease : JAD 72(s1):S81–s93. https://doi.org/10.3233/jad-190613

    Article  CAS  PubMed  Google Scholar 

  40. Warren SM (2012) TallyHo diabetic phenotype limited to male mice: Female mice provide obese, nondiabetic mouse model. Wound repair Regen 129(4):727e. https://doi.org/10.1111/j.1524-475X.2012.00803.xhttps://doi.org/10.1097/PRS.0b013e318245eaff

  41. Kim JH, Stewart TP, Soltani-Bejnood M, Wang L, Fortuna JM, Mostafa OA, Moustaid-Moussa N, Shoieb AM et al (2006) Phenotypic characterization of polygenic type 2 diabetes in TALLYHO/JngJ mice. J Endocrinol 191(2):437–446. https://doi.org/10.1677/joe.1.06647

  42. Parkman J, Mao X, Dillon K, Gudivada A, Moustaid-Moussa N, Saxton A, Kim J (2016) Genotype-dependent metabolic responses to semi-purified high-sucrose high-fat diets in the TALLYHO/Jng vs. C57BL/6 mouse during the development of obesity and type 2 diabetes. Exp Clin Endocrinol Diabetes 124(10):622-629. https://doi.org/10.1055/s-0042-109605

  43. Rhee SD (2005) Type 2 diabetes mouse model TallyHo carries an obesity gene on chromosome 6 that exaggerates dietary obesity. Biochem Biophys Res Commun 22(2):171–181. https://doi.org/10.1016/j.bbrc.2005.10.160

    Article  CAS  Google Scholar 

  44. Reifsnyder PC (2012) Subcongenic analysis of tabw2 obesity QTL on mouse chromosome 6. Journal of diabetes research 13:81. https://doi.org/10.1155/2013/165327https://doi.org/10.1186/1471-2156-13-81

  45. Naggert JK (2005) Glucose intolerance in young TallyHo mice is induced by leptin-mediated inhibition of insulin secretion. J Endocrinol 338(4):1779–1787. https://doi.org/10.1677/joe.1.06647

    Article  CAS  Google Scholar 

  46. Naggert JK (2001) Genetic analysis of a new mouse model for non-insulin-dependent diabetes. Physiol Genomics 74(3):273–286. https://doi.org/10.1152/physiolgenomics.00197.2004

    Article  Google Scholar 

  47. Mustoe TA (2011) Obesity of TallyHO/JngJ mouse is due to increased food intake with early development of leptin resistance. Experimental cell research 119(4):243–251. https://doi.org/10.1016/j.yexcr.2011.07.004https://doi.org/10.1055/s-0030-1267202

  48. Bae MA (2010) Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J x TALLYHO/JngJ) F2 mice. PloS one 11:713. https://doi.org/10.1371/journal.pone.0018168https://doi.org/10.1186/1471-2164-11-713

  49. Green K, Brand MD, Murphy MP (2004) Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes 53(Suppl 1):S110–S118. https://doi.org/10.2337/diabetes.53.2007.s110

    Article  CAS  PubMed  Google Scholar 

  50. Busik JV, Mohr S, Grant MB (2008) Hyperglycemia-induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators. Diabetes 57(7):1952–1965. https://doi.org/10.2337/db07-1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bhatti JS, Bhatti GK, Reddy PH (2017) Mitochondrial dysfunction and oxidative stress in metabolic disorders - a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta 1863(5):1066–1077. https://doi.org/10.1016/j.bbadis.2016.11.010

    Article  CAS  Google Scholar 

  52. Harper ME, Bevilacqua L, Hagopian K, Weindruch R, Ramsey JJ (2004) Ageing, oxidative stress, and mitochondrial uncoupling. Acta Physiol Scand 182(4):321–331. https://doi.org/10.1111/j.1365-201X.2004.01370.x

    Article  CAS  PubMed  Google Scholar 

  53. Hu F, Liu F (2011) Mitochondrial stress: a bridge between mitochondrial dysfunction and metabolic diseases? Cell Signal 23(10):1528–1533. https://doi.org/10.1016/j.cellsig.2011.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hales KG (2004) The machinery of mitochondrial fusion, division, and distribution, and emerging connections to apoptosis. Mitochondrion 4(4):285–308. https://doi.org/10.1016/j.mito.2004.05.007

    Article  CAS  PubMed  Google Scholar 

  55. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337(6098):1062–1065. https://doi.org/10.1126/science.1219855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wada J, Nakatsuka A (2016) Mitochondrial dynamics and mitochondrial dysfunction in diabetes. Acta Med Okayama 70(3):151–158 https://doi.org/10.18926/AMO/54413

  57. Bhatti JS, Bhatti GK, Reddy PH (2017) Mitochondrial dysfunction and oxidative stress in metabolic disorders - a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol basis Dis 1863(5):1066–1077. https://doi.org/10.1016/j.bbadis.2016.11.010

    Article  CAS  PubMed  Google Scholar 

  58. Men X, Wang H, Li M, Cai H, Xu S, Zhang W, Xu Y, Ye L et al (2009) Dynamin-related protein 1 mediates high glucose induced pancreatic beta cell apoptosis. Int J Biochem Cell Biol 41(4):879–890. https://doi.org/10.1016/j.biocel.2008.08.031

  59. Sharma K (2015) Mitochondrial hormesis and diabetic complications. Diabetes 64(3):663–672

    Article  CAS  Google Scholar 

  60. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW et al (2003) Mitochondrial dysfunction in the elderly: Possible role in insulin resistance. Science (New York, NY) 300(5622):1140–1142

  61. Montaigne D, Marechal X, Coisne A, Debry N, Modine T, Fayad G, Potelle C, El Arid JM et al (2014) Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation 130(7):554–564. https://doi.org/10.1161/CIRCULATIONAHA.113.008476

  62. Bhatti JS, Kumar S, Vijayan M, Bhatti GK, Reddy PH (2017) Therapeutic strategies for mitochondrial dysfunction and oxidative stress in age-related metabolic disorders. Prog Mol Biol Transl Sci 146:13–46. https://doi.org/10.1016/bs.pmbts.2016.12.012

    Article  CAS  PubMed  Google Scholar 

  63. Wang X, Wang W, Li L, Perry G, Lee H-g, Zhu X (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1842(8):1240–1247

  64. Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med 367(9):795–804. https://doi.org/10.1056/NEJMoa1202753

  65. Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11(12):872–884

  66. Chan DC (2006) Mitochondria: Dynamic organelles in disease, aging, and development. Cell 125(7):1241–1252

  67. Rovira-Llopis S, Banuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM (2017) Mitochondrial dynamics in type 2 diabetes: pathophysiological implications. Redox Biol 11:637–645. https://doi.org/10.1016/j.redox.2017.01.013

  68. Choi J, Chandrasekaran K, Demarest TG, Kristian T, Xu S, Vijaykumar K, Dsouza KG, Qi NR et al (2014) Brain diabetic neurodegeneration segregates with low intrinsic aerobic capacity. Annals of clinical and translational neurology 1(8):589–604

  69. Stiles L, Shirihai OS (2012) Mitochondrial dynamics and morphology in beta-cells. Best Pract Res Clin Endocrinol Metab 26(6):725–738. https://doi.org/10.1016/j.beem.2012.05.004

  70. Kaufman BA, Li C, Soleimanpour SA (2015) Mitochondrial regulation of β-cell function: Maintaining the momentum for insulin release. Mol Asp Med 42:91–104

  71. Irving BA, Nair KS (2007) Aging and diabetes: mitochondrial dysfunction. Current diabetes reports 7(4):249–251

  72. Abdul-Ghani MA, DeFronzo RA (2008) Mitochondrial dysfunction, insulin resistance, and type 2 diabetes mellitus. Current diabetes reports 8(3):173–178

  73. Mulder H, Ling C (2009) Mitochondrial dysfunction in pancreatic beta-cells in type 2 diabetes. Mol Cell Endocrinol 297(1–2):34–40. https://doi.org/10.1016/j.mce.2008.05.015

  74. Schrauwen-Hinderling VB, Roden M, Kooi ME, Hesselink MK, Schrauwen P (2007) Muscular mitochondrial dysfunction and type 2 diabetes mellitus. Current opinion in clinical nutrition and metabolic care 10(6):698–703. https://doi.org/10.1097/MCO.0b013e3282f0eca9

  75. Maassen JA (2006) Mitochondrial dysfunction in adipocytes: the culprit in type 2 diabetes? Diabetologia 49(4):619–620. https://doi.org/10.1007/s00125-006-0165-z

  76. Parish R, Petersen KF (2005) Mitochondrial dysfunction and type 2 diabetes. Current diabetes reports 5(3):177–183

  77. Lowell BB, Shulman GI (2005) Mitochondrial dysfunction and type 2 diabetes. Science (New York, NY) 307(5708):384–387. https://doi.org/10.1126/science.1104343

  78. Mogensen M, Sahlin K, Fernstrom M, Glintborg D, Vind BF, Beck-Nielsen H, Hojlund K (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56(6):1592–1599. https://doi.org/10.2337/db06-0981

  79. Razak F, Anand SS (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. N Engl J Med 2004; 350: 664-71. Vasc Med 9 (3):223–224

  80. Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, Neschen S, White MF et al (2005) Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest 115(12):3587–3593. https://doi.org/10.1172/JCI25151

  81. Morino K, Petersen KF, Sono S, Choi CS, Samuel VT, Lin A, Gallo A, Zhao H et al (2012) Regulation of mitochondrial biogenesis by lipoprotein lipase in muscle of insulin-resistant offspring of parents with type 2 diabetes. Diabetes 61(4):877–887. https://doi.org/10.2337/db11-1391

  82. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 100(14):8466–8471. https://doi.org/10.1073/pnas.1032913100

  83. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3):267–273. https://doi.org/10.1038/ng1180

  84. Hou Y, Shi Y, Han B, Liu X, Qiao X, Qi Y, Wang L (2018) The antioxidant peptide SS31 prevents oxidative stress, downregulates CD36 and improves renal function in diabetic nephropathy. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 33(11):1908–1918. https://doi.org/10.1093/ndt/gfy021

  85. Lee FY, Shao PL, Wallace CG, Chua S, Sung PH, Ko SF, Chai HT, Chung SY et al (2018) Combined therapy with SS31 and mitochondria mitigates myocardial ischemia-reperfusion injury in rats. Int J Mol Sci 19(9). https://doi.org/10.3390/ijms19092782

  86. Reddy PH, Manczak M, Kandimalla R (2017) Mitochondria-targeted small molecule SS31: a potential candidate for the treatment of Alzheimer's disease. Hum Mol Genet 26(8):1483–1496. https://doi.org/10.1093/hmg/ddx052

  87. Huang J, Li X, Li M, Li J, Xiao W, Ma W, Chen X, Liang X et al (2013) Mitochondria-targeted antioxidant peptide SS31 protects the retinas of diabetic rats. Curr Mol Med 13(6):935–945

  88. Lim S, Rashid MA, Jang M, Kim Y, Won H, Lee J, Woo JT, Kim YS et al (2011) Mitochondria-targeted antioxidants protect pancreatic beta-cells against oxidative stress and improve insulin secretion in glucotoxicity and glucolipotoxicity. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 28(5):873–886. https://doi.org/10.1159/000335802

  89. Steen E, Terry BM, Rivera JE, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR et al (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease–is this type 3 diabetes? J Alzheimers Dis 7(1):63–80

  90. Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2011) Deficient brain insulin signalling pathway in Alzheimer's disease and diabetes. J Pathol 225(1):54–62

  91. Deng Y, Li B, Liu Y, Iqbal K, Grundke-Iqbal I, Gong C-X (2009) Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: Implication for Alzheimer’s disease. Am J Pathol 175(5):2089–2098

  92. Gasparini L, Netzer WJ, Greengard P, Xu H (2002) Does insulin dysfunction play a role in Alzheimer's disease? Trends Pharmacol Sci 23(6):288–293

  93. De Felice FG, Ferreira ST (2014) Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 63(7):2262–2272

Download references

Funding

The research presented in this article was supported by NIH grants AG042178, AG047812, NS105473, AG060767, AG069333, and AG066347 (to PHR). JSB was financially supported by the University Grants Commission, Govt. of India, under Raman Postdoctoral Fellowship in the USA  [F.No.5-82/2016 (IC)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hemachandra Reddy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatti, J.S., Thamarai, K., Kandimalla, R. et al. Mitochondria-Targeted Small Peptide, SS31 Ameliorates Diabetes Induced Mitochondrial Dynamics in Male TallyHO/JngJ Mice. Mol Neurobiol 58, 795–808 (2021). https://doi.org/10.1007/s12035-020-02142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02142-7

Keywords

Navigation